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Introduction

Nonlinearities play an increasingly dominant role in dynamics, especially when it comes to functionalize them, particularly, in periodic structures in order to control their collective nonlinear dynamics which is regaining attention in several physical domains. For instance, in the field of acoustics, Manktelow et al. [START_REF] Manktelow | Multiple scales analysis of wave interactionns in a cubically nonlinear monoatomic chain[END_REF] focused on the interaction of wave propagation in a cubically nonlinear mono-atomic chain and Marathe et al. [START_REF] Marathe | Wave attenuation in nonlinear periodic structures using harmonic balance and multiple scales[END_REF] studied wave attenuation in nonlinear periodic structures while, in Optics, Heinrich et al. [START_REF] Heinrich | Collective Dynamics in Optomechanical Arrays[END_REF] investigated the collective nonlinear dynamics in arrays of coupled optomechanical cells. Moreover, in micro and nanotechnology, dynamic behavior investigations of an array of N nonlinearly coupled microbeams have been performed by Gutschmidt et al. [START_REF] Gutschmidt | Nonlinear dynamic behavior of a microbeam array subject to parametric actuation at low, medium and large DC-voltages[END_REF] using a continuum model, and Lifshitz et al. [START_REF] Lifshitz | Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays[END_REF], using a discrete model. In this context, we investigate a particular model for the collective nonlinear dynamics of periodic lattices. It consists of an array of coupled Duffing-Van Der Pol oscillators under primary resonance. The main goal is to understand how coupled nonlinearities influence external driven operation and how they may be used to enhance and control bifurcation topologies and energy transfers.

Model and results

The proposed model involves a finite degree of linearly and nonlinearly coupled Duffing-Van Der Pol Oscillators externally driven by a sinusoidal force, as shown in Figure 1. The corresponding set of coupled equations of motion EOM can be written in the following form:

mü n + K d (-u n+1 + 2u n -u n-1 ) + c un + Ku n + µ(u n -u n+1 ) 3 + µ(u n -u n-1 ) 3 + βu 2 n un = F cos(w D t + Φ) (1)
where u n (t) describes the deviation of the n th resonator from its equilibrium, with n = 1 • • • N and fixed n boundary conditions u 0 = u N +1 = 0, m is its effective mass, K = mw 2 0 is its effective spring constant, with w 0 the resonant frequency, µ is the cubic spring constant, or Duffing parameter, c = 2maw 0 is the linear damping (a is the damping factor), K d = γK is the coupling spring constant, and β is the coefficient of the Van Der Pol damping. The term proportional to F on the right-hand side is the standard direct drive, possibly shifted by a phase Φ, and its frequency is set an amount εΩ D away from the resonant frequency w 0 . Ω D is the detuning parameter and ε is a small nondimensional bookkeeping parameter. To treat the set of coupled equations of motion (1) analytically, we use secular perturbation theory combined with a multiple scales analysis, where we vanish N secular terms that act to drive the oscillators at their resonance frequencies. Hence, to extract the equation for the m th amplitude (m), we make use of the orthogonality of the standing wave modes. Since we are interested in the steady state motion, the N differential equations have been transformed into a set of N coupled nonlinear complex algebraic equations for the time independent mode. By solving numerically the resulting system, the overall collective response of the array can be plotted with respect to the detuning parameter Ω D . The solutions for the response intensity of two oscillators as a function of frequency are shown in Figure 2. With two resonators there are regions in frequency where three stable solutions can exist. If all the stable solution branches are accessible experimentally then the observed effects of hysteresis might be more complex than in the simple case of a single resonator. This is demonstrated in Figure 3, where we plot the time and space averages of the square of the resonator displacements

I = 1 2 2 n=1 < x 2
n >, where the angular brackets denote time average.

Conclusion

A discrete analytico-computational model has been developed in order to investigate the collective nonlinear dynamics of specific periodic lattices. In practice, it can be used to design innovative vibrating energy harvesters which are based on an array of coupled levitated magnets. 
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 12 Figure 1: Coupled Duffing-Van Der Pol mass-spring chain, with linear damping
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 3 Figure 3: The average response intensity, where these branches correspond to stable solutions in Figure 2.
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