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Adaptive shunted piezoelectric metacomposite: a
new integrated technology for vibroacoustic control
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24 rue de l’Epitaphe, 25000 Besangon, France
Email: manuel.collet@univ-fcomte.fr

Abstract—In this paper, we present an application of the
Floquet-Bloch theorem in the context of electrodynamics for
vibroacoustic power flow optimization by mean of distributed
and shunted piezoelectric patches. The main purpose of this
work is first to propose a dedicated numerical approach able to
compute the multi-modal wave dispersions curves into the whole
first Brillouin zone for periodically distributed 2D shunted piezo-
mechanical systems. By using two specific indicators evaluating
the evanescent part of Bloch’s waves and the induced elec-
tronic damping, we optimize the piezoelectric shunting electrical
impedance for controlling energy diffusion into the proposed
semi-active distributed set of cells. Sound radiation efficiency is
also analyzed for showing the effects of such smart metamaterial
for controlling acoustical noise.

Index Terms—Distributed Active Noise Control, Adaptive
Metacomposite, Distributed shunted piezoelectric patches

I. INTRODUCTION

Tailoring the dynamical behavior of wave-guide structures
can provide an efficient and physically elegant means to
optimize mechanical components with regards to vibration
and acoustic criteria, among others. However, achieving this
objective may lead to different outcomes depending on the
context of the optimization. In the preliminary stages of a
product’s development, one mainly needs optimization tools
capable of rapidly providing global design direction. Such
optimization will also depend on the frequency range of
interest. One usually discriminates between the low frequency
(LF) range and the medium frequency (MF) range, especially
if vibration and noise are considered. However, it should be
noted that LF optimization of vibration is more common in
the literature than MF optimization. For example, piezoelectric
materials and other adaptive and smart systems are employed
to improve the vibroacoustic quality of structural components,
especially in the LF range [1], [2], [3]. Recently, much effort
has been spent on developing new multi-functional structures
integrating electro-mechanical systems in order to optimize
their vibroacoustic behavior over a larger frequency band of
interest[4], [5], [6], [7], [8], [9], [10], [11], [12]. However,
there is still a lack of studies in the literature for MF optimiza-
tion of structural vibration. To that end, the focus of this study
is to provide a suitable numerical tool for computing wave
dispersion in 2D periodic systems incorporating controlling
electronics devices. The final aim is to allow their optimization
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in order to optimize vibroacoustic diffusion in 2D wave guides
and analyze its effect on acoustic radiation.

For optimizing wave dispersion we need to use efficient
numerical tools. Two approaches can be distinguished for
computing that dispersion: the semi-analytical finite element
method (SAFE) and the wave finite element (WFE) method. In
the former approach, the displacement field is modeled exactly
in the direction of wave propagation by using a harmonic
function and approximately in the perpendicular directions by
using finite elements (FE). An eigenvalue problem is then
formulated by introducing the displacement field into the
governing equations. Solving the eigenvalue problem for a
given frequency gives the wave numbers of all the propagating
modes. The main disadvantage of the SAFE method is that
FE used are not standard so they must be specifically defined
for each application. Moreover the wave guide needs to be
homogeneous. Nevertheless, a large amount of FE has been
developed since 1975 to compute dispersion curves of rails
[13], stiffened cylinders [14], laminated composite plates [15],
[16] and viscoelastic laminated composite plates [17]. To avoid
development of specific FE, the WFE method considers the
structures as periodic in order to model a single period of the
structure with standard FE. By using the periodic structure
theory (PST) introduced by Mead [13], an eigenvalue problem
can be formulated from the stiffness and mass matrices of
the FE model to find wave numbers of all the propagating
waves. Contrary to the SAFE method, the displacement field
is now approximated in the direction of propagation. The
WFE method has been successfully used to deal with wave
propagation in two dimensional structures [18], [19]. The ap-
proach has also been used for fluid-structure systems using the
theory of group representation for computing two dimensional
dispersion in undamped vibroacoustic systems [20], [21]. One
of the main problem of all these approaches is the difficulty
to compute the damped wave numbers in the whole Bril-
louin domain of multiphysics problem incorporating shunted
piezoelectric patches necessary for optimizing vibroacoustic
behavior of such periodic smart structures [22], [23].

After recalling the Floquet-Bloch theorems, we introduce a
new numerical formulation for computing the multi-modal
damped wave numbers dispersion in the whole first Brillouin
domain of a periodical smart structure made of periodically



distributed shunted piezoelectric patches. Based on this wave
modeling, optimization of the electrical impedance of the
shunted circuit is performed in order to decrease the group
velocity of flexural waves or to increase damping induced by
the electric circuit. The obtained optimal impedances are also
tested in controlling the MF response of a semi-distributed
infinite system and its effect on sound radiation.

II. PIEZO-ELASTO-DYNAMICAL APPLICATION OF THE
FLOQUET-BLOCH THEOREM

In this section the application of the celebrated Floquet-
Bloch theorem is presented for piezo-elastodynamic problems.
Based on the well known results obtained by Floquet [24]
in one-dimensional and later rediscovered by Bloch [25] in
multidimensional problems, we propose an original application
to bi-dimensional piezo-elastodynamical problem leading to
very general numerical implementation for computing waves
dispersion for periodically smart distributed mechanical sys-
tems incorporating electronic components and damping effects
[26].

A. The Bloch Theorem

The Bloch theorem gives the form of homogeneous states
of Schrodinger equation with periodic potential. This theorem
can be considered as a multidimensionnal application of the
Floquet theorem [27]. The periodic medium properties satisfy
a periodic condition as M(x + R.m) = M(x), m € Z3
where R = [r1, 79, 73] € R3*3 is a matrix grouping the three
lattice’s basis vectors (in 3D). We can also define the primitive
cell as a convex polyhedron of R? called ). The reciprocal
unit cell is denoted by (24 limited by the reciprocal lattice
vector defined by the three vectors g; so that: r;.g; = 276;;
(0,5 being the Kronecker index). We note G = [g1, g2, g3 the
reciprocal lattice matrix in the later. If 2, is the irreductible
primitive cell, Qj corresponds to the first Brillouin zone of
the lattice. One can see [28] for details.

The Bloch Theorem stipulates that any functions u(x) €
L?(R3,C") can be expressed as

u(ac):/Q e* e (xz, k)dk )

where the Bloch amplitude @ (x, k) is Q,-periodic and has the
representations

a(w k) = Y a(k+Gn)eonT,
nez3
u(z) = (|2f72:)|3 Z w(z + Rn)e*@+TEn) ()

nez?3

where @ (k) stands for the Fourier transform of u (). One can
also demonstrate that the mean value of the Bloch amplitude
is the Fourier amplitude of u(x) for the corresponding wave
vector: (a(.,k))g = (k). Using the Bloch theorem to rep-
resent the solutions of periodical partial derivative equations
implies that all derivatives are shifted by k in the sense given
by the used spatial operator.

Based on that theorem one can define the expansion func-
tions v, (x, k), called the Bloch eigen modes, such that they
can be used to represent the Bloch amplitudes of any solution
of the corresponding partial derivative equation as

W, k) =t (k)om(z, k) 3)

and at the same time diagonalize the partial derivative equa-
tions. One notes that the expansion coefficients u., (k) depend
on the applied disturbance and also on the induced wave vector
(see [29] for details).

B. Application to Piezo-Elastodynamic

Fig. 1. Generic 3D piezocomposite periodic cell

Let us consider a piezo-elastodynamic problem made of in-
finite periodic distribution of unitary cell described in figure 1.
The harmonic homogeneous dynamical equilibrium of system
is driven by the following partial derivative equation:

pw(x) —Vo(x) =0 Ve, 4
—VD(x) =0 Vo € Q, “)

where w(z) € R3(Q,) is the displacement vector, o repre-
sents the Cauchy stress tensor, € = Vynw = +(Vw” (z) +
w(x)VT) the Green strain tensor, D(x) the electric displace-
ment. The linear constitutive material behavior relationships
can be written as

o = Cgx)e—el(x)E %)
D = e(x)e+es(x)E (6)

where E = —VV the electric field vector (V' the voltage),
Cg the elasticity tensor at constant electrical field, e” the
piezoelectric coupling tensor and € s the dielectric permittivity
at constant strain. We add to this set of equilibrium equations
an output expression

q° = - D.ndS @)
St
allowing the introduction of the charge measurement on the
piezoelectric’s top electrode and hence the dual counterpart
of the imposed electrical Dirichlet boundary condition for
applying the shunt impedance operator.
The equations above are consistent for each kind of material



to the extent that null piezoelectric and permittivity tensors
can be used when passive materials are considered. All of
these tensors also depend on the spatial location vector x.
The piezo-elastodynamic equilibrium can also be written as:

Va € Q,
pww(x) + VOV sym (w(zx)) + Vel (2)VV(z) =0
®)
— Ve(z)Veym(w(x)) + Veg()VV(x) =0  (9)

As the problem is 2D infinitely periodic, only electrostatic
boundary conditions have to be considered on each cell:

V=0 Vax €Sy
V=V° VzxeS
Dn=0 Vzxels

(10)

where S, is the grounded bottom electrode of the piezoelectric
layer, S; is the top electrode connected to the external shunt
and s; the lateral electrode less boundary. The top electrode
applied feedback voltage V,, depends on the shunt character-
istic and on the collected charges ¢° (7) and can be expressed
in the Fourier space by:
Ve(iw) = —Z(iw)q° (iw) (11)
By considering a primitive cell of the periodic problem
Q. and by using the Bloch theorem, we can compute the
associated Bloch eigenmodes (3) and the dispersion functions
by searching the eigen solutions of the homogeneous problem
(8) and (9) as:

(12)

with w, (z) = Q. periodic functions. By

|: wn,k(w) L

Vn,k(w) ’

introducing expression (12) in the piezo-elastodynamic equa-

tions (8), (9), one can demonstrate that w, (), V,, k() and

wn, (k) are solutions of the generalized eigenvalues problem:
0 = pwy (K)wne (@) + VOV sym (Wi k()

)

+ ik {(CV sym (Wp k(x))). P
+ V(CZ,k(x)} — K*(CZ,, 1(x)).®

+ VeV, k(z) + ik {(VeTV, (). ® (13)
+ (" VVk(x)).®}
— k*Vpk(x) (T ®).® Yz € Q,
0 = —VeVym(wn k() — ik {V(eZ, k()
+(eVym (wnk(x))) 2}
+ k% (eEn k(). @ (14)

+ VesVV, k(x) + ik {(Ves Vi k(x)). @
+ (esVVii)(x).®}
— k2 (es®V, k(). ® VY € Q,

with the associated boundary conditions:

Wy k(x — Rom) = wy k(x) Ve €S, m e 72

Vok(z) =0 Ve € Sy
Vi (®)V = = Z(iw)g;, 4, Vo € S
Dn=0 Y € S
cos(¢)
where k = k | sin(¢) | = k® where ¢ represents the direc-
0

tion angle into the reciprocal 2D lattice domain and =, () =
3 (wn (). @7 + ®.w] . (x)) the symmetric dyadic tensor or
the dyadic product of the displacement w, i () and direction
vector ®. S, are the interface of the cells continuum, and R
the matrix grouping the two lattice’s basis vectors (in 2D in
the considered problem). In the electrical boundary conditions,
dy . 18 given by:

= / [—e( sy (w1 ()) + IV EZ k()

+es(VVi k() + ikV, k() ®].ndS

(15)

where n is the outpointing unitary normal vector.

The proposed formulation is also based on the computation
of the Floquet vectors (13), (14), instead of computing the
Floquet propagators commonly used for elastodynamic ap-
plications. Our approach allows to obtain the full 2D waves
dispersions functions and to clearly introduce damping and
electrical impedance into the piezo-elastodynamic operator.
The adopted methodology allows the computation of the
complete complex map of the dispersion curves including
evanescent waves and allowing the introduction of damping
and shunt operator if any.

C. Weak formulation and computation of waves dispersion
functions in periodical piezo-composite lattice

Let us consider the partial derivative equations (13), (14) on
a unit cell . It stands for a generalized eigenvalue problem
leading to the computation of the dispersion functions w (k)
and the corresponding Floquet eigenvectors w, x(x). For
computing the 2D dispersions curves, we need to introduce a
suitable weak formulation.
If Up k() is a solution of equa-
tions (13), (14), also YWy, k() €
{H1(2, C%) /0 1 (x — Rm) = W, k(z) Vo € 5, }
and Vop@) € {H(Q€)/Vhr(@)=0Vzes, and



Vop(x) =V Ve € St} we have:

(
— 6~n_’k(£l: - ikén,k(m))C(En_’k(iB) + ZkEnk(il:))
= )

(
+( T(VVik(x) 4+ ikV, o (z)®)
— (VVn,k ) — ikV, k() ®)e(en k() + ikE, k(x))
+ (VW (x) — ikV, 1 (z)®)

ViV
 Z(iw)

(16)

This weak formulation is simply obtained by integrating
equation (13), (14) projected onto any test function @, (x).
The boundary integral vanishes as the test functions are chosen
so that Wy, x(x — Rm) = Wy, k(x) on S,. For a polyhedron
cell, each boundary is generally a polyhedral plane sub-domain
that can be associated with its parallel opposite one. The
symmetry conditions W, k(z — Rm) = W, x(x) explicitly
link these associated surfaces.

D. Numerical Computation of the Bloch’s waves

The numerical implementation is obtained by using a stan-
dard finite elements method to discretize the weak formulation
(16). The assembled matrix equation is given by:

0= (K(Z(iwn(X, ¢)) + AL(¢, Z(iwn (X, ¢)))
— N H(¢, Z(iwn(N, 8))) — wi (A, @) M)t 1(9),

where A = ik, M and K(Z(iw, (A, ¢))) are respectively the
standard symmetric semi-definite mass and stiffness matrices
(the mass matrix is semi definite because elastostatic equation
are condensed into the equation), L(¢, Z(iwn (A, @))) is a
skew-symmetric matrix and H (¢, Z (iw, (A, ¢))) is a symmet-
ric semi-definite positive matrix.

When £ and ¢ are fixed and Z does not depend on w the
system (17) is a linear eigen value problem allowing us to
compute the dispersion functions w2 (k, ¢) and the associated
Bloch eigenvector wy, 1 (¢).

(17)

This approach has been widely used for developing homoge-
nization techniques and spectral asymptotic analyses like in the
work of [30]. It can also be applied for computing wave’s dis-
persion even if Floquet propagators is preferred for 1D or quasi
1D computation, as indicated in [31], [32], [33]. Nevertheless
these approaches have been only developed for undamped or
lightly damped mechanical systems. In these cases, most of
the previously published works present techniques based on
the mesh of a real k-space (i.e kK or A and ¢) following
the boundary of the first Brillouin zone for obtaining the
corresponding frequency dispersion and the associated Floquet
vectors. For undamped system, only propagative or evanescent
waves exist corresponding to a family of eigen solutions purely
real or imaginary. Discrimination between each class of waves
is easy. If a highly damped system (K, L,H are complex
frequency dependent) and a frequency dependent electrical

shunt impedance are considered, the obtained eigenvalue
problem is not quadratic and a complex specific numerical
methodology has to be implemented. Furthermore, evanescent
part of propagating waves appear as the imaginary part of
eigenfrequencies. It then becomes very difficult to distinguish
the propagative and evanescent waves as all solution appear
complex.

Another much more suitable possibility for computing dis-

es(VVik(x) + ikV, k() ®)dQ2 persion in damped systems, dedicated for time/space deconvo-

Iution and for computation of diffusion properties as defined
by [4], [33], is to consider the following generalized eigen
value problem:

0= (K(Z(w) = w*M + A\ (w, ) L(¢, Z(w))
- )\i(@.& ¢)H(¢7 Z(w)))u"’b(wa ¢)

In this problem, the pulsation w is a real parameter correspond-
ing to the harmonic frequency. Wave’s numbers and Floquet
vectors are then computed. An inverse Fourier transformation
in the k-space domain can lead us to evaluate the physical
wave’s displacements and energy diffusion operator when the
periodic distribution is connected to another system as in [4].
Another temporal inverse Fourier transformation can furnish a
way to access spatio-temporal response for non-homogeneous
initial conditions. As L is skew-symmetric, the obtained eigen
values are quadruple (A, A, =\, —)) collapsing into real or
imaginary pairs (or a single zero) when all matrices are real
(i.e. for an undamped system). In this case a real pair of
eigen values correspond to evanescent modes oriented in two
opposite directions on the k-space and imaginary values to
two traveling waves propagating in opposite direction.

As previously mentioned, the real part of &k = k® vector
is restricted to stand inside the first Brillouin zone. In the
quadratic eigen value problem (18) nothing restricts compu-
tation to only find eigen values satisfying this condition. For
direction vector ® orthogonal to the lattice facelets (i.e. for
®,1 = [1,0]7 and @, = [0, 1]7 in bi-dimensional rectangular
cell), the periodical conditions expressed for one dimensional
wave guide are still valid: if \j(w,®,) is an eigen value
associated to w;(w,®,) then Vm € Z3, A\ + i.®L(G.m)
)e—i.ép (Gm)ac

(18)

is also an eigen value associated to w;(w, ®),
Thus, for undamped systems, all obtained eigenvalues are
periodically distributed in the k-space along its principal
directions.

E. Computation of the evanescence and damped power flow
criteria

One aim of this paper is to provide a numerical methodology
for optimizing the piezoelectric shunt impedance Z(w) for
controlling energy flow into the periodically distributed piezo-
composite structure. For doing this, we need to define suitable
criteria.

The first used criterion is based on the computation of the
waves group velocities. Indeed, they indicate how energy is
transported into the considered system and allow to distinguish
the ’propagative’ and ’evanescent” waves. If one Bloch eigen



solution (i.e w,(w, @), kn(w)) is considered, the associated
group velocity vector [34] is given by:

«s) _ I
((etor))  (Etot)

where ((:)) is the spatial and time average respectivelly on one
cell and one period, S is the density of energy flux defined
in [34], I the mean intensity and e, E},¢ the total piezome-
chanical energy and its time average on a period (see [34] for
details). In this problem, we only consider mechanical energy
transportation as the electrostatic coupling is decentralized
and can be condensed as a mechanical interface as proved
in [35] and generally computed in [36]. So we also compute
the intensity vector I by:

an(w, d)) = ka =

(19)

(In) (w, ¢) = —

n

2

(20)
where .* is the complex conjugate and V,,; the domain volume.
As the spatio-temporal average of the system Lagragian is null
(see [34]), the total energy average is approximated by only
computing the kinetic energy average:

1
2Vol

(Etot) (w, p) = Re(/g pww,, (z).w? (xi)d?) (21)
The group velocity vectors Cy (w, ¢) is computed for all wave
numbers at each frequency. In order to focus our analysis
on only flexural modes (S and SH ones) we introduce an
indicator allowing to select them by computing the ratio of
kinetic energy average on out of plane displacement as:

i (Jo, pwPwz, (x) w2 (2)dQ)
<Etot>

with wz,(x,w,$) being the (Oz) component of vector
wy,(x,w, ). Optimization of the shunt impedance Z(iw) is
based on the minimization of the maximum group velocity
collinear to the wave number vector (19) for waves having a
ratio of transported flexural kinetic energy (22) greater than
0.8. The used criterion can also be written as:

Crity (Z(iUJ), (b) = mal‘n/lnd(n,w,d))>0.8(cign(wa ¢)(p)
(23)
The second used criterion is based on the maximization
of the damped electric power directly express as the active
electrical power Pejec(n,w,d) = %real(in(iw)qg’kqg’jk).
If one wants to increase damping effect inside the smart
metamaterial, this term need to be sufficiently large. In the
second case, the used criteria is also

Ind(n,w, ¢) =

(22)

CritQ(Z(Z’w)7 ¢) = MaZTy/Ind(n,w,$)>0.8 (24)

Pelec(na w, ¢)
F. Computation of the sound radiation efficiency

The sound radiation efficiency of a plate depends on the
coupling of sound waves in the air and flexural waves (vi-
bration) in the plate. Optimum efficiency (maximum energy
transfer from vibration to sound or vice versa) is achieved
when the plate vibrates such that the wavelength of flexural

I Piezoelectric Material I

Symbol Value Property

sE =sF, =5k | 11.6e712 Pa~! compliance matrix

st = 5{33 = SQES —3.33¢" 12 Pa—! | compliance matrix

sk =ski =5k | 45.0e71! Pa~! compliance matrix

n 0.1 % Hysteretic Damping ratio

d31 = dso —6e— 1T C/N piezoelectric matrix

dss 15.2¢~ 1T C/N piezoelectric matrix

doy = di5 730e 12 C/N piezoelectric matrix

p 7600kg/m> Density

el =€, 504.1 €, C/V/m | Dielectric Permittivity

etn 270 e, C/V/m Dielectric Permittivity
TABLE 1

Piezoelectric patch characteristics

; Re(/ Clen(@)+ikE, (2)).(w (2)))dQ waves in the plate is equal to the wavelength of acoustic
ol Q

waves in the air (alternatively the flexural wave velocity in
the plate is equal to the velocity of acoustic waves in the
air). This is more commonly known as the coincidence or
critical frequency of radiation. In fact, that phenomenon is
based on the computation of the kz, value of the induced
acoustic wave number. If one considers an infinite plate in
which an harmonic plane wave is propagating with a wave
number kzx,, at pulsation w, as the acoustic pressure radiated
from this infinite system is a solution of the Helmoltz equation
and is coupled by considering interface continuous normal
velocity, one can obtain expression of kz,, by:

kzy = (%)2 — ka2 (25)
where ¢ is the sound velocity in the considered semi-infinite
acoustic domain.

For analyzing sound radiation effect of our smart metamate-
rial, acoustic wave numbers kz, are post-processed from the
obtained structural waves given by our previously described
computation. As the obtained kx,, are complex and include
all modes, we will focus our analysis to flexural modes by
using indicator Ind(n,w,¢) > 0.8 and consider the complex
expression of the out of plane radiation by using equation (25)
with a complex kz,,.

III. OPTIMIZATION OF THE FLEXURAL ENERGY FLOW
INSIDE THE SHUNTED PERIODIC PIEZO-COMPOSITE

The considered piezo-composite cell is presented in figure
1. The supporting plate material is standard aluminum with 0.1
% of hysteretic damping ratio and the piezoelectric material
characteristics are given in table 1.

The used numerical optimizations of the criteria are based
on a multidimensional unconstrained nonlinear minimization
(Nelder-Mead).

A. Optimization of the waves goupes velocities by using
C’I"?:t]_

In a first test, we optimize the waves groups velocities by
using Crit; given in equation (23). We present in figure 2
the obtained real and imaginary parts of the wave number
kx,(iw) of plane waves propagating into the smart plate
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Fig. 2. Real (a) and imaginary (b) parts of the wave number kzy (iw)

of plane waves propagating into the smart plate along (Oz) axis and the
corresponding real (a) and imaginary (b) parts of the acoustic out plane wave
number kzp,.
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Fig. 3. Real and imaginary parts of the optimal impedance

along (Ox) axis and the corresponding real and imaginary
parts of the acoustic out of plane wave number kz,,. The red
dashed lines indicate the acoustic wave number . The circles
mark the dispersions curves for Z = 0 and the blue crosses
the obtained optimal dispersion. The corresponding real and
imaginary parts of the optimal impedance are plotted in figure
3. For a sake of clarity, all non propagative waves having a
group velocity inferior to 30 m.s~! have been removed from
the plotted results.

We immediately observe that the optimization of the shunt
impedance leads to greatly modify the group velocity of the
A, mode and to create an evanescent mode. We notice an
increase of the imaginary parts of the wave number of A,
mode indicating an increase of the spatial decay rates even
if this mode remains propagative. The acoustic radiation is
greatly modified by the cancellation of A, mode as shown

1
Freq. [Hz]

Fig. 4. Real (a) and imaginary (b) parts of the wave number kxy (iw)
of plane waves propagating into the smart plate along (Oz) axis and the
corresponding real (a) and imaginary (b) parts of the acoustic out plane wave
number kzy,.

in figure 2.c. The imaginary part of kz, stay unchanged at
very low values for radiations induced by A;. The optimal
impedance values are almost real, and correspond to those
obtained if a constant negative capacitance is used. The corre-
sponding average value is —150.05 pC.V ~!. Some imaginary
parts of the optimal impedance are negative which indicate
that the optimization leads to provide energy to the system
for controlling mechanical damping effect introduced with
hysteretic damping ratios into the model, and, also, obtain a
fully conservative system.

B. Optimization of damped power flow inside the electric
shunts by using Crity

In this second test, we optimize the damped power flow
inside the electric shunts by using Crits given in equation
(24). We present in figure 4 the obtained real and imaginary
parts of the wave number k., (iw) of plane waves propagating
into the smart plate along (Ox) axis and the corresponding real
and imaginary parts of the acoustic out of plane wave number
kzy. The red dashed lines mark the acoustic wave number £
The circles mark the dispersions curves for Z = (0 and the blue
crosses the obtained optimal dispersion. The corresponding
real and imaginary parts of the optimal impedance are plotted
in figure 3. For a sake of clarity, all non propagative waves
having a group velocity inferior to 30 m.s~! have been
removed from the plotted results.

We immediately observe that the optimization of the shunt
impedance leads to greatly modify the imaginary parts of the
flexural wave number of A, and A; modes and to create
damped propagation while the real parts remain unchanged.
The acoustic radiation is greatly modified in improving the
spatial decay rates of the out of plane wave number coupled
with A, mode as shown in figure 4.d after 12 kH z. The real
parts of kz, stay unchanged. The optimal impedance values
are complex with a positive resistance term that allows energy
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dissipation inside the electric shunt circuit. The real parts
correspond to those obtained if a constant negative capacitance
is used. The corresponding average value is also —151.04
pC.V ~1 slightly different from the previously considered case.

IV. CONCLUSIONS

This paper presents a numerical procedure able to compute
the damped wave’s dispersion functions in the whole first
Brillouin domain of multi dimensionnal piezo-elastodynamical
wave guides. The method was applied for determining the
optimal impedance allowing to minimize the group velocities
of the flexural waves. Based on this approach, some numerical
tests on a finite dimension system incorporating a semi-
distributed set of shunted piezo-composite cells have been
performed. We underline a strong influence of the designed
shunt circuits in the dynamical response of the system and
the coupled noise radiation. Even if the link between the
obtained wave properties are not clearly established, we also
demonstrated that our developed numerical procedures can
be used for optimizing the energy diffusion operator of such
adaptive mechanical interface. To do so, additional work has
to be done for optimizing the complete interface scattering
and for controlling the evanescent waves playing an important
role in the dynamical response of a finite system incorporating
such semi-distributed interface. Another part of this future
developments should deal with the complete vibroacoustic op-
timization incorporating a fully fluid-structure coupling effect.
The proposed methodology can also be used for studying
particular dissipation phenomenon such as those induced by
complex shunted piezoelectric patches as proposed by [6]
and [37], or even foams or complex polymers behaviors.
The proposed method furnishes an efficient tool for future
optimization of distributed smart cells as proposed in the case
of 1D wave guide by [4].
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