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Efficiency comparison of CMS vibroacoustic

formulations for uncertain damped problems

Morvan OUISSE and Emeline SADOULET-REBOUL

Abstract When dealing with internal vibroacoustics, many formulations are avail-

able. The classical (u,p) approach uses physical variables (displacement of the struc-

ture, pressure in acoustic cavity), and alternatives exist based on a displacement or

velocity potential variable instead of the acoustic pressure in the fluid. Each for-

mulation has its own advantages and drawbacks which are addressed in this paper

in the context of Component Mode Synthesis for model reduction, but globally all

formulations exhibit the same behavior. Thus, the decoupled mode bases which are

classically considered for CMS are identical in all formulations providing that the

static pressure is not included in the formulation. So, the question addressed in this

work deals with the strategies to take the static response of the fluid domain into

account in the projection and on the ability of each formulation to adapt to these

strategies. Many options are presented for each of the formulations and are applied

for two study cases: a shoe box, that is a parallepipedic cavity and a curved box with

a more complex geometry.

1 Introduction

This paper is mainly focused on analyses of acoustic cavities closed by elastic struc-

tures, in presence of absorbing materials. In particular, for optimization or uncertain-

ties propagation purposes, strategies of model reduction are addressed. The classical

(u, p) approach uses physical variables (displacement of the structure, pressure in

acoustic cavity), and alternatives exist based on a displacement or velocity potential
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variable instead of the acoustic pressure in the fluid [7]. In the context of model

reduction, it can be shown that in terms of convergence properties, the main point is

related to the availability of the formulation to include static effects of the acoustic

cavity. This is due to the fact that whatever the formulation is, the acoustic modes

are identical, thus implying equivalent convergence properties using a Ritz based

method. The main topic addressed here is then to focus on the ability of the method

to take into account the static acoustic mode, since, as indicated in the literature, this

mode is theoretically not required [8], while it helps to converge [2]. We propose

here an illustration to this fact, together with a new formulation that can naturally

include static effect. In a second step, it will be shown that using residue correc-

tions [1, 12] is very efficient to improve convergence with only a few additional

computational cost.

2 Formulation of structural-acoustic problem

2.1 Coupled formulation

This part recalls the basic equations of the coupled problem, which are classically

available in literature [5, 7, 10].

Fig. 1 Description of vibroa-

coustic problem

The internal vibroacoustic problem which is considered in this paper is presented

in figure 1. Let ΩF be the fluid domain, ΩS the structural domain. The partition of

boundaries is done according to the mechanical conditions: ΣFS is the structural-

acoustic coupling surface, ΣF is the part of the acoustic border on which a Neu-

mann condition is applied, corresponding to a rigid wall (a homogeneous Dirichlet

condition could also be considered without loss of generality), ΣA is the part of the

acoustic border on which a Robin condition is considered, corresponding typically

to an absorbing material, ΣS is the structural boundary on which a Neumann condi-
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tion is applied, corresponding to a prescribed force, Σ0 is the structural boundary on

which a homogeneous Dirichlet condition is applied, corresponding to a clamped

area. nS and nF are respectively the outgoing unit normals of structural and fluid

domain.

The physical variables which are used to describe the behavior of the system are the

displacement u for the structure and the acoustic pressure p for the fluid.

For the structural part, the linearized strain tensor is denoted as �(u) and the asso-

ciated stress tensor is denoted as �(u). The choice of acoustic pressure p to describe

the fluid behavior instead of a fluid displacement vector field reduces the number

of degrees of freedom and avoids the discretization of the fluid irrotationality con-

straint. This is valid while ω �= 0. The particular case ω = 0 will be discussed in the

next section.

The variational formulation of this problem consists in finding u and p in Cu =
{

u ∈ [H1(ΩS)]
3 /u = 0 on Σ0

}

×Cp =
{

p ∈ H1(ΩF)
}

such that,

for all (δu,δ p) ∈ Cu ×Cp:
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∫

ΩS

�(u) : �(δu)dΩ −ω2
∫

ΩS

ρSu ·δu dΩ

−
∫

ΣFS

p nF ·δu dΣ =
∫

ΣS

FS ·δu dΣ , (a)

1

ρF

∫

ΩF

∇p ·∇δ p dΩ −
ω2

ρF c2

∫

ΩF

pδ p dΩ

−ω2
∫

ΣFS

u ·nF δ p dΣ +
iω

Za(ω)

∫

ΣA

pδ p dΣ = 0, (b)

(1)

where ρS is the structure mass density, FS is the complex amplitude of the force

exciting the structure at frequency ω , c is the sound speed in the fluid and ρF the

mass density of the fluid at rest. Za(ω) is the complex impedance of absorbing

material. The FE discretization of this variational formulation can be written as:

{

[KS]{U}−ω2[MS]{U}− [L]{P}= {FS}, (a)
[KF ]{P}−ω2[MF ]{P}−ω2[L]T{U}+ iω

Za(ω) [AF ]{P}= {0}, (b)
(2)

or
([

KS −L

0 KF

]

−ω2

[

MS 0

LT MF

]

+
iω

Za(ω)

[

0 0

0 AF

]){

U

P

}

=

{

FS

0

}

, (3)

where:

[KS] →
∫

ΩS

�(u) : �(δu)dΩ , [MS] →
∫

ΩS

ρSu ·δu dΩ ,

[KF ] →
1

ρF

∫

ΩF

∇p ·∇δ p dΩ , [MF ] →
1

ρF c2

∫

ΩF

pδ p dΩ ,

[L] →

∫

ΣFS

p nF ·δu dΣ , [AF ] →
∫

ΣA

pδ p dΣ .

(4)
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N.B. For a sake of clarity, no structural damping is considered in the weak for-

mulations and associated FE discretizations presented here, but it can naturally be

integrated in the formulations.

2.2 Considerations about the static case

As indicated in reference [8], the considered problem is not valid for ω = 0 since

tional motion. In that case, the pressure can be decomposed in two terms:

p = pS + p̃, (5)

where p̃ is a dynamic pressure and pS is a so-called static pressure, which is constant

in space and differs from the static solution which could be obtained by extending

the considered problem (2) to ω = 0, since it would result in a static pressure which

is constant in space but undetermined in amplitude. The uniqueness of p̃ is guaran-

teed by the condition
∫

ΩF

p̃dΩ = 0. (6)

If ΣF is rigid, the static pressure can be directly derived from the normal displace-

ment of the structure:

pS =−ρF

c2

VF

∫

ΣFS

u ·nF dΣ −ρF

c2

VF

∫

ΣA

uF ·nF dΣ , (7)

where VF is the measure of the volume occupied by ΩF . This means that sev-

eral ways can be considered to solve the considered problem using a displace-

ment/pressure formulation. The variable which describes the movement of the struc-

ture is the displacement u, while for the fluid one can use the following strategies:

• use of pressure p for fluid description. This formulation has been presented in

section 2.1, it is not valid for ω = 0.

• use of dynamic pressure p̃ for fluid description. This formulation is valid for

ω = 0. The constraint (6) has to be considered to solve the problem. In particular,

in a finite elements context, this constraint has to be discretized and included

in the final system. The total pressure p is then obtained by summing p̃ and

pS which comes from equation (7). This requires in particular the discretization

of pS from equation (7) in which uF · nF must be expressed on ΣA in function

of the dynamic pressure p̃ using the impedance condition. The corresponding

system has large expressions and exhibits no special interest comparing to other

strategies.

• use of both dynamic pressure p̃ and static pressure pS for fluid description. This

formulation is valid for ω = 0. The authors did not found any mention of this

possibility in the literature, even if a (u, p̃,ϕ, pS) formulation can be found in

when the frequency tends to 0, the

”

movement” of the fluid tends to static irrota-
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[3]. To obtain this formulation, the constraint (6) and the equation (7) have to be

considered and discretized. The total pressure p is then obtained by summing p̃

and pS.

Following this approach, one can define the subspace Cp̃ =
{

p̃ ∈ Cp /
∫

ΩF
p̃ dΩ = 0

}

.

In a weak form, one has then to find u, p̃ and pS in Cu, C p̃ and R such as, for all

(δu,δ p̃,δ pS) ∈ Cu ×Cp̃ ×R:
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∫

ΩS

�(u) : �(δu)dΩ −ω2
∫

ΩS

ρSu ·δu dΩ

−
∫

ΣFS

p̃ nF ·δu dΣ −
∫

ΣFS

pS nF ·δu dΣ =
∫

ΣS

FS ·δu dΣ , (a)

1

ρF

∫

ΩF

∇p̃ ·∇δ p̃ dΩ −
ω2

ρF c2

∫

ΩF

p̃δ p̃ dΩ −ω2
∫

ΣFS

u ·nF δ p̃ dΣ

+
iω

Za(ω)

∫

ΣA

p̃δ p̃ dΣ +
iω

Za(ω)
pS

∫

ΣA

δ p̃ dΣ = 0, (b)

1

ρF c2
pSVF δ pS +

∫

ΣFS

u ·nF dΣ δ pS

+
1

iωZa(ω)

∫

ΣA

p̃ dΣ δ pS +
1

iωZa(ω)
pSSAδ pS = 0, (c)

(8)

where VF is the volume of the fluid domain and SA the surface of the absorbing area.

The corresponding finite element formulation can be written as:

⎛

⎝

⎡

⎣

KS −L −�
0 KF 0

�T 0 VF

ρF c2

⎤

⎦−ω2

⎡

⎣

MS 0 0

LT MF 0

0 0 0

⎤

⎦

+ iω
Za(ω)

⎡

⎣

0 0 0

0 AF aF

0 −1
ω2 aT

F
−1
ω2 SA

⎤

⎦

⎞

⎠

⎧

⎨

⎩

U

P̃

pS

⎫

⎬

⎭

=

⎧

⎨

⎩

FS

0

0

⎫

⎬

⎭

,

(9)

where the acoustic displacement potential dofs P̃ are associated to p̃ and:

[aF ] → pS

∫

ΣA

δ p̃ dΣ , [�] → pS

∫

ΣFS

δu ·nF dΣ . (10)

One should emphasize that this system must be solved under the constraint

∫

ΩF

p̃dΩ =

0, which corresponds to

[C]T{P̃}= 0 (11)

where

[C] →
∫

ΩF

p̃dΩ . (12)

One should emphasize that this system can be easily symmetrized by dividing the

equations related to dynamic fluid dofs by ω2 and changing sign on the last line.
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Equivalent (u,ϕ , pS), (u,ψ, pS) can also be derived in the same way using velocity

or displacement potentials ϕ and ψ .

3 Model reduction of structural-acoustic problem

3.1 Classical reduction using decoupled basis

In a generic way, all previous problems can be written as:

[K −ω2M+
iω

Za(ω)
A]{Y}= {F}, (13)

where {Y} includes a partition of structural and acoustic dofs. In this generic nota-

tion, the matrices can possibly depend on frequency. A very classical way to reduce

the size of the harmonic problem is to search the response on a given vectorial space,

typically built from the associated undamped problem. In our case, on can define :

• the in vacuo structural modes, which are the normal modes of the structure with-

out wet surface (i.e. for which ΣFS is replaced with a free surface), these modes

have shapes that can be stored in the structural modal matrix TS;

• the blocked acoustic modes, which are the normal modes of the cavity in which

both ΣFS and ΣA are replaced by rigid wall conditions. The associated shapes are

stored in the acoustic modal matrix TF .

One should emphasize that the decoupled mode shapes are identical in all formula-

tions providing that the static pressure is not included in the formulation. The global

projection matrix is then built as:

[T ] =

[

TS 0

0 TF

]

(14)

One can reduce now the initial problem using the projection {Y} = [T ]{q} with

{q}=

{

qS

qF

}

:

[K̄ −ω2M̄+
iω

Za(ω)
Ā]{q}= {F̄}, (15)

where:

[K̄] = [T T KT ], [M̄] = [T T MT ], [Ā] = [T T AT ], {F̄}= [T T ]{F}. (16)
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3.2 Considerations about the static case

Concerning the remarks presented in the previous section about the static case, one

should underline that in literature, the constraint (6) is generally omitted in the FE

formulation. This is valid since the acoustic modes are calculated with rigid bound-

ary conditions, which implies that they automatically verify the constraint. On the

other side, for a full model computation, the constraint must be taken into account

for proper estimation of the low frequency content of the response.

Several strategies are available to take into account static response of the fluid do-

main in the projection:

• The mode p0 can simply be added in the Ritz basis, even if this is not correct in

a mathematical point of view, as indicated in [8].

• The proposed (u, p, pS) formulation can be used without condensation of pS.

• The impact of pS on the structure can be evaluated using elastic modes, as indi-

cated in [9]. In this case, its contribution is interpreted in terms of added mass and

stiffness. MC =
n

∑
α=1

ρF

ω2
α

LPα PT
α LT is the added mass matrix and KC is the added

stiffness matrix obtained by the discretization of p2
0

∫

ΣFS
u ·ndΣ

∫

ΣFS
nδudS. In

this case the reduction of the structural part is performed using the modified

structural eigenvalue problem including added effects on the structure [6, 9]. It

should be emphasized that this approach leads to convenient formulation with-

out considering the acoustic absorbing area Σa. When Σa, characterized by Za,

is present, the methodology used to derive the previous system leads to complex

relationships which have no special interest compared to the alternative ways to

take into account the static behavior of the fluid cavity.

3.3 Description of the test structures

In order to illustrate the convergence properties of the reduced models, one will

exhibit the results coming from two models. The first one, called shoe box, is a

parallelepiped cavity, with 5 rigid faces, closed by an elastic simply supported plate.

This model has a very simple geometry in order that anyone can easily reproduce

the results presented here. The second one, called curved box, has a more complex

geometry, which induces couplings between space directions for the modal shapes

of the cavity.

3.3.1 The shoe box

The shoe box is an acoustic cavity (c = 342.2 m.s−1, ρ = 1.213 kg.m−3) with size

0.654×0.527×0.6m3, closed by a simply supported plate, made of aluminum (E =
7.2× 1010 Pa, ν = 0.3, ρ = 2700 kg.m−3 with a thickness of 3 mm. It has 3 non
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parallel sides covered by an absorbing layer. The excitation force is a normal point

force located at coordinates (0.19075,0.197625) on the plate. The geometry and one

Fig. 2 The shoe box, example

of coupled mode (color:

acoustic pressure, shape:

displacement)

of the coupled modes is presented in figure 2.

3.3.2 The curved box

The curved box has a more complex geometry, which is illustrated in figure 3. The

upper face of the box is an elastic plate, and an absorbing layer covers the lower

face. The structural excitation is distributed on a surface which is about 1/20th of

the structural area.

Fig. 3 The curved box, exam-

ple of coupled mode (color:

acoustic pressure, shape: dis-

placement)
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3.4 Results concerning the convergence of the (u, p) formulation

Fig. 4 Indicators for (u, p) formulation without ΣA, including or not the static mode

Fig. 5 Indicators for (u, p) formulation with ΣA, including or not the static mode

both cases, the reduced models are not able to properly estimate the low frequency

behavior of the coupled system if the acoustic static mode is not considered in the

In this part we are interested in the convergence properties of the (u, p) formulation

when the number of modes in the fluid basis increases. The first model of inter-

est is the shoe box. The figure 4 shows frequency evolution of indicators when the

absorbing area is not considered, while the figure 5 corresponds to similar results

with absorbing area. On both figures, three results are shown: the reference curve

(full model), and two curves corresponding to reduced models, one of them corre-

sponding to reduction without the static acoustic mode, while the last one includes

the static mode, either by added mass and stiffness for the

”

undamped” case, or by

simply adding a constant vector in the fluid Ritz basis for the

”

damped” case. In all

cases, the system includes dissipation since the structural part is considered to have

a complex Young’s modulus E(1+ iη) where η = 4%. It can be observed that, in
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projection. In the middle part of the frequency range of interest, the error (in lin-

ear scale) can still be large even if the static mode is considered, particularly in the

acoustic domain. This is due to missing information in the fluid basis, which is not

rich enough to properly represent the acoustic behavior of the system. In these cal-

culations, 50 structural modes have been considered for TS (up to 1493 Hz). In this

case, using 200 structural modes and a static residual associated to the point force

has no effect on the results in the frequency range of interest.

The missing informations are clearly associated to the fluid basis, since the modes

have been estimated using rigid boundary conditions, which makes very difficult for

the pressure to converge towards continuity on the coupling area and on the absorb-

ing area. As illustrated in figure 6, the convergence is very low. This figure shows

the evolution of acoutic power estimated by the reduced model when the number of

modes in the fluid basis increases.

A more systematic study can be performed to evaluate the performance of the re-

Fig. 6 Example of conver-

gence : acoustic power esti-

mated by reduced model vs.

number of modes in the fluid

basis

duced basis in terms of convergence related to the number of acoustic modes in

the Ritz basis. The figure 7 illustrates the results of this analysis, by showing con-

vergence curves of the mean relative error on indicators on the frequency range of

interest, when using the following strategies in the reduction:

• direct reduction by using only

”

elastic” acoustic modes (i.e. without p0 or ps),

referred as

”

Reduc” in the figure;

• reduction with static acoustic mode directly included in the projecting basis, re-

ferred as

”

Reduc + p0” in the figure;

• reduction with static acoustic mode considered through added mass and stiff-

ness, referred as

”

Reduc + pS” in the figure (this case is only considered on the

configuration without absorbing area);

• reduction of (u, p, pS) formulation, without considering the static acoustic mode

in the projecting basis, this mode being considered through pS which is kept as

a degree of freedom in the model. This case is referred as

”

(u, p, pS) Reduc” in

the figure.
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The results are presented on both configurations (with or without the absorbing layer

in the cavity). It can clearly be observed that:

Fig. 7 Convergence of (u, p) for the shoe box

• in all cases, the convergence rate is very low;

• the direct reduction by using only

”

elastic” acoustic modes leads to large errors,

it is then clear that including static contribution for the fluid part is necessary for

correct estimation of low-frequency content of the responses;

• considering static contribution through added mass and stiffness is efficient for

a low number of modes, but the convergence is very low, due to the fact that

the added mass is evaluated from modal reduction and that no information is

provided in the fluid domain to improve convergence;

• the best convergence rate corresponds to direct inclusion of constant vector p0

in the fluid basis and also to projection using the (u, p, pS) formulation. In both

cases, the mean error on quadratic velocity (resp. acoustic power) reduces from

6% (resp. 10.5%) for 20 modes in the fluid basis to 1% (resp. 3%) for 200 modes.

There is no fundamental difference between the analysis performed with or without

the absorbing layer in the fluid domain. The small difference (1% in mean value)

which can be observed is due to the fact that the exact value of static pressure given

in equation (7) is better estimated by the contribution of projection of p0 in the

response than by the reduction of (u, p, pS) formulation, which implies a projection

of (7) on the modes of interest. The results on the curved box clearly exhibit similar

11



Fig. 8 Convergence of (u, p) for the curved box

trends, as illustrated in figure 8, which indicates that above results are not specific

to the simple geometry of the shoe box case or to the fact that point source is used

in this case: more complex geometry together with distributed excitation lead to

similar results.

As a conclusion, it has been illustrated that including the static acoustic cavity

mode in the Ritz basis, even if this is not required in theory, helps to improve con-

vergence of reduced model. The convergence is equivalent to the one obtained with

a new (u, p, pS) formulation which includes rigorously the static effects at the price

of a little more computation cost (assembly of terms corresponding to an additional

dof in the full model). This new formulation provides a nonsingular stiffness matrix,

which can be interesting for estimation of static residuals. Nevertheless, if the appli-

cation does not require a definite stiffness matrix, the analyst can use the cheapest

strategy for model reduction, which is the simple addition of the rigid cavity mode

in the projecting basis.

4 Strategies for bases enrichment

In this section, two approaches are considered to enrich the decoupled bases in order

to illustrate the efficiency of bases enrichment using residual information instead of

completing Ritz bases with uncoupled modes.
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4.1 Residue iterations

Residue iterations consist in evaluating the error in the estimation of the response,

and building associate vectors to enrich the basis [4]. This iterative approach can

be summarized as follows. Starting from a decoupled projecting basis, at step j

of the iterative procedure, the basis Tj is used to project the unknown dofs vector:

{q j}= [Tj]{Yj}, where

{q j}= [K̄ −ω2M̄+
iω

Za(ω)
Ā]−1{F̄}. (17)

The residue at iteration j is then evaluated:

{R j}= [K0]
−1[K −ω2M+

iω

Za(ω)
A]{Y j}−{F}, (18)

where K0 is a matrix representative of the stiffness of the problem. It can typically be

either K or a filtered version of it. {R j} being complex and frequency-dependent, Tj

is combined with real and imaginary parts of {R j} taken at several frequency steps

(in particular those corresponding to the largest errors in the response estimation).

The new projecting basis Tj+1 is finally obtained from the principal directions of the

set of vectors using a singular value decomposition. This strategy is very general and

can take into account any frequency dependency of system’s characteristics.

4.2 Robust bases

The vibroacoustic robust bases [12] correspond to a non-iterative procedure and

also start from uncoupled bases which are enriched to take into account the effect

of the moving structure on the fluid and of the presence of an absorbing material.

For weak vibroacoustic coupling (i.e. with light fluid like air), the approach leads to

enrichment of the fluid part only and TF is enriched by ∆TFs and ∆TFa:

∆TFs =
(

KF −ω2
c MF

)−1
LT TS,

∆TFa =
(

KF −ω2
c MF

)−1
AF TF ,

(19)

where ωc is a reference frequency (or a set of references) in the band of interest. An

orthogonalization is obviously required to ensure good conditioning of the proce-

dure. The approach can also deal with strong coupling and parametric changes, in

particular for uncertainties propagation. These points are not discussed here. Com-

pared with the residue iteration, one can qualitatively expect a solution which is

equivalent to the one obtained after one full iteration, but with a lower computa-

tional time since only one resolution of the problem is required. For more difficult

cases, in particular if only a few modes are kept in the uncoupled bases, the residue

iteration technique will surely lead to more precise results after few iterations.
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4.3 Numerical results

Figures 9 and 10 show improvement of convergence of reduced model when above

residue terms are added to the projecting bases. In the simulations, 50 modes have

been considered in both structural and acoustic bases. The results are shown in terms

of relative errors, and indicate that both procedures lead to almost similar error re-

duction. The global error is very small in both cases. The calculation cost is of

course higher for the iterative procedure that requires a little more calculation ef-

fort, but allows new iterations to improve results if the convergence is not achieved

yet, which is not the case for the robust basis.
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Fig. 9 Comparison of results errors (shoe box) compared with full response for uncoupled basis,

residue iteration (after first iteration), robust basis. Case without absorbing area.
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Fig. 10 Comparison of results errors (shoe box) compared with full response for uncoupled basis,

residue iteration (after first iteration), robust basis. Case with absorbing area.
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4.4 Conclusions

In this paper, it has been shown that the consideration of static effects of cavity

was mandatory to obtain precise results concerning the vibroacoustic response of

damped systems. For model reduction purpose, including the static mode by itself

helps improving convergence in a fast and easy way. A new (u, p, pS) formulation

has been proposed to automatically include static effects in a proper way, leading

to definite reduced stiffness matrix. Finally, efficiency of residual terms added to

the uncoupled bases is demonstrated using two different methodologies that allows

great improvement of the convergence, even in presence of absorbing layers in the

fluid cavity.
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