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Abstract 

The aim of reanalysis methods is to approximate the responses of a structure whose 

parameters have been perturbed or even modified without solving the new 

equilibrium equation system associated to the updated structure: only the initial 

solutions and the perturbed data are used. In the particular case of non-linear 

problems, the re-actualization of the tangent stiffness matrix at each time step of the 

Newton-Raphson integration algorithm implies many reanalysis leading to a high 

computational time. To mitigate these difficulties, one proposes a reduction method 

adapted to non-linear and large size dynamic models. This study especially focuses 

on geometrical non-linearities, i.e. large displacements. The presented reduction 

method is based on the combined approximations method (CA method) introduced 

by Kirsch. 

Keywords: geometrical non-linearities, large displacements, structural reanalysis, 

combined approximations, robustness. 

1  Introduction 

In nonlinear dynamic analysis the solution of the differential equations governing 

the motion of the system are carried out by time iteration algorithms [1]. Generally, 

the main computational cost concerns the calculation of the updated tangent stiffness 

matrix. The effort required for solving the associated linear equation sets at each 

iteration cycle can then quickly becomes prohibitive, especially when dealing with 

large scale structures.  
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Thus, approximated reanalysis methods can be considered as an interesting 

alternative [2, 3]. These are intended to efficiently analyze the modified system 

without solving the complete set of modified equations: the initial state and the 

modification data are the only information needed. It has been shown in the 

literature that, in the case of localized nonlinearities, a Ritz basis reduction method 

can achieve accurate results when enriched by static residual vectors induced by 

modification forces [2, 3].  

However, when dealing with generalized nonlinearities, these methods remain 

unable to predict the nonlinear behaviour of the structure. To overcome this 

difficulty a variant of the combined approximations method [4], initially introduced 

by Kirsch [5], has been extended to nonlinear analysis. 

In this paper, the large displacements behaviour of the structure is studied. Its 

responses are computed in the time domain by means of a classical iterative method. 

The accuracy of the proposed method are illustrated by three academic examples 

and compared to the results found in the literature. 

2  Large displacements nonlinear formulation 

This section reviews the theory of finite element for geometrically non-linear elastic 

structures (GNS) based on the total lagrangian formulation [6], which constructs the 

tangent stiffness matrix with respect to the initial configuration. One should notice 

that the updated lagrangian is another existing formulation, which is derived from 

the current configuration and does not include the initial displacement matrix UK  

[7]. 

According to [1] and [8-10], the total lagrangian formulation can be described as 

follows. At first, the displacements u of structures are given by the product  

u N U= ⋅  (1)

where N  is the vector of shape functions and U  the vector of nodal displacements. 

Because of large displacements and rotations, Green’s strain is adopted for the 

nonlinear relationships between strains and displacements. The Green’s strain Gε  

includes both linear and nonlinear terms, respectively LB  and ( )NLB U , relating 

strain and nonlinear strain to the nodal displacements:  

( ( ))G L NLB B U Uε = +  (2)

Using the principle of virtual displacement, the virtual work Wδ  is given by, 

0
S 0( )G extV

W dV q Uδ σ δε δ= −∫  (3)
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where Sσ  is the second Piola-Kirchhoff stress, Gδε  the incremental form of the 

strain-displacement relationship, 0V  the volume of initial configuration and extq  the 

vector of external loads. Since Green’s strain is based on a small strain, stress can be 

given by Hook’s law: 

S ( ( ))G L NLE E B B U Uσ ε= = +  (4)

where E  is the modulus of elasticity. Substituting Gδε  from Eq. (2) into Eq. (3) 

results in, 

0
S 0( ( ( )))L NL extV

W B B U dV q Uδ σ δ⎡ ⎤= + −⎢ ⎥⎣ ⎦∫  (5)

Since Uδ  is arbitrary, the vector of internal forces intq  is, 

0
S 0( ( ( )))int L NLV

q B B U dVσ= +∫  (6)

Taking the derivative of intq  with respect to the nodal displacements U  gives the 

tangent stiffness matrix TK , 

0

S
S 0

( )
( ( ( )) + )int NL

T L NLV

q B U
K B B U dV

U U U

σ σ∂ ∂ ∂
= = +
∂ ∂ ∂∫  (7)

By substituting Eq. (4) into Eq. (7) TK  can be rewritten, 

0

0

0

0

S 0

0

( )

( ( ) ( ) ( ) ( ))

T L LV

NL

V

L NL NL L NL NLV

K E B B dV

B U
dV

U

E B B U B U B B U B U dV

σ

=

∂
+

∂
+ + +

∫

∫

∫

 (8)

It can be noticed that the three terms in equation (8) respectively stand for: the 

elastic stiffness matrix EK , the geometric stiffness matrix GK , and the initial 

displacement stiffness matrix UK  [1, 8]. 

3  Nonlinear time integration algorithm 

A mechanical system can be represented in the time domain by the differential 

equation 

( ) ( ) ( ) ( )NLM u t C u t f t p t+ + =  (9)
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with initial conditions, 

( ) ( )0 0 0 0;u t u u t u= =  (10)

where M  and C  stand for the mass and damping matrices of the system, 

( )NL NLf f u,u=  its restoring force given as a function of the displacement u  and the 

velocity u , p  the exciting force. 

The solution of equation (9) can be approximated in a set of points 0 1 nt , t , ..., t  using 

the assumption that the velocity and displacement at 1it + can be expressed as 

functions of ( )i iu u t= ,  ( )i iu u t= , ( )i iu u t=  and 1iu + , leading to the following 

relations: 

( )1 11i i i iu u t u t u+ += + − ∆ + ∆g g  (11)

( ) 2 2
1 10 5i i i i iu u t u . t u t u+ += + ∆ + − ∆ + ∆b b

 
(12)

where 1i it t t∆ −= −  

The parameters b  and g  define the variation of the acceleration over a time interval 

[ ]1i it , t +  and determine the stability and accuracy characteristics of the method. The 

average acceleration method used in this study implies: 1 4=b  and 1 2=g . 

Equations (11) and (12) can also be rewritten considering incremental quantities: 

1i i iu u u+∆ = −   ;  1i i iu u u+∆ = −   ;  1i i iu u u+∆ = −   ;  1i i ip p p+∆ = −  (13)

Then, the incremental equation of motion is given by, 

( ) ( )( )1i i NL NL iM u C u f t f t p∆ + ∆ + + − = ∆  (14)

and using the approximation 

( ) ( )1NL NL Ti if t f t K u+ − ≈ ∆  (15)

we finally obtain the equation to solve to compute the incremental displacement 

iu∆ : 

i i
ˆ ˆK u p∆ ∆≈  (16)
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where 
T

Ti NL i
K f u= ∂ ∂  is the instantaneous (tangent) stiffness matrix, calculated as 

the Jacobian of the restoring force, 

2

1
TiK̂ K C M

t t
= + +

∆ ∆
g

b b
 (17)

1 1
1

2 2
i i i ip̂ p M C u M t C u

t

⎡ ⎤⎛ ⎞ ⎛ ⎞
∆ = ∆ + + + + ∆ −⎢ ⎥⎜ ⎟ ⎜ ⎟∆ ⎝ ⎠⎝ ⎠ ⎣ ⎦

g g
b b b b

 

(18)

One should observed that the incremental restoring force, given equation (15), has to 

be rigorously calculated using the following relation 

( ) ( )1NL i NL i sec if t f t K u+ − = ∆  (19)

The error induced by substituting the tangent stiffness matrix to the secant stiffness 

one can corrected by employing an iterative Newton-Raphson scheme [11]. 

Comparison criteria of the time responses 

In order to quantify the obtained predictions, the temporal moments are used as a 

comparison criterion. These temporal moments ( )i sM t  have been proposed for the 

transitory analysis [12]. They are similar to the static moments and are calculated as 

balanced summations of the quadratic temporal signal: 

( ) ( ) ( )( )2i

i s sM t t t u t dt
+∞

−∞

= −∫  (20)

where st  corresponds to a temporal shift and the index i represents the order of the 

moment. For more simplicity, the temporal moments iM  are defined for 0st = . The 

central moments are thus defined as follows: 

2
0

1

0

2

2 2 1

0 0

energy(m s)

central time "Centroid" (s)

rms duration (s)

E M

M
T

M

M M
D

M M

=

=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠

 
(21)

4  Approximated reanalysis method 

Approximated reanalysis methods can broadly be classified in two categories [13]. 

Local approximations, such as first-order Taylor series expansion or the binomial 
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series expansion about a given design point, are based on information calculated for 

a single design. These methods are efficient but they are effective only in cases of 

small changes in the structure. Global approximations, such as polynomial fitting, 

response surfaces or reduced basis [2, 3], are obtained by analyzing the structure at a 

number of design points and are valid on the whole design space. However they 

require more computational effort, especially in the case of large scale finite element 

models. 

To be able to compare the results carried out in the last section of the article, the 

method exposed by Masson in [2] is briefly described in what follows. It consists in 

enriching an initial Ritz basis by a set of vectors of minimal rank, obtained by 

approximating the static response of the truncated modes. This is achieved by taking 

into account a priori information concerning the modifications applied to the initial 

structure by means of static residuals generated by the forces associated to structural 

modifications. 

The equilibrium equation of the modified substructure is given by:  

( ) ( ) ( )0 0Z Z uω ω ω+ ∆ =⎡ ⎤⎣ ⎦  (22)

Where the initial dynamic stiffness matrix defined by ( ) 2
0 0 0Z K Mω ω= −  and the 

modified one by ( ) 2
Z K Mω ω∆ = ∆ − ∆

 

One introduces the notion of force associated to structural modifications by: 

( ) ( ) ( )f Z uω ω ω∆ = −∆  (23)

As the response ( )u ω
 
of the modified structure is unknown, it can be approximated 

by a standard truncated component modes synthesis transformation matrix 0T , 

determined from the initial structure, enriched by static residuals ( )R f ω∆⎡ ⎤⎣ ⎦ , such 

as: 

( ) ( ) ( )0u T c R fω ω ω∆+ ⎡ ⎤⎣ ⎦  (24)

These residual vectors are derived from a force basis spanning the subspace 

associated to the whole set of modifications. The static residual matrix is then 

defined by:   

1*
R K F

−
∆ ∆=  (25)

where F∆  is the modification force basis. It must be noticed that, for localized 

nonlinearities, this basis can be determined by applying unitary forces to the 

nonlinear degrees of freedom.  
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Singular value decomposition of the global transformation matrix is finally 

performed to ensure a minimal rank and an optimal condition number of the reduced 

basis 

[ ]0T T R∆=  (26)

In other works, Balmès [3] proposed a similar formulation in which the residuals are 

updated by an iterative procedure. 

5  Model reduction by a variant of the combined 

approximations method 

The Combined Approximations (CA) method developed by Kirsch [5] uses the 

terms of the local binomial series expansion to compute the vectors of a global 

reduced basis. For each parametric modification of the initial structure, a new 

eigenproblem must be solved.  

The normal mode ν  of the modified structure verifies the equilibrium relation given 

by: 

( ) ( ) ( ) ( ) ( )
0 0K K r M M r

ν ν νλ+ ∆ = + ∆  (27)

An approximated solution can then be expressed by the following binomial 

expansion:  

( ) ( ) ( )1

01r B r
ν ν−+  (28)

depending on the modifications performed on the structure, 1
0B K K
−= ∆ , and its 

initial behaviour 
( )

0r
ν

.  

For nonlinear reanalysis, the changes in the stiffness matrix K∆  result form the 

updating of the tangent stiffness matrix, given by: 

0TK K K∆ = −  (29)

where TK  is the tangent stiffness matrix defined, in the case of large displacement, 

by equation (8). 

The reduction basis is then constructed using the following recurrence relation: 

( ) ( ) ( )

( ) ( ) ( )

1
1 0 0 0

1 2 3i i

r K M M r

r B r i , , , s

ν ν

ν ν

−

−

⎧ = + ∆⎪
⎨

= − =⎪⎩
 (30)
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and can be finally be written: 

( ) ( ) ( ) ( )
1 2B sr r r r

ν ν ν ν⎡ ⎤= ⎣ ⎦  (31)

Applying the CA method to complex structures has enlightened sever limitations 

and convergence problems of the binomial series expansion. This results in less 

predictive approximated solutions, especially in the case of large modification and 

nonlinear structures. The variant of the method proposed in this article consists in 

retaining only the most relevant part of the information contained in the reduction 

basis of each considered mode. It amounts to extracting the subspace that best spans 

the solution space [4, 14]. 

At first, a global transformation matrix is obtained by concatenation of the reduction 

basis 
( )
Br
ν

 associated to m  studied normal modes, 

( ) ( )1 2 m*
B B B B Br r r r r

ν⎡ ⎤= ⎣ ⎦  (32)

Singular value decomposition is then performed: 

1 1 1 2 2 2

* T
B

T T

r U V

U V U V

Σ

Σ Σ

=

= +
 (33)

The robust Ritz basis, with regard to the parametric modifications, is finally 

constructed with the column vectors of matrix 1U , 

1Br U=  (34)

It must be noticed that the proposed CA variant has been successfully extended to 

linear dynamic substructuring in order to perform structural reanalysis on large size 

finite element models [14]. 

6  Numerical simulations 

Example 1 

To illustrate the proposed method, one considers a damped nonlinear array of 

spring-mass systems. It consists of a ten degree-of-freedom (dof) damped spring-

mass system with localized nonlinear Duffing type oscillator. Its physical 

parameters are: 100 kgim = , 40 6 N/mik e= , 2i i i ic m kξ=  and 0 04i .ξ = , for 

1 2 10i , , ,= . The governing differential equation of motion is given by: 
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( ) ( ) ( )( ) ( ) ( )M u t C u t K u t u t p t+ + =  (35)

with initial conditions: ( ) ( )0 00 0u t , u t= =
 

The assembled global stiffness matrix is expressed as: 

( )( )
1 2 2

2 2 3 3

10 10

0 0

0

0 0

k k k

k k k k
K u t

k k

⎛ ⎞+ −
⎜ ⎟− + −⎜ ⎟=
⎜ ⎟⋅ ⋅ ⋅ ⋅
⎜ ⎟⎜ ⎟−⎝ ⎠

 (36)

with: ( ) ( )( )( )2

11i i i ik k u t u t−= + −a , for 1 2 10i , , ,= , where a  and 

( ) ( ) ( )1i i iu t u t u tδ −= −  respectively represent the nonlinear stiffness coefficient and 

the relative displacements between adjacent degrees of freedom. In this example, 

one considers 2 localized stiffness nonlinearities at dof 5 and 10, with associated 

coefficient 1 7e=a . The structure is excited by a harmonic force 

( ) 1 4 cos (300 )p t e t= × . 

The response of the system is computed over a time interval [0- T=2s] with a 

sampling step fixed at 5 4 st e∆ = − .  

Firstly, the comparison method described in section 4 (further referred to as LMA) is 

applied. The initial model of the system, containing 10 dofs, is reduced to a 

condensed one with 4 dofs by retaining 2 eigenmodes and 2 static residual vectors 

and the transformation matrix (noted LMA (2, 2)). Secondly, the variant of the CA 

method is implemented by reanalysing the first 2 normal modes with 3 vectors in the 

reduced basis (noted CA (2, 3)) associated to each mode (see equation (31)). After 

concatenation and singular value decomposition of the global basis, the robust 

reduced model becomes of size 4.  

Table 1 recalls the size of the problems to be solved and gives the values of the 

associated energy criterion, defined equation (21). Figure 1 illustrates the results 

obtained by an exact reanalysis, compared to the implemented reduction methods. 

Figure 1 compares the nonlinear dynamic responses of the full model (reference) 

and the 4 dof condensed model by the LMA method or the alternative of the method 

CA.  
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Figure 1: Nonlinear responses of the reference and condensed models at dof 10 (a, b, 

c); (d, e, f) zoom between [0.4, 0.6 s] for the same responses. 

It can be observed, on the time responses and the phase portraits, that the response 

of the system is correctly predicted by both reduction methods. The nonlinear 

behaviour is well returned by the condensed stiffness matrix, has shown by the 

(a) 

(b) 

(c) 

(d)

(e)

(f)



11 

restoring force diagrams. One can conclude that, in this regime, the proposed 

method correctly approximates the reference response on an a priori selected time 

interval. 

 Size (dofs) E (m
2
s) × 10

-2
 T (s) D

2
 (s) 

Exact 10 2.0911 0.91682 0.35259 

CA (2, 3) 4 2.0982 0.91886 0.35357 

LMA (2, 2) 4 2.1145 0.91996 0.35253 

Table 1: Reduced basis size and associated energy criteria 

Example 2 

The method is then applied to a clamped–clamped beam having the following 

geometrical and material properties (Aluminum DTDSO 70) [15]: 

h = 2×10
-3 

m; b = 20×10
-3 

m; L = 0.580 m; E = 7×10
10

 N/m
2
 ; ρ = 2778 kg//m

3
. 

The value of the damping parameter is 0 001i .ξ = . Here, the aim is to study the large 

displacement behavior of the beam. The assumption is made to neglect the 

longitudinal inertia of the beam but not its longitudinal displacements. 

A point harmonic excitation of frequency 33 Hz and amplitude 10 N is transversally 

applied at the middle of the beam.  

The results, exposed figure 2, show that the CA variant method applied to the first 

mode of the structure, with 2 vectors computed in the reduced basis, accurately 

approximates the exact solution, in accordance with the literature [15]. 
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Figure 2: Nonlinear responses of the reference and condensed models 

Example 3 

This example concerns a clamped frame structure represented in figure 3, which is 

discretized using a two-dimensional beam element (3 dof per node: x y zU ,U ,θ ). 

The finite element model contains 510 dof. The mechanical and geometrical 

characteristics are given by: 

b = 36×10
-3 

m; h = 25×10
-3 

m ; Area = b×h ; E = 2.1×10
11

 N/m
2
 ; ρ = 7800 kg/m

3
. 

The structure is excited at node fN  by a localized choc excitation force, in the xU  
direction. The observation point is considered at node oN , also in the xU  direction. 
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Figure 3: Finite element model of the frame 

Table 2 shows that even if the size of the nonlinear system has been reduced by a 

factor of 50, the energy criteria of the reference and the CA variant methods are 

identical. The responses plotted in figure 4, on the time interval [ ]0 50 s−  clearly 

state the accuracy of the proposed method, computed on the first 5 modes, with 2 

basis vectors, with regard to the exact solution.  

 Size (dofs) E (m
2
s) × 10

-6
 T (s) D

2
 (s) 

Exact 510 2.4197 2.1484 1.1748 

CA (5, 2) 10 2.4195 2.1484 1.1748 

Table 2: Reduced basis size and associated energy criteria 

7  Conclusions 

In this paper, a variant of the combined approximation reanalysis method is 

presented. The main contribution concerns the determination of an optimal reduction 

basis using a singular value decomposition procedure. This method has been 

successfully applied to large displacement nonlinear analysis. It allows a significant 

fN

oN

Y 

X

(m)

(m)
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reduction of the tangent matrix, which needs to be updated at each step of the 

iterative procedure, especially when dealing with large scale models. 

In the case of localized nonlinearities, compared to a classical linear enriched Ritz 

basis method, the proposed variant leads to better predictions of the response. 

Furthermore, for generalized nonlinearities, i.e. large displacements, the CA variant 

still gives accurate results, while the enriched Ritz basis method cannot be applied 

anymore. 

However, some limitations need to be investigated as, for example, the convergence 

criteria of the binomial series expansion, and the condition number of the reduction 

transformation. Other simulations also need to be performed to examine the 

robustness of the method with regard to different levels of nonlinearities and 

frequency band of interest. 
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Figure 4: Nonlinear responses of the reference and condensed models at dof 409 (a); 

(b, c, d) zoom between [0, 4 s] for the same responses. 

 

(a) 

(c) 

(b)

(d)



15 

References 

[1] O.C. Zienkiewicz, R.L. Taylor, “The Finite Element Method, Solid 

mechanics”, 4th edition, vol. 2, McGraw-Hill, New York, 2000. 

[2] G. Masson, B. Ait Brik, S. Cogan, N. Bouhaddi, “Component mode synthesis 

(CMS) based on an enriched Ritz approach for efficient structural 

optimization”, Journal of Sound and Vibration, 2006, 296: 845-860. 

[3] E. Balmès, “Optimal Ritz vectors for component mode synthesis using the 

singular value decomposition”, AIAA Journal, 1996, 34: 1256-1260. 

[4] M. Guedri, T. Weisser, N. Bouhaddi, “Réanalyse de structures non-linéaires 

par une méthode de réduction par approximations combinées”, Premier 

Colloque International IMPACT 2010, 22-24 Mars 2010, Djerba, Tunisie. 

[5] U. Kirsch, “A unified reanalysis approach for structural analysis, design, and 

optimization”, Structural and Multidisciplinary Optimization, 2003, 25: 67-85. 

[6] K. Imai, D.M. Frangopol, “Geometrically nonlinear finite element reliability 

analysis of structural systems. I: theory”, Computers and Structures, 2000, 77: 

677-691 

[7] K.J. Bathe, S. Bolourchi, “Large displacement analysis of three-dimensional 

beam structures”, International Journal for Numerical Methods in Engineering, 

1979, 14:961-86. 

[8] M.A. Crisfield, “Non-linear finite element analysis of solid and structures”, 

Chichester (UK): Wiley, 1991. 

[9] M.B. Kanchi, “Matrix methods of structural analysis”, New Delhi (India): 

Wiley-Eastern, 1993. 

[10] C.A. Felippa, “Lecture notes in nonlinear finite element methods”, Center for 

Aerospace Structures, University of Colorado, Boulder, CO, 1996. 

[11] P. Paultre, “Dynamiques des structures : application aux ouvrages de génie 

civil”, Ed. Hermès, 2004. 

[12] D.O. Smallwood, “Characterization and simulation of transient vibrations 

using band limited moments”, Shock and Vibration, 1994, 1(6): 507–527. 

[13] A.M. Abu Kassim, B.H.V. Topping, “Static reanalysis: a review”, Journal of 

Structural Engineering, 1987, 113: 1029-1045. 

[14] T. Weisser, N. Bouhaddi, “Réanalyse dynamique de structures par une 

variante de la méthode des approximations combinées”, 9ème Colloque 

National en Calcul des Structures, GIENS, 25-29 mai 2009, France. 

[15] P. Ribeiro, “Hierarchical finite element analyses of geometrically non-linear 

vibration of beams and plane frames”, Journal of Sound and Vibration, 2001, 

246(2), 225-244. 


