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Introduction

In nonlinear dynamic analysis the solution of the differential equations governing the motion of the system are carried out by time iteration algorithms [START_REF] Zienkiewicz | The Finite Element Method, Solid mechanics[END_REF]. Generally, the main computational cost concerns the calculation of the updated tangent stiffness matrix. The effort required for solving the associated linear equation sets at each iteration cycle can then quickly becomes prohibitive, especially when dealing with large scale structures.

Thus, approximated reanalysis methods can be considered as an interesting alternative [START_REF] Masson | Component mode synthesis (CMS) based on an enriched Ritz approach for efficient structural optimization[END_REF][START_REF] Balmès | Optimal Ritz vectors for component mode synthesis using the singular value decomposition[END_REF]. These are intended to efficiently analyze the modified system without solving the complete set of modified equations: the initial state and the modification data are the only information needed. It has been shown in the literature that, in the case of localized nonlinearities, a Ritz basis reduction method can achieve accurate results when enriched by static residual vectors induced by modification forces [START_REF] Masson | Component mode synthesis (CMS) based on an enriched Ritz approach for efficient structural optimization[END_REF][START_REF] Balmès | Optimal Ritz vectors for component mode synthesis using the singular value decomposition[END_REF].

However, when dealing with generalized nonlinearities, these methods remain unable to predict the nonlinear behaviour of the structure. To overcome this difficulty a variant of the combined approximations method [START_REF] Guedri | Réanalyse de structures non-linéaires par une méthode de réduction par approximations combinées[END_REF], initially introduced by Kirsch [START_REF] Kirsch | A unified reanalysis approach for structural analysis, design, and optimization[END_REF], has been extended to nonlinear analysis.

In this paper, the large displacements behaviour of the structure is studied. Its responses are computed in the time domain by means of a classical iterative method. The accuracy of the proposed method are illustrated by three academic examples and compared to the results found in the literature.

Large displacements nonlinear formulation

This section reviews the theory of finite element for geometrically non-linear elastic structures (GNS) based on the total lagrangian formulation [START_REF] Imai | Geometrically nonlinear finite element reliability analysis of structural systems. I: theory[END_REF], which constructs the tangent stiffness matrix with respect to the initial configuration. One should notice that the updated lagrangian is another existing formulation, which is derived from the current configuration and does not include the initial displacement matrix U K [START_REF] Bathe | Large displacement analysis of three-dimensional beam structures[END_REF].

According to [START_REF] Zienkiewicz | The Finite Element Method, Solid mechanics[END_REF] and [START_REF] Crisfield | Non-linear finite element analysis of solid and structures[END_REF][START_REF] Kanchi | Matrix methods of structural analysis[END_REF][START_REF] Felippa | Lecture notes in nonlinear finite element methods[END_REF], the total lagrangian formulation can be described as follows. At first, the displacements u of structures are given by the product

uN U = ⋅ (1) 
where N is the vector of shape functions and U the vector of nodal displacements. Because of large displacements and rotations, Green's strain is adopted for the nonlinear relationships between strains and displacements. The Green's strain G ε includes both linear and nonlinear terms, respectively L B and ( ) NL B U , relating strain and nonlinear strain to the nodal displacements:

(( ) ) GL N L B BUU ε =+ (2) 
Using the principle of virtual displacement, the virtual work W δ is given by,

0 S0 () Ge x t V Wd V q U δ σδ ε δ =-∫ (3) 
where S σ is the second Piola-Kirchhoff stress, G δε the incremental form of the strain-displacement relationship, 0 V the volume of initial configuration and ext q the vector of external loads. Since Green's strain is based on a small strain, stress can be given by Hook's law: S (( ) )

GL N L EE B B U U σ ε == + ( 4 
)
where E is the modulus of elasticity. Substituting G δε from Eq. ( 2) into Eq. ( 3)

results in, 0 S0 (( ( ) ) ) LN L e x t V WB B U d V q U δ σ δ ⎡⎤ =+ - ⎢⎥ ⎣⎦ ∫ (5) 
Since U δ is arbitrary, the vector of internal forces int q is, 0 S0 ( ( ( )))

int L NL V qB B U d V σ =+ ∫ (6)
Taking the derivative of int q with respect to the nodal displacements U gives the tangent stiffness matrix T K ,

0 S S0 () (( ( ) ) + ) int NL TL N L V qB U KB B U d V UU U σ σ ∂∂ ∂ == + ∂∂ ∂ ∫ (7) 
By substituting Eq. (4) into Eq. ( 7) T K can be rewritten,

0 0 0 0 S0 0 () (( ) ( ) ( ) ( ) ) TL L V NL V LN L N L L N L N L V KE B B d V BU dV U E BB U B UB B UB U d V σ = ∂ + ∂ ++ + ∫ ∫ ∫ (8) 
It can be noticed that the three terms in equation ( 8) respectively stand for: the elastic stiffness matrix E K , the geometric stiffness matrix G K , and the initial displacement stiffness matrix U K [START_REF] Zienkiewicz | The Finite Element Method, Solid mechanics[END_REF][START_REF] Crisfield | Non-linear finite element analysis of solid and structures[END_REF].

Nonlinear time integration algorithm

A mechanical system can be represented in the time domain by the differential equation

() ( ) ( ) ( ) NL M ut C ut f t pt ++ = (9) 
with initial conditions, () ( )

00 00 ; ut u ut u == (10) 
where M and C stand for the mass and damping matrices of the system, ( )

NL NL f fu , u =
its restoring force given as a function of the displacement u and the velocity u , p the exciting force.

The solution of equation ( 9) can be approximated in a set of points 01 n t , t , ..., t using the assumption that the velocity and displacement at 

+ + =+ ∆ + -∆ +∆ bb (12) 
where

1 ii tt t ∆ - =-
The parameters b and g define the variation of the acceleration over a time interval Equations ( 11) and ( 12) can also be rewritten considering incremental quantities:

1 ii i uu u + ∆= - ; 1 ii i uu u + ∆= - ; 1 ii i uu u + ∆ =- ; 1 ii i p pp + ∆ =- (13) 
Then, the incremental equation of motion is given by, ( ) ( ) ( )

1 i i NL NL i M uC u f t f t p ∆ +∆+ +- = ∆ (14) 
and using the approximation ( ) ( )

1 NL NL Ti i f t ftKu +- ≈ ∆ ( 15 
)
we finally obtain the equation to solve to compute the incremental displacement

i u ∆ : ii ˆK up ∆ ∆ ≈ (16) 5 
where

T Ti NL i K fu =∂
∂ is the instantaneous (tangent) stiffness matrix, calculated as the Jacobian of the restoring force,

2 1 Ti K KCM t t =+ + ∆ ∆ g b b (17) 11 1 22 ii i i p pM C u M tC u t ⎡ ⎤ ⎛⎞ ⎛⎞ ∆= ∆+ + + + ∆ - ⎢ ⎥ ⎜⎟ ⎜⎟ ∆ ⎝⎠ ⎝⎠ ⎣ ⎦ gg bb b b (18) 
One should observed that the incremental restoring force, given equation ( 15), has to be rigorously calculated using the following relation () ( )

1 NL i NL i sec i f tf t K u + - =∆ (19) 
The error induced by substituting the tangent stiffness matrix to the secant stiffness one can corrected by employing an iterative Newton-Raphson scheme [START_REF] Paultre | Dynamiques des structures : application aux ouvrages de génie civil[END_REF].

Comparison criteria of the time responses

In order to quantify the obtained predictions, the temporal moments are used as a comparison criterion. These temporal moments ( ) is M t have been proposed for the transitory analysis [START_REF] Smallwood | Characterization and simulation of transient vibrations using band limited moments[END_REF]. They are similar to the static moments and are calculated as balanced summations of the quadratic temporal signal:

() ( ) ( ) ( ) 2 i is s M tt t u t d t +∞ -∞ =-∫ (20) 
where s t corresponds to a temporal shift and the index i represents the order of the moment. For more simplicity, the temporal moments i M are defined for 0 s t = . The central moments are thus defined as follows: 

Approximated reanalysis method

Approximated reanalysis methods can broadly be classified in two categories [START_REF] Abu Kassim | Static reanalysis: a review[END_REF].

Local approximations, such as first-order Taylor series expansion or the binomial series expansion about a given design point, are based on information calculated for a single design. These methods are efficient but they are effective only in cases of small changes in the structure. Global approximations, such as polynomial fitting, response surfaces or reduced basis [START_REF] Masson | Component mode synthesis (CMS) based on an enriched Ritz approach for efficient structural optimization[END_REF][START_REF] Balmès | Optimal Ritz vectors for component mode synthesis using the singular value decomposition[END_REF], are obtained by analyzing the structure at a number of design points and are valid on the whole design space. However they require more computational effort, especially in the case of large scale finite element models.

To be able to compare the results carried out in the last section of the article, the method exposed by Masson in [START_REF] Masson | Component mode synthesis (CMS) based on an enriched Ritz approach for efficient structural optimization[END_REF] is briefly described in what follows. It consists in enriching an initial Ritz basis by a set of vectors of minimal rank, obtained by approximating the static response of the truncated modes. This is achieved by taking into account a priori information concerning the modifications applied to the initial structure by means of static residuals generated by the forces associated to structural modifications.

The equilibrium equation of the modified substructure is given by:

() ( ) ( ) 0 0 ZZ u ωω ω +∆ = ⎡⎤ ⎣⎦ (22) 
Where the initial dynamic stiffness matrix defined by ( ) () ( ) ( )

2 00 0 Z KM ωω =-
fZ u ω ωω ∆ =-∆ (23) 
As the response ( ) u ω of the modified structure is unknown, it can be approximated by a standard truncated component modes synthesis transformation matrix 0 T , determined from the initial structure, enriched by static residuals

()

Rf ω ∆ ⎡⎤ ⎣⎦ , such as:

() ( ) ( ) 0 uT cR f ω ωω ∆ + ⎡ ⎤ ⎣ ⎦ (24) 
These residual vectors are derived from a force basis spanning the subspace associated to the whole set of modifications. The static residual matrix is then defined by:

1 * R KF - ∆ ∆ = ( 25 
)
where F ∆ is the modification force basis. It must be noticed that, for localized nonlinearities, this basis can be determined by applying unitary forces to the nonlinear degrees of freedom.

Singular value decomposition of the global transformation matrix is finally performed to ensure a minimal rank and an optimal condition number of the reduced basis

[ ] 0 TTR ∆ = (26) 
In other works, Balmès [START_REF] Balmès | Optimal Ritz vectors for component mode synthesis using the singular value decomposition[END_REF] proposed a similar formulation in which the residuals are updated by an iterative procedure.

Model reduction by a variant of the combined approximations method

The Combined Approximations (CA) method developed by Kirsch [START_REF] Kirsch | A unified reanalysis approach for structural analysis, design, and optimization[END_REF] uses the terms of the local binomial series expansion to compute the vectors of a global reduced basis. For each parametric modification of the initial structure, a new eigenproblem must be solved.

The normal mode ν of the modified structure verifies the equilibrium relation given by:

( ) ( ) ( ) ( ) ( ) 00 KK r MM r ν ν ν λ +∆ = +∆ (27) 
An approximated solution can then be expressed by the following binomial expansion:

() ( ) ( ) 1 0 1 rB r ν ν - + (28) 
depending on the modifications performed on the structure, 1 0 B KK - = ∆ , and its initial behaviour

( ) 0 r ν .
For nonlinear reanalysis, the changes in the stiffness matrix K ∆ result form the updating of the tangent stiffness matrix, given by:

0 T KK K ∆= - (29) 
where T K is the tangent stiffness matrix defined, in the case of large displacement, by equation [START_REF] Crisfield | Non-linear finite element analysis of solid and structures[END_REF].

The reduction basis is then constructed using the following recurrence relation:

( ) ( ) ( ) () () ( ) 
1 10 0 0 1 23 ii rK MM r rB r i , , , s ν ν νν - - ⎧ =+ ∆ ⎪ ⎨ =- = ⎪ ⎩ (30) 
and can be finally be written: 

( ) ( ) ( ) ( ) 12 
Singular value decomposition is then performed:

11 1 2 22 *T B TT rU V UVU V Σ ΣΣ = =+ (33) 
The robust Ritz basis, with regard to the parametric modifications, is finally constructed with the column vectors of matrix 1 U ,

1 B rU = (34)
It must be noticed that the proposed CA variant has been successfully extended to linear dynamic substructuring in order to perform structural reanalysis on large size finite element models [START_REF] Weisser | Réanalyse dynamique de structures par une variante de la méthode des approximations combinées[END_REF].

Numerical simulations Example 1

To illustrate the proposed method, one considers a damped nonlinear array of spring-mass systems. It consists of a ten degree-of-freedom (dof) damped springmass system with localized nonlinear Duffing type oscillator. 

() () ( ) ( ) 2 1 1 ii i i kk u tut - =+ - a , for 12 
1 0 i, , , =
, where a and ( ) ( ) ( )

1 iii ut ut u t δ - =-
respectively represent the nonlinear stiffness coefficient and the relative displacements between adjacent degrees of freedom. In this example, one considers 2 localized stiffness nonlinearities at dof 5 and 10, with associated coefficient 17 e = a

. The structure is excited by a harmonic force

( ) 14 c o s( 3 0 0 ) pt e t =× .
The response of the system is computed over a time interval [0-T=2s] with a sampling step fixed at 54 s te ∆= -.

Firstly, the comparison method described in section 4 (further referred to as LMA) is applied. The initial model of the system, containing 10 dofs, is reduced to a condensed one with 4 dofs by retaining 2 eigenmodes and 2 static residual vectors and the transformation matrix (noted LMA (2, 2)). Secondly, the variant of the CA method is implemented by reanalysing the first 2 normal modes with 3 vectors in the reduced basis (noted CA (2, 3)) associated to each mode (see equation ( 31)). After concatenation and singular value decomposition of the global basis, the robust reduced model becomes of size 4.

Table 1 recalls the size of the problems to be solved and gives the values of the associated energy criterion, defined equation (21). Figure 1 illustrates the results obtained by an exact reanalysis, compared to the implemented reduction methods. Figure 1 compares the nonlinear dynamic responses of the full model (reference) and the 4 dof condensed model by the LMA method or the alternative of the method CA. restoring force diagrams. One can conclude that, in this regime, the proposed method correctly approximates the reference response on an a priori selected time interval. 

Size

Example 2

The method is then applied to a clamped-clamped beam having the following geometrical and material properties (Aluminum DTDSO 70) [START_REF] Ribeiro | Hierarchical finite element analyses of geometrically non-linear vibration of beams and plane frames[END_REF]: h = 2×10 -3 m; b = 20×10 -3 m; L = 0.580 m; E = 7×10 10 N/m 2 ; ρ = 2778 kg//m 3 .

The value of the damping parameter is 0 001

i . ξ = .
Here, the aim is to study the large displacement behavior of the beam. The assumption is made to neglect the longitudinal inertia of the beam but not its longitudinal displacements.

A point harmonic excitation of frequency 33 Hz and amplitude 10 N is transversally applied at the middle of the beam.

The results, exposed figure 2, show that the CA variant method applied to the first mode of the structure, with 2 vectors computed in the reduced basis, accurately approximates the exact solution, in accordance with the literature [START_REF] Ribeiro | Hierarchical finite element analyses of geometrically non-linear vibration of beams and plane frames[END_REF]. 

Example 3

This example concerns a clamped frame structure represented in figure 3, which is discretized using a two-dimensional beam element (3 dof per node: x yz U, U, θ ).

The finite element model contains 510 dof. The mechanical and geometrical characteristics are given by: b = 36×10 -3 m; h = 25×10 -3 m ; Area = b×h ; E = 2.1×10 11 N/m 2 ; ρ = 7800 kg/m 3 .

The structure is excited at node f N by a localized choc excitation force, in the x U direction. The observation point is considered at node o N , also in the x U direction. 

Conclusions

In this paper, a variant of the combined approximation reanalysis method is presented. The main contribution concerns the determination of an optimal reduction basis using a singular value decomposition procedure. This method has been successfully applied to large displacement nonlinear analysis. It allows a significant reduction of the tangent matrix, which needs to be updated at each step of the iterative procedure, especially when dealing with large scale models.

In the case of localized nonlinearities, compared to a classical linear enriched Ritz basis method, the proposed variant leads to better predictions of the response. Furthermore, for generalized nonlinearities, i.e. large displacements, the CA variant still gives accurate results, while the enriched Ritz basis method cannot be applied anymore.

However, some limitations need to be investigated as, for example, the convergence criteria of the binomial series expansion, and the condition number of the reduction transformation. Other simulations also need to be performed to examine the robustness of the method with regard to different levels of nonlinearities and frequency band of interest. 

  + and determine the stability and accuracy characteristics of the method. The average acceleration method used in this study implies:

  One introduces the notion of force associated to structural modifications by:
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 1 Figure 1: Nonlinear responses of the reference and condensed models at dof 10 (a, b, c); (d, e, f) zoom between [0.4, 0.6 s] for the same responses.It can be observed, on the time responses and the phase portraits, that the response of the system is correctly predicted by both reduction methods. The nonlinear behaviour is well returned by the condensed stiffness matrix, has shown by the
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 2 Figure 2: Nonlinear responses of the reference and condensed models

Figure 3 :

 3 Figure 3: Finite element model of the frame

Figure 4 :

 4 Figure 4: Nonlinear responses of the reference and condensed models at dof 409 (a); (b, c, d) zoom between [0, 4 s] for the same responses.

Table 1 :

 1 Reduced basis size and associated energy criteria

		(dofs) E (m 2 s) × 10 -2	T (s)	D 2 (s)
	Exact	10	2.0911	0.91682	0.35259
	CA (2, 3)	4	2.0982	0.91886	0.35357
	LMA (2, 2)	4	2.1145	0.91996	0.35253

Table 2

 2 shows that even if the size of the nonlinear system has been reduced by a factor of 50, the energy criteria of the reference and the CA variant methods are identical. The responses plotted in figure4, on the time interval [ ]

	05 0 s -	clearly

Table 2 :

 2 Reduced basis size and associated energy criteria