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ABSTRACT 

The present study focuses on a sensitivity analysis of uncertain parameters for a 

mistuned bladed disk. After providing a general overview of the main theoretical 

aspects, this paper describes the way of computing the forced response with 

aeromechanical coupling. The bladed disk considered here is a representative 

naturally mistuned bladed disk whose geometry has been obtained by scan. A 

global sensitivity analysis is then performed using the Morris algorithm in order to 

rank a set of conservative and dissipative uncertain parameters in terms of their 

influence on the forced response level. Since a large number of response 

computations are needed for the sensitivity analysis, a reduced-order model that 

encompasses geometric mistuning is used. 

NOMENCLATURE 

 K Structural stiffness matrix 

 M Mass matrix 

 C Structural damping matrix 

i Imaginary unit 

  Angular frequency 

 u Displacement field in the frequency domain 

 excf Aerodynamic excitation forces 

   ufcoupl , Aeroelastic coupling forces 

 LK Linear structural stiffness matrix 

 Rotation speed 

 cM Centrifugal stiffness matrix 

  K Geometric stiffness matrix 

 2cF Centrifugal load under rotation speed   

  Modal reduction basis 

 ̂ Modal reduction basis in the Fourier space 

*

,ka
Aeroelastic complex coefficient 

 zyxP ,,
* Aerodynamic pressure field in the frequency domain 
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 zyxk ,,, Modal displacement field 

 Generalized coordinates 

Z Basis of eigenvectors of the conservative reduced system 

 Modal damping ratio 

i  
ith eigenvalue of the conservative reduced system 

   *

,

*ˆ
kadiagA  Complex Generalized Aerodynamic Forces matrix

 *A Aeroelastic Influence Coefficients matrix 

E Complex Fourier matrix 

N Number of sectors 

 *

perA Perturbed Aeroelastic Influence Coefficients matrix 

 *ˆ
perA Perturbed Generalized Aerodynamic Forces matrix 

 perA Perturbed aeroelastic stiffness matrix 

 perB Perturbed aeroelastic damping matrix 

r Number of trajectories in the uncertain variables space 

m Number of points for a given trajectory 

x Current point in the uncertain variables space 

 xdi Sensitivity index associated to variable i  at point x

 xy Maximum amplification factor at point x

Superscripts 

r In the reduced modal coordinates 

* Hermitian matrix 

j Sector number 

Subscripts 

 Mode family 

k
Nodal diameter 

1 INTRODUCTION

It is well-known that turbomachine bladed disks undergo severe static and dynamic 

loads under operating conditions. Moreover, for most bladed disks, various resonant 

frequencies can be encountered in the operating frequency range. This results in an 

increase in the vibratory response, which may cause premature blade failure by 

high-cycle fatigue (HCF) [1,2]. In this context, numerical methods for predicting 

the forced response levels of bladed disk assemblies have been the focus of a large 

number of studies over the last few decades. Recent insights into the reduced-order 

modeling of bladed assemblies lead to compact and accurate models that can be 

used to predict forced response amplitudes under dynamic loads in operating 

conditions. However, the robustness of such prediction methods remains a key 

issue since several conservative and dissipative parameters are characterized by 

either random or epistemic uncertainties. 

The dynamic behaviour of real bladed disks can be strongly modified by random 

mistuning. Mistuning results from manufacturing tolerances, non-homogeneity of 

2



the material and wear, and it may cause significant increases in the forced 

response levels [3]. Reduced-order modeling of mistuned bladed disks requires 

specific methods and higher computational cost since the cyclic symmetry 

assumption is no longer valid. Surveys on the modeling of mistuned bladed disks 

are given in [4] and [2]. Recently, specific efforts have been devoted to the 

characterization of random, small geometric mistuning of real bladed disks. Sinha 

et al. [5] conducted a study over a population of Integrally Bladed Rotors (IBRs) for 

which the positions of various keypoints were measured for each blade by a 

Coordinate Measurement Machine (CMM). Schoenenborn et al. [6] studied the 

frequency mistuning pattern and dynamic behaviour of an IBR using a realistic FE 

model, based on an optical acquisition of the full disk geometry. 

In addition to geometric and material mistuning, damping also plays a key role in 

the process of characterization of the forced response amplitudes. Damping in 

turbomachine bladed disks results from distinct physical phenomena, namely: 

material dissipation, frictional contact and aeromechanical coupling [7]. According 

to several studies, the material dissipation in most metals and alloys used for 

bladed disks manufacturing is small [8]. In the case of shroudless, integrally bladed 

disks, the aerodynamic damping is therefore the main source of dissipation since no 

frictional contact occurs. 

The small geometric discrepancies between the blades also result into non-cyclic 

flows. Some studies investigated the losses of flow cyclicity by means of whole-

annulus CFD calculations (see for example [9]), but due to the high computational 

cost, the computation of aeromechanical forces is generally performed under the 

hypothesis of chorochronicity. It is shown in some studies [10, 11] that under 

specific assumptions, interactions between blades through the flow can be 

considered to be limited to adjacent and next-to-adjacent blades, thus allowing the 

computation of non-cyclic aerodynamic generalized forces in the modal domain. 

Ekici et al. [12] studied the effects of alternate blade spacing and stagger angle. In 

their study, the CFD calculations were performed on one sector composed of two 

adjacent blades, allowing the use of chorochronic boundary conditions and 

calculation of non-diagonal terms of the Generalized Aerodynamic Forces matrix. In 

this context, Miyakozawa and Kielb [13] recently carried out a study that focused 

on the Aeroelastic Influence Coefficients on which single, cyclic and random 

perturbations were applied. For the random case, a Monte-Carlo simulation was 

performed and the results showed that although frequency mistuning remains the 

dominant source of blade response amplification, aerodynamic asymmetric 

perturbations may also cause non-negligible increases in the maximum blade 

response levels. 

The main objective of this paper is to investigate and classify the impact of several 

uncertain parameters (namely, the modulus of elasticity, the modal damping ratio 

and the Aeroelastic Influence Coefficients) on the maximum amplification factor for 

a mistuned bladed disk. All subsequent forced response calculations were 

performed using the reduced-order model of an industrial bladed disk whose 

geometry has been acquired by means of fringe projection. Thus, the model 

naturally takes into account small geometric mistuning which is observed on the 

manufactured bladed disk due to the manufacturing process. First, the main 

theoretical aspects for bladed disk forced response computation are presented. 

Afterwards, the expression of the projection basis used for the model reduction is 

given and the incidence of aerodynamic stiffness and damping on the forced 

response is demonstrated. The way of computing the deterministic forced response 

is then presented and subsequently, a parametric sensitivity study performed using 

the Morris method [14] is presented and its results are discussed. 
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2 THEORETICAL BACKGROUND

2.1 Dynamic equation of the mistuned system 

In the frequency domain, taking into account the aeroelastic coupling, the 

aerodynamic excitation forces and neglecting the gyroscopic effects lead to the 

following expression of the dynamic equilibrium equation for the finite-element 

discretized system of the studied bladed disk: 

              uffuCiMK couplexc ,
2  (1) 

In equation (1),  excf and    ufcoupl , are namely the aerodynamic excitation forces

vector due to flow interactions with the stator blades and the aeroelastic coupling 

forces vector, which represents the unsteady pressure induced by blade motion. It 

should be stressed that equation (1) is expressed in the rotating frame and that the 

effects of rotation are taken into account. Therefore the stiffness matrix  K  can be

decomposed into 3 components as follows:

        KMKK cL  2
(2) 

In equation (2)  LK  corresponds to the classical, linear stiffness of the structure,

 cM  represents the additional stiffness matrix due to centrifugal effects, and   K
represents the prestress induced by the static component of the deformation field

under centrifugal load [15, 16]. The expression of   K  is obtained through

iterative resolution on the non-linear static problem which can be written as:

         20

2  ccL FuKMK  (3) 

where  2cF  is the vector of centrifugal loads. 

2.2 Reduction method

This section is devoted to the reduction method developed by Mbaye et al [17, 18] 

which has been applied to the studied mistuned blisk. This method is an extension 

of the Subset of Nominal Modes (SNM) method developed by Yang and Griffin [19]. 

Due to geometric mistuning, matrices  K  and  M  are no longer block-circulant

and the projection of modified matrix blocks on nominal modes would result in non-

negligible errors. The method used in this paper consists in building a reduction 

basis from the cyclic modes defined on each modified sector:
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The components of the    matrix in equation 4 are real modes, obtained from the

Fourier modes  jk ,
ˆ
  (see equation 5) where the indices j ,   and k  correspond to

the sector number, mode family (ex: 2F,1T...) and nodal diameter, namely. The 

subscript indices  *,,1   in equation (4) correspond to the number of each

vector in the projection basis. 
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3 FORCED RESPONSE

3.1 Computation of the Generalized Aerodynamic Forces 

The Generalized Aerodynamic Forces are obtained by CFD simulations, based on a 
3D URANS approach. For each nodal diameter associated to the modes retained in 
the reduction basis, after projecting the appropriate mode shape onto the 
aerodynamic mesh, the unsteady pressure field is computed under the assumption 

of chorochronicity. Subsequently, the aeroelastic coefficients *

,ka  are calculated by

integrating the scalar product of the mode shape by the pressure field over the 
fluid-structure boundary: 

    SdnzyxzyxPa
kS

k


  ,,,,

,

**

,  (6) 

In equation (6),  zyxP ,,
*  and  zyxk ,,, correspond namely to the Fourier

transform of the unsteady pressure field and to the projection over the 
aerodynamic mesh of the mode shape for the nodal diameter k . S corresponds to 

the fluid-structure boundary, i.e. the blade surface. 

The real part of *

,ka
 
represents the flow contribution to the generalized stiffness of

the structure for mode  k, whereas the imaginary part stands for the

aerodynamic damping. Under the assumption of linearity, the dynamic equation of 
the coupled system (1) can be expressed in the modal domain: 

           exc
Trrrrr
fBiACiMK  2

(7) 

where  rK  and  rM  are the reduced stiffness and mass matrices and   represents

the generalized coordinates. Since the vectors of the projection basis   are not 

eigenvectors of the mistuned system, the matrices  rK  and  rM are not diagonal.

The following transformation is applied to the structural damping and aeroelastic 
coupling matrices:

   
    
     1*

,

1*

,

1

Im

Re

2











ZadiagZB

ZadiagZA

ZdiagZC

k
Tr

k
Tr

ii
Tr







(8) 

where  *1 
zzZ   is the basis of eigenvectors of the conservative reduced 

system: 

    i

r

ii

r
zMzK  (9) 

Figure 1 shows the finite element model of the industrial bladed disk on which this 
study focuses.  
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Figure 1. Finite element model of the full bladed disk (a) and an 

arbitrary sector model (b) used for cyclic symmetry analyses 

The frequency response functions for an ideal, perfectly tuned structure and for the 

actual, geometrically mistuned bladed disk are shown in figure 2 and figure 3. The 

response amplitudes are normalized according to the peak value for the tuned 

structure.  

Figure 2. Frequency response function for tuned and mistuned bladed  

disks with aeromechanical coupling 

Figure 3. Frequency response function for tuned and mistuned bladed  

disks with aeromechanical coupling 

From figure 2 it can be seen that the maximum amplification factor (defined as the 

ratio between the highest mistuned and tuned peak values) produced by geometric 

mistuning in presence of aeromechanical coupling has a value of 1.14. Figure 3 

shows the impact of aeroelastic damping on the response of the tuned and 
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mistuned structures, for the blades that experience the highest and lowest 
response levels. It can be seen that the aeroelastic damping results in lower 
response amplitudes for all blades. At this stage of the current study, it should be 
noted that the aeroelastic forces are assumed to be symmetric, so that response 
localization only results from geometric mistuning. 

3.2 Computation of the Aeroelastic Influence Coefficients 

In this section, the formulation of the Aeroelastic Influence Coefficients is detailed, 
and emphasis is given on the perturbation of the Generalized Aerodynamic Forces 
through the Influence Coefficients Matrix, based on the approach introduced by 
Miyakozawa et al. [20, 13]. The aeroelastic coupling matrices obtained by CFD 
simulations (see section 3.1) are diagonal in the travelling wave modal space. One 
can write them in the modal physical space by means of a discrete inverse Fourier 
transform: 

   EAEA *** ˆ (10) 

In equation (10),    *

,

*ˆ
kadiagA  is the complex Generalized Aerodynamic Forces

matrix expressed in the travelling wave modal space, and E
 
is the Fourier matrix: 

  
N

kji

jk e
N

E

112
1






(11) 

 *A  is the Aeroelastic Influence Coefficients matrix. Owing to the properties of

Fourier matrices,  *A
 
is circulant and generally dominated by tridiagonal terms [10,

13]. The Aeroelastic Influence Coefficients represent the level of blade-to-blade 
coupling due to fluid-structure interactions. Indeed, the diagonal influence 

coefficient *

,iia  
 corresponds to the aeroelastic force generated on blade i  by its

unit motion according to mode  , while the extradiagonal coefficient *

,ija

corresponds to the contribution of the modal motion of blade j  to the aeroelastic 

force on blade i . 

Figure 4 presents the normalized values of 
the Aeroelastic Influence Coefficients 
obtained from the Generalized Aerodynamic 
Forces calculated by CFD analyses on a 
basis sector of the actual bladed disk. It 

can be seen that matrix  *A
 
is dominated

by its diagonal coefficients. Therefore, only 
the latter will be kept as uncertain 
parameters in order to avoid excessive 
computational cost in the sensitivity study. 
Introducing random perturbations on at 

least one diagonal coefficient of matrix  *A
lead to a non-circulant perturbed matrix 

 *

perA . A generalized perturbed aerodynamic

forces matrix in travelling wave coordinates 
can be obtained by a direct discrete Fourier 
transform:

   EAEA perper
***ˆ  (12) 

Figure 4. Top view of aeroelastic 

influence coefficient matrix 

(modulus) 
*

,ija
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which is no longer diagonal. The matrix  *ˆ
perA

 
represents the aerodynamic forces in

travelling wave coordinates for non-symmetric flow conditions. Prior to solving the 

coupled problem, the aerodynamic perturbed stiffness and damping matrices in 

modal coordinates can be recovered from equation (8): 

    
     1*

1*

ˆIm

ˆRe









ZAZB

ZAZA

per
T

per

per
T

per

(13) 

4 SENSITIVITY ANALYSIS

This section is devoted to the sensitivity study, which aims at ranking several 

uncertain parameters of the model (namely the Young's modulus, the structural 

modal damping ratio and the diagonal Aeroelastic Influence Coefficients) according 

to their influence on the maximum amplification factor. The present sensitivity 

study has been performed using the Morris OAT (Ones-At-a-Time) design. OAT 

designs consist in simulated experiments in which the impact of changing the 

values of each parameter is evaluated in turn [14]. Before initiating the sensitivity 

study, the space of uncertain parameters is sampled into r  trajectories where each 

trajectory consists in a sequence of m  designs. Afterwards, for each design x , the 

sensitivity indices associated to the uncertain variables are computed as follows 

[14]:

      



  xyxxxxxy

xd kiii
i

,,,,,, 111 
(14) 

where  xdi  
is the sensitivity index associated to variable i  and  xy

 
is the

maximum amplification factor calculated for design point x .   is chosen so that 

 kiii xxxxx ,,,,,, 111     remains in the allowed space of uncertain parameters. The 

global incidence of each parameter i , ki 1 over the response amplification can be 

characterized through the mean and standard deviations of the population of 

indexes calculated during the sensitivity analysis. 

Table 1 presents the description, nominal values and variation ranges of the 

uncertain parameters retained for the sensitivity analysis.  

Table 1. Model input parameters for the global sensitivity analysis 

Parameter Description Nominal value Range 

E Young’s modulus 1.1×105 Mpa [1.045:1.155]×10
5
 MPa (1) 

 Modal damping ratio 1.17×10-3 [1.4:2.0]×10
−3 (2) 

*

iiA
Aeroelastic Influence 

Coefficient (modulus) 

5.4819×10-5 [4.39:6.58]×10
−5 (3) 

(1) cf [21]
(2) cf [7]
(3) cf [13]

Figure 5 shows the ranking of the 18 variables according to the mean values of the 

sensitivity indices. It appears that the most influential parameters are the 

Aeroelastic Influence Coefficients associated to blades 9, 7 and 8. This result is 

consistent since these blades are close to the most amplified blade, i.e. blade 10. 
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According to the results of the Morris sensitivity analysis, the lack of knowledge on 
the modulus of elasticity has a very low influence over the maximum amplification 
factor. This can be explained by the fact that the geometric mistuning pattern is not 
considered as an uncertain parameter in the present study, and that the material 
properties are considered to be homogeneous. Indeed, in this study, the geometric 
mistuning for the considered bladed disk is taken into account as a deterministic 
parameter. Thus, the lack of knowledge about the structural stiffness only 
corresponds to a global variation of the Young's modulus for the whole bladed disk. 
Within the given range of variation, alterating its value mainly results into a 
frequency shift and does not modify drastically the response amplitudes. 

Figure 5. Variable ranking 

The values of the means and standard deviations for the elementary effects of each 
variable are shown in figure 6. On the left plot, the plus representing the 
elementary effect of the modulus of elasticity is well separated from the group 
which is constituted of the effects of the damping and aeroelastic parameters, 
whose mean and standard deviation values are much higher. It can be seen on the 
right plot that the standard deviation value associated to the modal damping ratio 
is lower than those of the aeroelastic coefficients, which means that this parameter 
tends to influence in a linear and additive way the global output.  

Figure 6. Mean and standard deviation values of the elementary  

effects from the Morris sensitivity analysis 

Finally, figure 7 presents the scatterplot of the output for all the sampled values of 
the (9,9) aeroelastic coefficient, which is the most influential parameter. It can be 
seen that the amplification factor values reached during the sensitivity study span a 
range from 1.09 to 1.19. These results indicate that the contribution of the 
aeroelastic coefficients to the response of mistuned bladed disks is relevant, thus 
enforcing the need of increased computational efforts in order to characterize the 
variation of those coefficients due to geometric discrepancies. 
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Figure 7. Scatterplot of the maximum amplification factor values 

versus aeroelastic influence coefficient A9,9 sampled values 

5 CONCLUSION

In this paper, a methodology for studying the sensitivity of the forced response of a 
mistuned bladed disk to model uncertainties has been presented. Aerodynamic 
mistuning was taken into account by means of a perturbation approach applied to 
the Aeroelastic Influence Coefficients. It was found that, the Aeroelastic Influence 
Coefficients appear to be the most influent parameters according to their incidence 
over the maximum amplification factor for the given configuration where the 
structural mistuning pattern is considered as a deterministic parameter. As a 
consequence, the aim of our future research is to establish a more accurate 
characterization of the mistuned influence coefficients, and to assess the 
robustness of the forced response level calculations considering the lack of 
knowledge on conservative and dissipative model parameters. 
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