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ABSTRACT 
 

In recent years, the use of Internet and online comments, expressed in natural language text, have increased 
significantly. However, it is difficult for humans to read all these comments and classify them 
appropriately. Consequently, an automatic approach is required to classify the unstructured data. In this 
paper, we propose a framework for Arabic language comprising of three steps: pre-processing, feature 
extraction and machine learning classification. The main aim of the proposed framework is to exploit the 
combination of different Arabic linguistic features. We evaluate the framework using two benchmark 
Arabic tweets datasets (ASTD, ATA), which enable sentiment polarity detection in general Arabic and 
Jordanian dialects. Comparative simulation results show that machine learning classifiers such as Support 
Vector Machine (SVM), Naive Bayes, MultiLayer Perceptron (MLP) and Logistic Regression-based 
produce the best performance by using a combination of n-gram features from Arabic tweets datasets. 
Finally, we evaluate the performance of our proposed framework using an Ensemble classifier approach, 
with promising results. 

Keywords: Arabic, Sentiment Analysis, NLP 
 
1. INTRODUCTION  
 
Over the past decade or so, Internet users have been 
increasingly contributing to discussions on different 
topics such as sports, politics, brands etc, by adding 
their own comments and opinions into web pages 
and social media.  Web 2.0 allows Internet surfers 
to share their  views  via  social media such as 
Facebook, Twitter, Instagram etc. This has resulted 
in massive amounts of unstructured big data. 
Automated sentiment analysis is required to extract 
valuable information from the data [2] [3] [20] [27] 
[28] [34]. 

The aim of sentiment analysis is to classify the data 
based on its polarity and automatically extract users 
opinion relating to relevant issues, events and 
services. User views are ex- pressed in a variety of 
ways, such as articles, reviews, forums, posts, 
comments, and tweets etc. The automatic extracting 
of these opinions is a very challenging task [1] [9] 
[18] [30]. 

There are currently two main approaches for 
sentiment classification such as machine learning 
and lexicon-based approach. The machine learning 
approach consists of supervised, unsupervised and 
semi-supervised techniques. The supervised 
technique contains a set of labeled data along with 

their class such as positive and negative. Based on 
these labeled data, machine learning classifiers are 
trained. The semi-supervised approach consists of 
labeled and unlabeled data. The machine learning 
classifiers are trained using the labeled data and 
predict the labeled for unlabeled data. The 
unsupervised technique is based on unlabeled data. 
The lexicon-based approach uses lexicons to 
identify the polarity of the sentence [4] [16] [17] 
[24] [25]. 

Arabic is the official language of 22 countries, 
spoken by around 400 million people. It is 
considered as one of the fastest growing languages 
in the world. There are about 65 million Arabic-
speaking users online, which make up of around 
18.8% of the global Internet population. Arabic is a 
Semitic language and consists of different dialects.  
These dialects are used in everyday communication 
and are not taught in schools. There is one formal 
standard writing in Arabic, termed as Modern 
Standard Arabic (MSA). There is a large difference 
between MSA and most Arabic dialects. Further, 
MSA is not a native language of any Arabic 
country, and is syntactically, morphologically and 
phonologically based on Classic Arabic [31]. 

The automatic identification polarity of Arabic text 
is difficult due to various factors. First, the 
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complexity of the language with regards to both 
morphology and structure creates lots of problems 
and has resulted in limited tools and resources for 
the aim of sentiment analysis. Second, Arabic 
consists of different dialects and every region has 
its own dialect. Arabic is one of the top 10 
languages used on the Internet, with various 
websites and weblogs specialized in Arabic 
reviews. However, no valuable research is available 
in Arabic [5] [52]. 

Sentiment analysis on social media has been the 
interest   of a growing number of researchers world-
wide. Many have used machine learning approaches 
to classify sentiments of English tweets. However, 
there is a less work carried out on the sentiment 
analysis of tweets for other languages [6] [45]. 

In this paper, we propose a new framework to 
extract Arabic features such as N-grams, from 
Arabic tweets datasets. Machine learning classifiers 
are used to comparatively evaluate the performance 
of selected features for Arabic tweets datasets. In 
the literature, extensive research has been carried 
out to determine the optimum features in English 
and Chinese languages in particular. However, to 
the best of our knowledge, Arabic feature selection 
for sentiment analysis is not yet well researched. 

This paper is organized as follows: Section 2 
outlines related work in Arabic and other languages. 
Section 3, presents the proposed framework. 
Section 4 describes the comparative experimental 
results. Section 5 provides the discussion of the 
experiments. Finally, section 6 concludes the work 
and outlines some future work directions. 

2. RELATED WORK 

In the literature, extensive research has been carried 
out to model novel sentiment analysis for English, 
Arabic and other languages. 

 
2.1 Arabic language 
Shoukry et al. [51] have proposed an approach to 
detect  polarity in Arabic tweets. These tweets are 
collected, pre- processed and converted into 
vectors. Finally, machine learning classifiers such 
as SVM and Nave Bayes are used to evaluate the 
performance of the approach. The experimental 
results show that SVM classifier (72.1%) has 
achieved better performance as compared to Nave 
Bayes classifier (65.4%). Abdulla et al. [7] have 
proposed an approach to identify polarity in Arabic 
reviews. In this approach large datasets are 
collected and manually annotated. Afterwards, two 
different classifiers are used to evaluate the 
performance of the approach. The experimental 

results show the SVM classifier (64.1%), which 
outperforms Naive Bayes classifier (55.9%).  
Ibrahim et al.[32] have proposed a feature-based 
approach to detect polarity in Arabic product 
reviews. The proposed approach introduces Arabic 
lexicon to detect idioms in Arabic language. 
Further- more, they develop lexicon to 
automatically detect polarity in Arabic reviews. 
Experimental results show the SVM classifier 
(95.12%), which outperforms Naive Bayes 
classifier (83.64%). 

Al-Moslmi et al. [11] have introduced an Arabic 
sentilexicon for generating feature vectors and 
developed multi- domain Arabic corpus. They have 
evaluated the performance of the approach by using 
four different machine learning classifier. 
Experimental results show that SVM classifier 
(69%) outperforms Nave Bayes (53.87%), KNN 
(41.87%), and Logistic regression classifiers 
(45.87%). Al-Smadi et al. [13] have proposed an 
approach to detect polarity in Arabic hotel reviews. 
The long short-term memory (LSTM) and neural 
network are used to evaluate the performance of the 
approach. The hotel reviews are converted into 
character embedding. Experimental results have 
showed the proposed approach (82.7%) 
outperforms to CNN (76.4%). Ahmad et al. [10] 
have proposed a framework to detect polarity in the 
financial news in Arabic and Chinese. In order to 
evaluate the performance of the framework, the 
corpus is built, which consists of 8000 financial 
headline news. Finally, the data has been analyzed 
using grid-based analysis. The main disadvantage 
of the proposed framework is lack of machine 
learning classification. 

2.2 Various languages 

Sharma et al. [50] have proposed an approach for 
visualization of Twitter messages. Online users are 
able to measure the sentiment. The main motivation 
is to build this application by providing an 
automated platform, which serves as complete end-
to-end system for sentiment analysis of Twitter 
messages along with their visualization. Saif et al. 
[49] have developed   a lexicon to detect polarity 
for sentiment analysis on Twitter. The proposed 
approach detects sentiment in entity-level and 
tweet-level. It has been evaluated using three 
different Twit- ter datasets. Experimental results 
show the proposed lexicon (81.03%) outperforms 
as compared to MPQA (63.79%) and SentiStrength 
(62.07%). However, the proposed lexicon only 
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covers English tweets, and its not able to detect 
polarity in different languages such as Arabic. 

Dashtipour et al. [19] have proposed a lexicon to 
detect  polarity in Persian sentences. The lexicon 
consists of 1500 words along with their parts-of-
speech tags and their polarity. The Persian headline 
news are used to evaluate the performance of the 
approach. The experimental results show the SVM 
classifier (67.03%) outperforms Naive Bayes 
classifier (61.2%). Grbner et al. [26] have proposed 
an approach to detect polarity in English customer 
reviews. The approach consists of three steps such 
as (1) building a lexicon, (2) apply lexicon to 
customer reviews and (3) apply machine learning to 
evaluate the performance of the approach. 
Experimental result shows the proposed approach 
has achieved accuracy of 90%. 

Li et al. [39] have proposed an approach to detect 
IKEA post. Similarly, they have developed a 
lexicon to detect polarity of the IKEA posts and 
evaluated it by using machine learning classifiers 
such as Logistic regression, SVM, Random Forest 
and neural network, Nave Bayes and elastic Net. 
The experimental results show the elastic Net 
classifier (80.04%) out- performs to logistic 
regression (70.35%), Nave Bayes (70%), SVM 
(70.65%), neural network (70.65%), and random 
forest (70.51%) classifiers. Wu et al. [55] have 
proposed a framework to predict emoji in English 
tweets. They have used a residual CNN-LSTM to 
evaluate the performance of the approach. The 
English tweets are converted to word embedding. 
This embedding is then fed into deep learning 
classifiers, which has resulted in an accuracy of 
82.9%. 

Basile et al. [15] have proposed an approach to 
detect polarity in Italian tweets, and they have 
developed the first Italian tweet corpus. In order to 
collect Italian corpus, they have used language 
detection to collect only Italian tweets. The SVM 
has used to evaluate the performance of the 
approach which has resulted an accuracy of 66.4%. 
Kaya et al. [37] have proposed a framework to 
detect polarity in Turkish political news. The 
proposed technique has been evaluated by using 
four different machine learning algorithms such as 
Naive Bayes, Maximum entropy, SVM and 
character-based N-gram language model. 
Experimental results show SVM classifier 
(76.31%) outperforms Naive Bayes (72.05%), 
character N- gram (73.93%), and Maximum 
entropy classifiers (75.85%). Vural et al. [54] have 

presented a framework to detect polarity in Turkish 
text documents. The Turkish movie reviews are 
used to evaluate the performance of the approach, 
and the SentiStregth (English lexicon) is translated 
into Turkish to assign polarity into the dataset. 
Experimental results show the proposed framework 
has achieved an accuracy of 78.4%. 

Ghorbel et al. [23] have proposed an approach to 
detect polarity in French movie reviews. The 
French movie reviews are collected online, which 
consist of 1000 positive and 1000 negative labels. 
Unigram and  parts-of-speech  features  such as 
adjective, adverb, verb and noun are extracted to 
evaluate the performance of the approach. 
Experimental results show the unigram has 
achieved accuracy of 93%. Kap et al. [36] have 
proposed an approach to detect polarity Lithuanian 
text. The Internet comments in Lithuanian are 
collected, converted into word embedding using 
FastText, and classifiers such as Nave Bayes, SVM, 
CNN and LSTM are used to evaluate the 
performance of the approach. Experimental results 
show CNN classifier (87%) has achieved  better  
accuracy  as  compared to SVM (61%), Nave Bayes 
(54%) and LSTM classifiers (73%). Rezaeinia et al. 
[48] have proposed an approach to detect polarity 
in movie reviews. These reviews are converted into 
word and parts-of-speech embedding. Afterwards, 
deep learning classifier such as CNN has been used 
to evaluate the performance of the approach which 
resulted an accuracy of 87%. 

Wu et al. [55] have proposed a semi-supervised 
approach using variational autoencoder to assign 
polarity to unlabeled datasets. The multi-domain 
datasets (car, book, laptop, news) are used to 
evaluate the performance of this approach. 
Experimental results show the proposed approach 
work effectively to detect polarity in unlabeled 
datasets. 

However, none of studies have explored a 
sentiment analysis approach for general Arabic and 
Jordanian dialect datasets. Therefore, in this paper, 
we propose a novel approach to detect sentiment 
polarity in general Arabic and Jordanian dialects. 

Table I summarizes some of the best approaches, 
which have been used for different languages and 
their reported accuracies. 

3. METHODOLOGY 
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In this section, the proposed approach for Arabic 
tweets sentiment analysis framework is discussed in 
detail. Fig 1 depicts the proposed framework and its 
details are presented in subsequent sections. The 
dataset is preprocessed using tokenization and 
normalization techniques. Afterwards, ngram 
features are extracted from the sentences, and 
finally machine learning classifiers are used to 
evaluate the performance of the approach. 

Pre-processing: The Arabic tweets dataset is used 
in order to evaluate the performance of the 
proposed framework. Dataset is distributed into 
training set (60%), testing set (30%), and validation 
set (10%) to apply machine learning classifiers. The 
dataset consists of positive and negative labels. The 
tweets are pre-processed using tokenization and 
normalization techniques. The NLTK tokenizer is 
used to tokenize Arabic tweets. For example, a text 
”Its a good mobile” is converted into words such as 
”Its”, ”a”, ”good”, and ”mobile”. Afterwards, 
normalization techniques are used to normalize the 
tweets. For example, a tweet ”It is gr8 time” is 
converted into ”It is great time”. [41] [56] [38]. 

N-gram: N-gram is a sequence of consecutive 
words in a text [22] [33]. For example, 

 , the unigram for sentence 

is . In the proposed framework, we 
have used unigram, bigram and trigram. 

Ensemble Classifier Averaging: In this method, 
we take an average prediction of all the classifiers 
which is used to make the final prediction for 
accuracy, precision, recall and F-measure. 
 

Ensemble(AVG) =  anaaa
n

 .....321
1      (1)

  
4. EXPERIMENTAL RESULTS 
 
In order to evaluate the performance of our 
proposed approach, the tweets are converted into 
Bag Of Words (BOW). These BOW are fed into 
different machine learning algorithms such as 
SVM, Naive Bayes, Linear SVM, and RBF, to 
evaluate the performance of the approach. We have 
used different features such as unigram, bigram, 
trigram, mixture of unigram and bigram, mixture of 
bigram and trigram, and mixture of unigram and 
trigram to evaluate the performance of the dataset. 
Experimental results show the unigram achieved 

better accuracy as compared to other features such 
as Bigram, and Trigram. 
In addition, the Naive Bayes classifier has 
received lower accuracy as compared to other 
algorithms. 
  
ASTD: The Arabic tweets dataset consists of 1000 
positive and 1000 negative tweets. These tweets are 
manually annotated into positive and negative 
labels by applying the Mechanical Turk approach. 
[43]. 

ATA: The dataset consists of 1000 positive and 
1000 negative tweets, which are of various topics 
such as politics and arts. These tweets are in MSA 
and Jordanian dialects [6]. 

Results: The results for ASTD dataset are 
summarized into Table II and Table III. Among n-
gram features, classifier trained on unigram has 
achieved better performance in terms of accuracy. 

The experimental results show the effectiveness of 
the unigram feature using MLP classifier. In order 
to evaluate the performance of the approach, the 
following evaluation metrics are used to calculate 
precision, recall, f-measure and accuracy. 

  

Precision = 

T P 

(2)  
  

  T P + F P 

  

Recall = 

 T P 

(3)  
   
T P + F N 

    

F measure = 2  *
 

Precision * Recall 
_______________ 

(4)
Precision + Recall      

Accuracy = 

  T P + T N 

(5)
 

 T P + T N + F P + F N 

where TP represents true positive, TN represents 
true negative, FP represents false positive, and FN 
represents false negative respectively. 

The unigram has performed better in comparison 
with bigram and trigram, because the bigram and 
trigram features contain lots of noise, which affects 
the performance of the classifier. Fig 2 summarizes 
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the accuracy of the experiments for ASTD dataset 
and Fig 3 summarizes the accuracy of the 
experiments for Arabic tweets dataset. 

Table IV and Table V presents the Ensemble 
classifier and their results achieved on ASTD 
dataset and ATA dataset. 

Table VI reports the comparison of the proposed 
framework for Arabic sentiment analysis with four 
recently proposed framework in the literature. In 
order to compare the results, we have used their 
dataset to evaluate the performance of our 
approach. Nabil et al. [43] have extracted unigram 
from ASTD dataset. TF-IDF has been applied into 
unigram and SVM is used to evaluate the 
performance of their approach. Rabab’ah et al. [46] 
have developed a lexicon and ASTD dataset is used 
to evaluate the performance of the proposed 
lexicon. Al-Thubaity et al. [14] have developed a 
lexicon for Saudi dialects, and they have used 
ASTD dataset to evaluate the performance of their 

lexicon. Table VII reports the comparison of 
proposed framework for Arabic sentiment analysis 
(ATA dataset) with recently proposed framework in 
the literature. In order to compare the results, we 
have used their dataset to evaluate the performance 
of our approach. Abooraig et al. [8] have developed 
a lexicon. Arabic tweets are used to evaluate the 
performance of the approach. Al Shboul et al. [12] 
have applied pre-processing technique known as 
stemming and used Naive Bayes classifier to 
evaluate the performance of the approach. Scikit 
learn (Python package) is used to train machine 
learning classifiers.  The following experimental 
setup is used for our experiments: 

 
 
 
 
 
 
 

 
Table 1: State-Of-The-Art Approaches And Achieved Accuracy 

Ref Purpose Language Accuracy 

Hassan et al. [29] Develop Arabic lexicon Arabic 74% 

Mostafa et al. [42] Detecting polarity Arabic 72.30% 

Donia et al. [21] Detect polarity in Arabic tweets Arabic 72.83% 

Zheng et al. [57] Detect polarity in Chinese online 
reviews 

Chinese 74.42% 

Liu et al. [40] Detect polarity in customer reviews Chinese 87.50% 

Jhanwar et al. [35] Detect polarity in Facebook reviews Hindi 
English 

70.80% 

Van et al. [53] Irony detection in English English 65.90% 

Rauh et al. [47] Detect polarity in German politic 
comments 

German 72.30% 

Nakayama et al. [44] Detect polarity in Japanese reviews Japanese 76% 

 

 
Figure 1: Proposed Framework 
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Table 2: results on astd dataset 

 

Table 3: result on ata dataset 

Classifier Feature Precision Recall F-measure Accuracy (%) Feature Precision Recall F-measure Accuracy 

MLP Unigram 0.74 0.75 0.74 75.47 Unigram + Bigram 0.75 0.75 0.72 75 

LR Unigram 0.74 0.75 0.72 74.76 Unigram + Bigram 0.74 0.74 0.7 74.04 

Linear SVM Unigram 0.77 0.69 0.57 72.43 Unigram + Bigram 0.75 0.7 0.59 69.68 

RBF SVM Unigram 0.78 0.68 0.55 68.01 Unigram + Bigram 0.78 0.68 0.55 68.01 

NB Unigram 0.47 0.69 0.56 68.05 Unigram + Bigram 0.63 0.59 0.6 66.92 

MLP Bigram 0.68 0.69 0.59 68.96 Unigram + Trigram 0.74 0.74 0.69 73.73 

LR Bigram 0.72 0.69 0.58 68.88 Unigram + Trigram 0.74 0.73 0.68 73.41 

Linear SVM Bigram 0.46 0.68 0.55 68.14 Unigram + Trigram 0.74 0.7 0.6 70 

RBF SVM Bigram 0.62 0.68 0.56 67.93 Unigram + Trigram 0.78 0.68 0.55 68.01 

NB Bigram 0.78 0.68 0.55 68.01 Unigram + Trigram 0.68 0.53 0.59 67.32 

MLP Trigram 0.69 0.68 0.57 68.41 Bigram + Trigram 0.69 0.69 0.58 68.8 

LR Trigram 0.73 0.68 0.57 68.49 Bigram + Trigram 0.73 0.69 0.57 68.73 

Linear SVM Trigram 0.46 0.68 0.55 67.93 Bigram + Trigram 0.78 0.68 0.55 68.01 

RBF SVM Trigram 0.65 0.68 0.58 68.33 Bigram + Trigram 0.62 0.68 0.56 67.93 

NB Trigram 0.46 0.68 0.55 67.93 Bigram + Trigram 0.64 0.51 0.56 67.54 

Classifier Feature Precision Recall F-measure 
Accuracy 
(%) Feature Precision Recall 

F-
measur
e 

Accuracy 
(%) 

MLP Unigram 0.82 0.82 0.82 82.17 Unigram + Bigram 0.82 0.81 0.81 81.16 

LR Unigram 0.81 0.81 0.81 80.66 Unigram + Bigram 0.81 0.81 0.81 80.56 

Linear SVM Unigram 0.75 0.72 0.72 72.4 Unigram + Bigram 0.75 0.75 0.72 72.8 

RBF SVM Unigram 0.68 0.54 0.42 53.67 Unigram + Bigram 0.65 0.53 0.4 52.87 

NB Unigram 0.82 0.81 0.81 81.47 Unigram + Bigram 0.25 0.5 0.34 50.35 

MLP Bigram 0.74 0.66 0.63 65.86 Unigram + Trigram 0.81 0.8 0.8 80.46 

LR Bigram 0.75 0.68 0.66 68.47 Unigram + Trigram 0.8 0.8 0.8 79.65 

Linear SVM Bigram 0.75 0.52 0.37 55.24 Unigram + Trigram 0.75 0.74 0.73 73.51 

RBF SVM Bigram 0.59 0.54 0.47 54.27 Unigram + Trigram 0.65 0.53 0.4 52.87 

NB Bigram 0.75 0.52 0.37 51.56 Unigram + Trigram 0.75 0.5 0.34 49.94 

MLP Trigram 0.73 0.55 0.44 54.88 Bigram + Trigram 0.75 0.65 0.61 64.75 

LR Trigram 0.74 0.53 0.39 52.97 Bigram + Trigram 0.74 0.67 0.64 66.76 

Linear SVM Trigram 0.75 0.51 0.36 51.46 Bigram + Trigram 0.75 0.52 0.37 51.76 

RBF SVM Trigram 0.58 0.56 0.53 55.79 Bigram + Trigram 0.58 0.54 0.47 54.17 

NB Trigram 0.75 0.5 0.33 49.74 Bigram + Trigram 0.75 0.51 0.35 50.55 
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Figure 2: Feature Combination ASTD Dataset 

 
Table 4: Ensemble Classifier Averaging Results On Astd Dataset 

Feature Precision Recall F-measure Accuracy 

Unigram 0.7 0.71 0.62 71.74 

Bigram 0.65 0.68 0.56 68.38 

Trigram 0.59 0.68 0.56 68.21 

Unigram + Bigram 0.73 0.69 0.63 70.73 

Unigram + Trigram 0.73 0.67 0.62 70.49 

Bigram + Trigram 0.69 0.65 0.56 68.2 

 
Table 5: Ensemble Classifier Averaging Results On Ata Dataset 

Feature Precision Recall F-measure Accuracy 

Unigram 0.77 0.74 0.71 74.07 

Bigram 0.71 0.58 0.5 59.08 

Trigram 0.71 0.53 0.41 52.96 

Unigram + Bigram 0.65 0.68 0.61 67.54 

Unigram + Trigram 0.75 0.67 0.61 67.28 

Bigram + Trigram 0.71 0.57 0.48 57.59 
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Table 6: Accuracy Performance And Comparison With State Of The Art Models - Astd Dataset 

References Accuracy 

Our proposed approach (ASTD Dataset) 75.47% 

Nabil et al. [43] 68.07 

Rabab’ah et al. [46] 62% 

Al-Thubaity et al. [14] 65% 

 
5. DISCUSSION 
 
The main finding is that the sentiment analysis of 
Arabic tweets is important and it can improve the 
accuracy for detection of polarity in short sentences 
such as tweets.  
The main advantage of the proposed approach is 
useful to detect polarity in Arabic tweets. As 
mentioned earlier, Arabic language consists of 
different dialects such as Arabizi or Sudanese [31]. 
However, the proposed approach is able detect 
polarity in modern standard Arabic and Jordanian 
dialect. In addition, the proposed approach uses 
traditional machine learning classifiers such as 
MLP, SVM, and NB. However, deep learning 
classifiers such as Convolutional neural network 
(CNN) and Long short-term memory (LSTM) have 
not been used. The extraction of features such as 
unigram, bigram and trigram can be improved. 
Furthermore, feature engineering such as part-of-
speech tag features such as adjective, adverb, verb 
and noun can be used in the proposed approach. 
Finally, we have only evaluated the proposed 
framework for Arabic tweets. In the future, product 
and movie reviews in Arabic Language can also be 
used for comparative evaluation. 
 
6. CONCLUSION 

In this paper, a sentiment analysis framework has 
been proposed for Arabic twitter analysis. We have 
presented a comparative study analysis based on 
ngram features combination. The performance of 
the proposed framework has been evaluated by 
combining different features using two benchmark 
Arabic tweets datasets, and different machine 
learning classifiers. Comparative results show that 
the unigram features and MLP have achieved the 
best performance.  

In future, we intend to apply deep learning 
classifiers to Arabic tweets and other benchmark 
datasets, and compare the results with other state of 
the art approaches..   
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Figure 3: Feature Combination ATA Dataset 

 
 

Table 7: Accuracy Performance And Comparison With State Of The Art Models - Ata Dataset 

References Accuracy 

Our proposed approach 82.17% 

(ATA Dataset)   

Al Shboul et al. [12] 64% 

Abooraig et al. [8] 76.07% 

 


