
HAL Id: hal-02300456
https://hal.science/hal-02300456

Submitted on 29 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A distributed self-reconfiguration algorithm for
cylindrical lattice-based modular robots

Andre Naz, Benoit Piranda, Seth Copen Goldstein, Julien Bourgeois

To cite this version:
Andre Naz, Benoit Piranda, Seth Copen Goldstein, Julien Bourgeois. A distributed self-
reconfiguration algorithm for cylindrical lattice-based modular robots. International Symposium on
Network Computing and Applications, Oct 2016, Cambridge, MA, United States. �hal-02300456�

https://hal.science/hal-02300456
https://hal.archives-ouvertes.fr

A Distributed Self-Reconfiguration Algorithm for Cylindrical

Lattice-Based Modular Robots

André Naz*, Benôıt Piranda*, Seth Copen Goldstein** and Julien Bourgeois*

*Université de Franche-Comté, FEMTO-ST Institute, UMR CNRS 6174

{andre.naz, benoit.piranda, julien.bourgeois}@femto-st.fr
**School of Computer Science, Carnegie Mellon University

seth@cs.cmu.edu

Abstract

Modular self-reconfigurable robots are composed of inde-
pendent connected modules which can self-rearrange their
connectivity using processing, communication and motion
capabilities, in order to change the overall robot struc-
ture. In this paper, we consider rolling cylindrical modules
arranged in a two-dimensional vertical hexagonal lattice.
We propose a parallel, asynchronous and fully decentral-
ized distributed algorithm to self-reconfigure robots from
an initial configuration to a goal one. We evaluate our
algorithm on the millimeter-scale cylindrical robots, de-
veloped in the Claytronics project, through simulation of
large ensembles composed of up to ten thousand modules.
We show the effectiveness of our algorithm and study its
performance in terms of communications, movements and
execution time. Our observations indicate that the num-
ber of communications, the number of movements and the
execution time of our algorithm is highly predictable. Fur-
thermore, we observe execution times that are linear in the
size of the goal shape.
Keywords— Distributed algorithm, Self-

reconfiguration algorithm, Modular robotic, Pro-
grammable Matter, Ensembles

1 Introduction

Modular Self-reconfigurable Robots (MSR) [1] are dis-
tributed robotic systems composed of independent con-
nected modules which are able to collaborate and coor-
dinate their activities in order to achieve common goals.
Every module has its own computation and communica-
tion capabilities, sensors and actuators. MSR have a wide
range of potential applications. This work is part of the
Claytronics project [2, 3] in which we envision massive-
scale MSR, composed of up to millions of modules, to
build programmable matter, i.e., matter that can change
its physical properties under program control.
The most used algorithm in MSRs is the self-

reconfiguration algorithm which causes the modules to
move from one configuration (the initial shape) to another

one (the goal shape) (see Figure 1). Self-reconfiguration
has several applications. In the context of programmable
matter, it enables an MSR to assume different shapes.
Self-reconfiguration can also be used to adapt MSR to
changes in the environment or to specific tasks. For in-
stance, in [4], the authors use the self-reconfiguration to
rearrange modules connectivity in order to reach an opti-
mal network topology.

Figure 1: Example of initial and goal shapes. Self-
reconfiguration is the process during which the initial
clump of modules on the left self-reconfigures into the car
shape on the right.

Self-reconfiguration algorithms pose several challenges.
Firstly, planning is challenging as the number of possi-
ble unique configurations is huge: (c · w)n where n is the
number of modules, c the number of possible connections
per module and w the ways of connecting the modules to-
gether [5]. Depending on the physical constraints, modules
can often move concurrently which makes the configura-
tion space grow at the rate of O(mn) with m the number
of possible movements and n the number of modules free
to move [6]. The exploration space for reconfiguration
between two random configurations is therefore exponen-
tial in the number of modules which prevents finding a
complete optimal planning for all but the simplest con-
figurations. The optimal self-reconfiguration planning for
chain-type MSRs is then an NP-complete problem [7], and,
to the best of our knowledge, nothing has been proved so
far for lattice-based MSR. Secondly, in addition to the
path planning problem, the self-reconfiguration process is
also challenging as it is a distributed process that requires
distributed coordination of mobile autonomous modules

connected in time-varying ways. In particular, modules
have to coordinate their motions in order to not collide
with each other.
Self-reconfiguration algorithms are tailored for a spe-

cific class of modular robots, with specific motion con-
straints [8], for example using cubes sliding on the floor,
some motions need a cooperation process that compli-
cates motion algorithms [9]. In this paper, we base our
model on the millimeter-scale cylindrical robots [10, 11]
(see Figure 2), called 2D Catoms, developed in our
project. Catoms are the basic unit for Claytronics. 2D
Catoms have been partially validated with the realiza-
tion of a hardware prototype. In this paper, we assume
2D Catoms can communicate together using neighbor-to-
neighbor communications and move by rolling around each
other as long as they respect some motion constraints (see
section 2).

Figure 2: The 2D Catom. A fabricated prototype (on the
left) and the actuation scheme (on the right) [10].

The contribution of this paper is to propose the
Cylindrical-Catoms Self-Reconfiguration (C2SR) algo-
rithm which is asynchronous, deterministic, fully decen-
tralized and able to manage almost any kind of initial and
goal compact shapes (see section 4). Although our work is
focused on the algorithm, we carry out our analysis with
respect to hardware constraints based on the 2D Catoms
prototype developed in [10, 11]. C2SR is a step toward
realizing programmable matter.
We implemented our algorithm in C++ and evalu-

ated it through simulations with our simulator, Visi-
bleSim [12, 13]. We show the effectiveness of C2SR on
large-scale ensembles composed of up to ten thousands of
modules. We also show the effectiveness of our algorithm
and study its performance in terms of communications,
movements, and execution time. Our observations indi-
cate that the number of communications, the number of
movements and the execution time of our algorithm is pre-
dictable. Furthermore, its execution time appears to be
linear in the size of the goal shape.
The rest of this paper is organized as follows. In sec-

tion 2, we define the system model and assumptions. Af-
terwards, we discuss the related work in section 3. In
section 4, we present the general idea of C2SR and in sec-
tion 5, we describe its implementation. In section 6, ex-
perimental results are presented and analyzed. Section 7,
concludes this paper and section 8 proposes some direc-
tions for future work.

2 System Model and Assumptions

In this paper, we consider the millimeter-scale cylindrical
robots [10, 11] (see Figure 2), called 2D Catoms, devel-
oped in the Claytronics project. Some of the 2D Catoms
functionalities have been validated using this prototype.

A 2D Catom consists of a 6-mm long and 1-mm diame-
ter cylindrical shell. A high voltage CMOS die is attached
inside the tube. The chip includes a storage capacitor
and a simple logic unit. The tube has electrodes used
for power transfer, communications and actuation. The
power is spread from a powered floor through the ensem-
ble using neighbor-to-neighbor power transfer.

We assume that 2D Catoms are organized into a hor-
izontal pointy-topped hexagonal lattice where modules
have up to six neighbors. Modules can communicate to-
gether using neighbor-to-neighbor communications. We
assume that modules automatically discover their neigh-
bors using communications after becoming attached. We
assume that moving modules cannot communicate with
any other module. NN

Ci
denotes the network neighbors of

the module Ci. Catoms on the periphery have clockwise
(CW) and counter-clockwise (CCW) neighboring Catoms
that also belong to the periphery. For instance, in Fig-
ure 3, C9 is C6’s CW peripheral neighbor and C10’s CCW
one. C11 is both C12’s CW and CCW peripheral neighbor.
pCi

= (xCi
, yCi

) denotes the coordinates of the 2D
Catom Ci in the horizontal hexagonal lattice. pCi

.x de-
notes Ci’s column in the lattice, while pCi

.y denotes Ci’s
height. For instance, in Figure 3, pC2

.y = 0 and pC9
.y = 2.

We assume that, at any time, modules know both their
coordinates in the lattice and the coordinates of their
neighbor through an external algorithm, e.g., [14] or a dis-
tributed and incremental version of [15].

Moreover, a 2D Catom can roll CW or CCW around
a stationary module. During an atomic move, a module
rotates 60◦ going from one cell of the lattice to its adjacent
cell. We assume that a 2D Catom has only the capability
to lift itself, it cannot carry or push other modules. A
module can move if it satisfies the freedom of movement
rule (see Rule 1).

Rule 1 (the freedom of movement rule) Because of
possible mismatching issues due to physical constraints,
a 2D Catom can only move from/into a cell if this cell
is currently unoccupied and no two symetrically opposing
cells adjacent to that cell are occupied (see Figure 3). Fur-
thermore, we consider the floor as if it were filled with 2D
Catoms. If a 2D Catom, Ci, satisfies the freedom of move-
ment rule, free(Ci) is true, otherwise it is false.

In the current design, a 2D Catom is able to per-
form a revolution in 1.67 seconds or 3.35 seconds [11],
which corresponds to an average speed of 1.88 mm · s−1

or 0.94 mm · s−1. We assume that 2D Catoms are not
provided with any hardware mechanism to handle colli-
sion. Thus, collisions have to be prevented by the self-
reconfiguration algorithm, using communications.

Figure 3: On the left, motion constraints: examples of
feasible (on the top) and infeasible moves (on the bottom).
On the right, a labeled system: gray cells are occupied by a
module whereas white cells are empty. Some of the empty
cells are labeled with their position (e.g., pa, pb, etc.).

We use NK
p to denote the set of modules geographically

adjacent to position p. A module Ci, moving from pCi
to

p′Ci
, is somewhere between these two positions, and thus,

Ci belongs to the set of geographically adjacent modules
of all the cells adjacent to pCi

or p′Ci
. For instance, in the

labeled system depicted in Figure 3, module C12 is mov-
ing and, thus it belongs to NK

pa
, NK

pb
, NK

pd
, NK

pC12

, NK
pe
,

NK
pC11

, NK
p′

C12

, NK
pf
, NK

pg
and NK

ph
. Note that in the pres-

ence of moving modules, NK
pCi

may be different from NN
Ci
.

Also notice that the construction of the NK sets is not
automatic. 2D Catoms are not equipped with any pres-
ence sensor. Maintaining on Catoms the NK set of some
specific nearby positions, using only communications, is
one of the key operations in the implementation of our
algorithm.

I and G respectively denote the initial and the goal
shapes. We assume that every module stores a represen-
tation of the shape geometry of G. Our algorithm also
assumes some admissibility conditions for I and G (see
section 4).

In this paper, colors are used for illustration purposes
only. The current prototype is not equipped with any
mechanism to glow with color. It is possible to do so, but
the weight of that color mechanism will probably change
the 2D Catom motion speed.

Furthermore, we assume a failure-free environment, i.e.,
we assume there is no module, communication, move or
lattice failure during the algorithm execution.

3 Related Work

Self-reconfiguration and self-assembly have attracted a lot
of attention in the last two decades. Algorithms have
been proposed for modules of different shapes, with dif-
ferent physical motion constraints and arranged in various
ways. In this paper, we consider self-reconfiguration of 2D
Catom systems, rolling elements organized in a vertical
and two-dimensional hexagonal lattice. Algorithms also
differ by their restriction on the initial and goal shapes.
Our algorithm can manage almost any kind of initial and
goal compact shapes (see section 4). Algorithms also vary
in their control properties. In particular, they can be cen-

tralized or distributed and synchronous or asynchronous.
In this paper, we propose a distributed and asynchronous
algorithm.

In [16], the authors propose a distributed algorithm to
perform chain-to-chain self-reconfiguration in a hexagonal
lattice. Modules move in synchronous rounds. This work
was latter extended to allow self-reconfiguration from a
chain configuration to an arbitrary shape with some ad-
missibility conditions [17, 18]. These algorithms assume
less restrictive motion constraints than the motion con-
straints we assume for the 2D Catoms. For instance, these
algorithms allow the two first motions described as infea-
sible in Figure 3, starting from the left.

Self-reconfiguration presented in [19, 20] consists in us-
ing map-less representation for describing shapes. The
benefit lies in a reduced memory footprint, but the number
of supported goal shapes is limited. Proposed distributed
algorithms manage to construct square shapes with spher-
ical modules arranged in a two-dimensional hexagonal lat-
tice. Due to the fact that initial and goal shapes are fixed,
the number of movements can be predicted.

Algorithms to reconfigure an initial clump of modules
arranged in a hexagonal lattice to a chain configuration
were proposed in [21, 22]. These algorithms do not re-
quire message passing and do not use any pre-processing.
In these algorithms, modules can both rotate and slide
over other modules. Thus, these algorithms assume less
restrictive motion constraints than ours.

In [23], the authors propose a distributed shape for-
mation algorithm based on hole motions, for ensembles
arranged in a hexagonal lattice. This algorithms can con-
struct various shapes by randomly moving empty spaces
within the ensemble. Although a wide variety of shapes
can be built, this algorithm requires less restrictive motion
constraints than ours, e.g., it allows the two first infeasible
motions in Figure 3.

In [24], the authors propose a parallel, decentralized
and asynchronous algorithm for the Kilobot swarm sys-
tem [25] to self-assemble almost any kind of compact two-
dimensional shapes. This algorithm has been applied on
hardware systems with more than a thousand individual
robots per swarm entities. However, these swarm robots
have different physical motion constraints. During the
self-assembly process, Kilobots may collide with one an-
other. While this is possible with Kilobots, this is not
acceptable in our system.

Existing protocols contain interesting ideas but consider
different physical motion constraints, different restrictions
on the initial and the goal shapes and different control
properties. The contribution of this paper is to propose
a distributed, fully decentralized, asynchronous and par-
allel self-reconfiguration algorithm for 2D Catoms that
can manage almost any kind of initial and final compact
shapes.

4 C2SR Algorithm at a Glance

In this section, we present the general idea of the
Cylindrical-Catoms Self-Reconfiguration (C2SR) algo-
rithm1 that reconfigures a robot composed of modules
from an initial shape I to a goal one G.
Both shapes have to satisfy some admissibility condi-

tions. We provide some intuitions about them in this
paragraph and in Figure 4. A more formal description
of the conditions and their demonstration are left for fu-
ture work. Both shapes are compact, i.e., they do not
contain holes, they are homeomorphic to a sphere. More-
over, both shapes are next to each other and intersect in
one or more bottom cells. Let the peripheral path be the
path formed from the empty cells on the periphery of both
shapes, starting from and ending at the second horizontal
layer (see Figure 4). This path has to be large enough
to allow some modules, which progress along that path
in the same direction with an empty space of at least one
cell between successive modules, to move without violating
our motion constraints and without risking colliding/get-
ting attached with one another (see Figure 4 and Rule 1).
Note that this condition implies that, at the upper lay-
ers, the horizontal space between the initial and the goal
shapes has to be sufficiently large to enable these modules
to move between the two shapes. Furthermore, the num-
ber of 2D Catoms in I has to be greater or at least equal
to the number of target positions in G (i.e., |I| ≥ |G|).

Figure 4: Invalid (on the top) and valid (on the bottom)
initial and goal configurations. Modules in yellow, which
are not part of the initial or the goal shapes, progress along
the peripheral path in the same direction with an empty
space of at least one cell between successive modules. The
configurations on the top are not valid for several reasons.
First, they do not intersect in at least one cell. Second,
they both contain a hole. Third, the peripheral path is not
large enough in locations in red. Indeed, modules in yellow
could not move without violating our motion constraints
and without getting attached with each other.

During the execution of C2SR with shapes individually
composed of only continuous horizontal layers, the goal

1Some examples of self-reconfiguration with C2SR are available
online in video at https://youtu.be/XGnY-oS4Nw0

shape is progressively constructed from the bottom layer
to the top one by stripping the initial shape, module by
module in the reverse order (see Figure 5). Because of
physical constraints, at a given instant, only modules on
the periphery can move. In order to avoid module colli-
sions and deadlocks, peripheral modules form a stream:
modules roll in the same direction d (CW in Figures 1
and 5), and maintain an empty cell between each other
using message exchanges. Modules in the stream do not
overtake each other.

Figure 5: Screenshot during the self-reconfiguration pro-
cess with the initial and goal shapes of Figure 1. Modules
in the stream progress by rotating CW.

A module locally decides to start taking part in the
stream if it satisfies the stream entrance rule (see Rule 2).
Intuitively, a free module enters the stream if moving in
the direction d consists in: moving around a module on the
ground, or descending I, or moving around G, or moving
in G without leaving it and without going up.

Rule 2 (the stream entrance rule) Let us consider
two modules Ci and Cj such that both Ci and Cj are on the
periphery and Cj is the next peripheral neighbor of Ci in
the direction of rotation, d. p′Ci

denotes the position that
Ci would occupy after its rotation around Cj. Ci decides
to take part in the stream if the following logical condition
is satisfied:

stream(Ci) : − free(Ci)

∧ ((pCi
/∈ G ∧ pCj

.y = 0)

∨ (pCi
/∈ G ∧ p′Ci

.y ≤ pCi
.y)

∨ (pCi
/∈ G ∧ pCj

∈ G)

∨ (pCi
∈ G ∧ p′Ci

∈ G ∧ p′Ci
.y ≤ pCi

.y))

A module in the stream decides to move if it satisfies
the stream progression rule (see Rule 3). More precisely,
a module in the stream can move if the set of modules
geographically adjacent to its destination cell contains no
more than three modules and none of them, except the
module itself, belongs to the stream (see Figure 6). This
rule requires local interactions with neighbors adjacent to
its source and destination positions. These modules are
at most two cells away. The admissibility conditions on I
combined with the two rules above, guarantee that these
modules are at most five network hops away.

Rule 3 (the stream progression rule) A module Ci

can move from its position pCi
to the position p′Ci

if the
following condition is satisfied:

progression(Ci) : − stream(Ci)

∧ |NK
p′

Ci

| ≤ 3

∧ ∄Cj ∈ NK
p′

Ci

| Cj 6= Ci ∧ stream(Cj)

Figure 6: Stream progression rule: a simple example.
Modules should rotate CW. White cells are empty and
some of them are labeled with their position in the lattice
(e.g., pa, pb, etc.). Modules C1, C2, C3 and C4 are in the
stream. C3 is moving. C1 cannot move because C2 is in
the stream and C2 ∈ NK

pa
. C2 cannot move because C3 is

in the stream and C3 ∈ NK
pb
. C3 can move to p′C3

because

NK
p′

C3

contains only three modules and none of them is in

the stream, except C3. C4 cannot move because |NK
pe
| = 5.

Rule 3 prevents collisions. The admissibility conditions
on I and G, combined with Rules 2 and 3 prevent dead-
lock. Note that, because of the stripping order and the
construction order, our algorithm also guarantees that at
all time the system remains connected.

Each module checks for convergence using Rule 4 at
the initialization and after every move. A module has
converged if it is initially in a goal position, or if it has
reached G and moving in direction d will cause it to leave
G or to go up.

Rule 4 (the local convergence rule) Let us consider
two modules Ci and Cj such that both Ci and Cj are on
the periphery and Cj is the next peripheral neighbor of
Ci in the direction of rotation. p′Ci

denotes the position
that Ci would occupy after its rotation around Cj. Ci has
converged if it satisfies the following condition:

converged(Ci) : − (pCi
∈ I ∧ pCi

∈ G)

∨ (pCi
∈ G ∧ p′Ci

/∈ G)

∨ (pCi
∈ G ∧ p′Ci

∈ G ∧ p′Ci
.y > pCi

.y)

Applying these rules in a distributed asynchronous sys-
tem with parallel communications and motions is challeng-
ing. It is especially complex to maintain NK sets using
only communications. A complete implementation that
overcomes this challenge is presented in the next section.

5 C2SR Implementation

In this section, we provide a detailed implementation of
C2SR2. Algorithm 1 shows the input and local variables
of C2SR along with its initialization pseudo-code. Every
module knows its position in the lattice, the goal shape, G,
and the rotation direction, d. Algorithm 2 describes some
helper functions used in the description of our implemen-
tation of C2SR. Algorithm 3 provides the message handler
pseudo-code of C2SR. Algorithm 4 gives the pseudo-code
executed by a module after it finishes an atomic move.
We assume that interrupts are disabled during message
and event handler execution.

Input:

pCi
// position of Ci

d ∈ {CW,CCW} // direction of rotation

G // goal shape

Local Variables:

state // state of Ci

Movings // cells from/into which a neighbor module is

moving

Pendings // pending clearance requests

clearance // clearance for the current move (if any)

1 Initialization of Ci:
2 Movings← ∅; Pendings← ∅; clearance←⊥;
3 if pCi

∈ G then

4 state← GOAL;
5 else if isInStream() then

6 state←WAITING;
7 requestClearance();

8 else

9 state← BLOCKED;
10 end

Algorithm 1: C2SR algorithm input, local variables
and initialization detailed for any module Ci.

In our implementation, modules can have different
states: BLOCKED, GOAL, WAITING or MOVING.
WAITING and MOVING modules belong to the stream.
At the initialization and during the execution, modules
locally decide their state using Rules 1, 2 and 4. Modules
in the stream move in rotation direction d around their
peripheral neighbor in the d direction. Before moving,
modules have to ensure that the stream progression rule
(Rule 3) is satisfied. WAITING modules send CLEAR-
ANCE REQUEST messages to get the authorization to
move. Clearance requests are composed of the module
source position and of its destination. These requests
travel around the module destination cell. At each hop,
modules check if the requested move satisfies the stream
progression rule (see Algorithm 3, lines 1-24). If the
stream progression rule is not satisfied the clearance re-
quest either has to be stored locally (see Algorithm 3, lines
6-9) or to be stored at the previous module using a DE-
LAYED CLEARANCE message (see Algorithm 3, lines
2-5, 11-14 and 32-35). If the stream progression rule is
satisfied, the clearance is granted (see Algorithm 3, lines

2The complete source code is available online at https://github.
com/claytronics/visiblesim

1 Function hasConverged():
// The local convergence rule (Rule 4)

2 return converged(Ci);

3 end

4 Function areAdjacentCells(p1, p2):
5 return true if cells at positions p1 and p2 are adjacent in

the hexagonal lattice, false otherwise;

6 end

7 Function opppositeDirection(d):
// d ∈ {CW,CCW}

8 return the opposite direction of d;

9 end

10 Function isFree():
// The freedom of movement rule (Rule 1)

11 return free(Ci) considering both NN
Ci

and Movings;

12 end

13 Function isInStream():
// The stream entrance rule (Rule 2)

14 return stream(Ci) considering both NN
Ci

and Movings;

15 end

16 Function getNeighbor(dir):
17 return the peripheral neighbor in direction dir (see Section

2);

18 end

19 Function getNeighbor(dir, pos):
20 return Ck ∈ N

N
Ci

such that Ci is connected to Ck on the

connected interface that immediately follows the interface
pointing to position pos in direction dir;

21 end

22 Function requestClearance():
23 Ck ← getNeighbor(d);
24 p′Ci

← position after rotation in direction d around Ck;

25 r ← (src← pCi
, dest← p′Ci

, cnt← 0);

26 send CLEARANCE REQUEST(r) to Ck;

27 end

28 Function forwardClearance(c(src, dest), Cj):
29 if areAdjacentCells(c.src, pCi

) then

30 Ck ← getNeighbor(oppositeDirection(d), c.src);
31 if Ck 6= Cj ∧ areAdjacentCells(c.src, pCk

) then

32 send CLEARANCE(c) to Ck;
33 else

34 Movings←Movings ∪ {c.src};
35 send CLEARANCE(c) to Cl | pCl

= c.src;

36 end

37 else if areAdjacentCells(c.dest, pCi
) then

38 Ck ← getNeighbor(oppositeDirection(d), c.dest);
39 send CLEARANCE(c) to Ck;

40 end

41 end

42 Function forwardEndOfMove(c(src, dest), Cj):
43 if areAdjacentCells(c.src, pCi

) then

44 Ck ← getNeighbor(oppositeDirection(d), c.src);
45 if Ck 6= Cj ∧ areAdjacentCells(c.src, pCk

) then

46 send END OF MOVE(c) to Ck;
47 end

48 else if areAdjacentCells(c.dest, pCi
) then

49 Ck ← getNeighbor(oppositeDirection(d), c.dest);
50 send END OF MOVE(c) to Ck;

51 end

52 end

Algorithm 2: C2SR helper functions detailed for any
module Ci.

1 When CLEARANCE REQUEST(r(src, dest, cnt)) is

received by Ci from Cj do:
2 if state = WAITING then

3 send DELAYED CLEARANCE(r) to Cj ;
4 return;

5 end

6 if r.dest ∈Movings then

7 Pendings← Pendings ∪ {r};
8 return;

9 end

10 if state = BLOCKED ∨ state = GOAL then

11 if r.cnt = 3 then

12 send DELAYED REQUEST(r) to Cj ;
13 return;

14 end

15 r.cnt← r.cnt+ 1;

16 end

17 Cn ← getNeighbor(d, r.dest);
18 if Cn 6= Cj ∧ areAdjacentCells(pCn

, r.dest) then

19 send CLEARANCE REQUEST(r) to Cn;
20 else

21 c← (r.src, r.dest);
22 Movings←Movings ∪ {r.dest};
23 forwardClearance(c,⊥);

24 end

25 When CLEARANCE(c(src, dest)) is received by Ci from

Cj do:
26 if c.src = pCi

then

27 clearance← c;
28 send START TO MOVE to Cj ;

29 else

30 forwardClearance(c, Cj);
31 end

32 When DELAYED CLEARANCE(r(src, dest, cnt)) is

received by Ci from Cj do:
33 if r.src 6= pCi

then

34 Pendings← Pendings ∪ {r};
35 end

36 When START TO MOVE is received by Ci from Cj do:
37 send START TO MOVE ACK to Cj ;

38 When START TO MOVE ACK is received by Ci from Cj

do:
39 state← MOVING;
40 Ck ← getNeighbor(d);
41 move around Ck in direction d;

42 When END OF MOVE(c(src, dest)) is received by Ci

from Cj do:
43 Movings←Movings− {c.src, c.dest};
44 forwardEndOfMove(c, Cj);
45 if isInStream() then

46 state←WAITING;
47 requestClearance();

48 else if ∃r ∈ Pendings | r ∈ areAdjacentCells(r.dest, c.src)
then

49 Cn ← getNeighbor(d, r.dest);
50 if areAdjacentCells(r.dest, pCn

) then

51 send CLEARANCE REQUEST(r) to Cn;
52 else

53 cl← (r.src, r.dest);
54 Movings←Movings ∪ {cl.dest};
55 forwardClearance(cl,⊥);

56 end

57 end

Algorithm 3: C2SR algorithm message handler de-
tailed for any module Ci.

1 When Ci has finished to move do:
2 pCi

← clearance.dest;
3 send END OF MOVE(clearance) to getNeighbor(d);
4 clearance← perp;
5 if hasConverged() then

6 state← GOAL;
7 else if isInstream() then

8 state←WAITING;
9 requestClearance();

10 end

Algorithm 4: C2SR algorithm event handler detailed
for any module Ci.

20-24). The clearance is then progressively forwarded back
to the module that initiated the request (see Algorithm 3,
lines 25-31).

To prevent collision, modules maintain a list of neigh-
bor cells from/into which a module is moving. Af-
ter having moved to a new position, modules send an
END OF MOVE (EOM for short) message that is pro-
gressively forwarded around the cell of their previous posi-
tion (see Algorithm 4, line 3 and Algorithm 3, lines 42-57).
Upon reception, of an EOM message, delayed clearances
are potentially re-activated (see Algorithm 3, lines 48-57).

START TO MOVE and START TO MOVE ACK
messages guarantee that no message is lost when a
module decides to actually move (see Algorithm 3, lines
36-41).

Modules never need to communicate with modules far-
ther than two cells away in the lattice, which means that,
due to our requirements, modules never need to send mes-
sages that have to travel more than five hops. Thus, our
algorithm uses only local interactions between modules.

6 Experimental Evaluation

We implemented C2SR in C++ and evaluated it using
VisibleSim [12], a simulator for modular robots. This
section presents our experimental results. Through our
experiments, we show the effectiveness of C2SR and its
efficiency in terms of communications, movements and ex-
ecution time.

VisibleSim enables one to perform simulations with dif-
ferent and variable motion and communication delays.
In our evaluation, we assume that neighboring modules
communicate together using 8-N-1 serial communications.
Hence, we assume the effective bit-rate is equal to 80% of
the link bit-rate. We assume the effective average commu-
nication bit-rate between two neighboring modules follows
a Gaussian distribution. Moreover, we assume the average
motion speed during atomic moves of a 2D Catom also fol-
lows a Gaussian distribution. We do not simulate delays
due to processing and interruptions because we assume
them to be negligible in comparison to communication and
motion delays.

Unless explicitly mentioned, we assume the following
simulation parameters. We consider the effective aver-

age communication bit-rate during message exchanges be-
tween two neighboring modules has a distribution centered
on 38.9 kbps with a standard-deviation of 389 bps (1%
of the mean). Moreover, we assume the average motion
speed during atomic moves of a module has a distribution
centered on 1.88 mm · s−1 with a standard-deviation of
0.0188 mm · s−1 (1% of the mean).

We evaluate C2SR on the self-reconfiguration of random
clumps of 2D Catoms into four kinds of shapes, namely a
car, a flag, a magnet and a pyramid shape (see Figures 1
and 7). For each target shape, we generated different ver-
sions of the goal configurations using different scales rang-
ing from a dozens to ten thousands of modules.

6.1 Effectiveness Evaluation

As shown in Figure 7, C2SR is able to self-reconfigure
ensembles composed of more than 10,000 2D Catoms.

(a) Car (9,644 Catoms). (b) Flag (12,047 Catoms).

(c) Magnet (10,220 Catoms). (d) Pyramid (8,033 Catoms).

Figure 7: Screenshots of VisibleSim at the end of the sim-
ulation of C2SR with different kinds of goal shapes com-
posed of about 10,000 2D Catoms.

6.2 Communication Evaluation

Figure 8 shows the total number of messages sent during
the execution of C2SR according to the size of the goal
shape. For the shapes we considered, the number of mes-
sages seems to depend on the size of the goal configuration
and not on the actual shape of the arrangement. More-
over, the standard-deviation is very small, so small, that
it is not visible on the figure. Thus, for a goal shape of
a given size, C2SR always sends approximately the same
number of messages. Furthermore, as shown in Figure 8
by the curve of best fit y(x) = 20.29x1.53, this number of
messages is highly predictable and increases polynomially
with the size of the goal shape.

102

103

104

105

106

107

108

101 102 103 104 105

y(x) =
 20.29x

1.53

N
u

m
b

e
r

o
f

m
e
s
s
a
g

e
s

Configuration size (2D Catom)

Goal shape
car
flag

magnet
pyramid

Figure 8: Average total number of messages (± standard-
deviation) versus the size of the system for different goal
shapes. For each point, 10 executions were performed.

Figure 9 indicates that a few modules tend to send a
lot more messages than the other modules. Intuitively,
modules that stay at the boundary between I and G are
communication hotspots because many modules have to
communicate with them before rolling over them in order
to reach G (see Figure 13).

101

102

103

104

105

101 102 103 104 105

y(x) = 20.29x
0.53

N
u

m
b

e
r

o
f

m
e
s
s
a
g

e
s
 p

e
r

2
D

 C
a
to

m

Configuration size (2D Catom)

Goal shape
car
flag

magnet
pyramid

Figure 9: Average number of messages sent per 2D Catom
(± min/max) versus the size of the system for different
goal shapes. For each point, 10 executions were performed.

Figure 10 shows the maximum message queue size
reached by the modules during the execution of C2SR,
taking into account both the incoming and the outgoing
messages. The maximum message queue size is constant
and equal to two regardless of the shape of the goal config-
uration and regardless of its size. We recall that messages
generated by C2SR have a small and constant size. As
a consequence, the traffic generated by C2SR is well con-
trolled and modules do not require a lot of memory space
to store incoming and outgoing messages.
Figure 11 shows the average number of hops traveled

by the packets during the execution of C2SR. The average
and the maximum number of hops traveled by the packets
is small and relatively constant regardless of the shape
of the goal configuration and regardless of its size. This
confirms that C2SR only involves local interactions, as
announced in the previous section.

 0

 1

 2

 3

 4

 5

 0 3000 6000 9000 12000 15000

y = 2.00

M
a
x
im

u
m

 m
e
s
s
a
g

e
 q

u
e
u

e
 s

iz
e

Configuration size (2D Catom)

Goal shape
car
flag

magnet
pyramid

Figure 10: Maximum reached message queue size (incom-
ing and outgoing messages) versus the size of the system.
For each point, 10 executions were performed.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 3000 6000 9000 12000 15000

y = 1.99

In
fo

rm
a
ti

o
n

 t
ra

v
e
le

d
 h

o
p

s

Configuration size (2D Catom)

Goal shape
car
flag

magnet
pyramid

Figure 11: Average number of hops data have traveled
(±min/max) versus the size of the system. For each point,
10 executions were performed.

6.3 Motion Efficiency

Figure 12 shows the total number of atomic moves per-
formed during the execution of C2SR according to the
size of the system for different goal shapes. Note that
this figure is really similar to Figure 8. Here again, the
number of atomic moves seems to only depend on the size
of the goal configuration and not to the actual shape of
the arrangement. As shown in Figure 12 by the curve
of best fit y(x) = 2.09x1.53, the number of atomic moves
is highly predictable and increases polynomially with the
size of the goal shape. Notice that the number of messages
is approximately equal to ten times the number of moves
(see Figures 8 and 12). Thus, an atomic move requires in
average 10 messages.

As shown in Figure 13, many modules can move con-
currently during the execution of C2SR. Thus, although
the self-reconfiguration process may require many atomic
moves, it remains reasonably time efficient as shown in the
next subsection.

101

102

103

104

105

106

107

101 102 103 104 105

y(x) =
 2.09x

1.53

N
u

m
b

e
r

o
f

m
o
ti

o
n

s

Configuration size (2D Catom)

Goal shape
car
flag

magnet
pyramid

Figure 12: Average total number of atomic moves
(± standard-deviation) versus the size of the system for
different goal shapes. For each point, 10 executions were
performed.

Figure 13: Screenshot of VisibleSim during a self-
reconfiguration process. Modules in the stream progress
by rotating CW. Blocked modules are in gray, waiting
ones in yellow, moving ones in red and modules that have
converged are in green.

6.4 Execution Time Efficiency

Figure 14 shows the average simulated time of C2SR exe-
cution according to the size of the system. For the different
goal shapes we considered, this time seems to only depend
on the size of the configuration and not to the actual shape
of the arrangement. Moreover, the standard-deviation is
very small and not visible on the figure. Thus, for goal
shape of a given size, C2SR always approximately lasts
the same duration. As shown in Figure 14 by the curve
of best fit y(x) = 0.017x + 0.149, the simulated time is
highly predictable and increases linearly with the size of
the goal shape. The slope of the line gives the reconfigu-
ration speed: C2SR fills on average 1

0.017
≈ 59 goal cells

per minute.
Figure 15 shows the average simulated time of C2SR ex-

ecution according to the average communication bit-rate
for the two different motion speeds supported by the 2D
Catoms. We consider the usual bit-rates of serial com-
munications. We conducted this experiment for the car
goal shape composed of 1,073 modules. Until 38.9 kbps,
the self-reconfiguration process becomes much more faster
as the average communication bit-rate increases. Be-
yond 38.9 kbps, the self-reconfiguration speed increases
less quickly and tends to stabilize.

 0

 50

 100

 150

 200

 250

 0 3000 6000 9000 12000 15000

y(x
) =

 0
.0

17x+0.1
49

S
im

u
la

te
d

 t
im

e
 (

m
in

)

Configuration size (2D Catom)

Goal shape
car
flag

magnet
pyramid

Figure 14: Average simulated time (± standard-deviation)
versus the size of the system for different goal shape. For
each point, 10 executions were performed.

 10

 100

 1000

 10000

 0 20 40 60 80 100 120

S
im

u
la

te
d

 T
im

e
 (

m
in

)

Bit-rate (kbps)

Motion speed
0.94 mm⋅s-1

1.88 mm⋅s-1

Figure 15: Average simulated time (± standard-deviation)
versus the communication bit-rate (random initial config-
uration to the car of 1, 073 2D Catoms). For each point,
10 executions were performed.

7 Conclusion

We have proposed Cylindrical-Catoms Self-
Reconfiguration (C2SR), a parallel, asynchronous
and fully decentralized distributed algorithm to self-
reconfigure lattice-based MSR from an initial shape to a
goal one.

The evaluation of C2SR has been conducted with real
executions under a simulated physical environment (Vis-
ibleSim). These simulations show our algorithm to have
nice properties.

The time for reconfiguration is linear in the number of
modules and this time is predictable and seems to only
depends on the number of modules. The number of mes-
sages sent is also predictable such that added with the
number of movements, it can give an estimate of the power
consumption of the algorithm. Communications are local
such that no routing protocol is needed and the message
queue of each module is always bounded by two on our
simulation. The needed bandwidth is reasonable, as it
uses less than 40 kbps on one example without slowing

down the reconfiguration process.

8 Future Work

In future works, we will demonstrate the correctness of
C2SR, i.e., we will prove that the goal configuration can
be built if the shape admissibility conditions are satis-
fied. Moreover, we will study the performance of C2SR
on other types of shapes and compare it to existing algo-
rithms. We will also study the distribution of both the
number of messages sent per module and the number of
atomic moves performed per module. Our observations
seem to indicate that our algorithm is highly predictable
and that its execution time is linear to the size of the goal
shape. A further step would be to prove it. Furthermore,
we would like to reduce the memory usage of our algo-
rithm induced by the storage of the goal shape represen-
tation. Indeed, hardware modules have limited memory
capacity and cannot afford to store the complete repre-
sentation of large goal shapes [3, 20, 19]. We envision two
approaches to address this storage limitation, namely to
use a compressed representation of the goal shape and/or
to disseminate and share the representation of the goal
shape between all modules [3].

Acknowledgments

This work has been funded by the Labex ACTION pro-
gram (contract ANR-11-LABX-01-01) and ANR/RGC
(contracts ANR-12-IS02-0004-01 and 3-ZG1F) and ANR
(contract ANR-2011-BS03-005).

References

[1] Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela
Rus, Mark Moll, Hod Lipson, Eric Klavins, and Gre-
gory S Chirikjian. Modular self-reconfigurable robot
systems [grand challenges of robotics]. IEEE Robotics
& Automation Magazine, 14(1):43–52, 2007.

[2] Seth Copen Goldstein and Todd C. Mowry. Claytron-
ics: An instance of programmable matter. In Wild
and Crazy Ideas Session of ASPLOS, Boston, MA,
October 2004.

[3] Julien Bourgeois, Benoit Piranda, André Naz,
Hicham Lakhlef, Nicolas Boillot, Hakim Mabed,
Dominique Douthaut, and Thadeu Tucci. Pro-
grammable matter as a cyber-physical conjugation.
In Proceedings of the IEEE International Conference
on Systems, Man and Cybernetics, Budapest, Hun-
gary, October 2016. IEEE.

[4] Hicham Lakhlef, Hakim Mabed, and Julien Bour-
geois. Distributed and dynamic map-less self-
reconfiguration for microrobot networks. In Network

Computing and Applications (NCA), 2013 12th IEEE
International Symposium on, pages 55–60. IEEE,
2013.

[5] M. Park, S. Chitta, A. Teichman, and M. Yim. Au-
tomatic configuration methods in modular robots.
International Journal for Robotics Research, 27(3-
4):403–421, March/April 2008.

[6] Jerome Barraquand and Jean-Claude Latombe.
Robot motion planning: A distributed representation
approach. The International Journal of Robotics Re-
search, 10(6):628–649, 1991.

[7] Feili Hou and Wei-Min Shen. Graph-based opti-
mal reconfiguration planning for self-reconfigurable
robots. Robotics and Autonomous Systems,
62(7):1047 – 1059, 2014.

[8] Kasper Stoy and Haruhisa Kurokawa. Current top-
ics in classic self-reconfigurable robot research. In
Proceedings of the IROS Workshop on Reconfigurable
Modular Robotics: Challenges of Mechatronic and
Bio-Chemo-Hybrid Systems, 2011.

[9] Benoit Piranda and Julien Bourgeois. A dis-
tributed algorithm for reconfiguration of lattice-based
modular self-reconfigurable robots. In PDP 2016,
24th Euromicro Int. Conf. on Parallel, Distributed,
and Network-Based Processing, pages 1–9, Heraklion
Crete, Greece, feb 2016. IEEE.

[10] Mustafa Emre Karagozler, Seth Copen Goldstein,
and J. Robert Reid. Stress-driven mems assembly
+ electrostatic forces = 1mm diameter robot. In
Proceedings of the IEEE International Conference on
Intelligent Robots and Systems (IROS ’09), October
2009.

[11] Mustafa Emre Karagozler. Design, Fabrication and
Characterization of an Autonomous, Sub-millimeter
Scale Modular Robot. PhD thesis, Carnegie Mellon
University, 2012.

[12] Dominique Dhoutaut, Benôıt Piranda, and Julien
Bourgeois. Efficient simulation of distributed sensing
and control environments. In iThings 2013, IEEE Int.
Conf. on Internet of Things, pages 452–459, Beijing,
China, August 2013.

[13] Benoit Piranda. Visiblesim: Your simulator for
programmable matter. In Sándor Fekete, Andréa
Richa, Kay Römer, and Christian Scheideler, edi-
tors, Algorithmic Foundations of Programmable Mat-
ter (Dagstuhl Seminar 16271), May 2016.

[14] Stanislav Funiak, Padmanabhan Pillai, Michael P.
Ashley-Rollman, Jason D. Campbell, and Seth Copen
Goldstein. Distributed localization of modular robot
ensembles. International Journal of Robotics Re-
search, 28(8):946–961, 2009.

[15] Moffo Dermas, Philippe Canalda, and François Spies.
First evaluation of a system of positioning of micro-
robot with ultra-dense distribution. In IPIN 2016,
International Conference on Indoor Positioning and
Indoor Navigation. IEEE, October 2016.

[16] Jennifer E Walter, Jennifer L Welch, and Nancy M
Amato. Distributed reconfiguration of metamorphic
robot chains. In Proceedings of the nineteenth annual
ACM symposium on Principles of distributed comput-
ing, pages 171–180. ACM, 2000.

[17] Jennifer E Walter, Elizabeth M Tsai, and Nancy M
Amato. Algorithms for fast concurrent reconfigura-
tion of hexagonal metamorphic robots. IEEE trans-
actions on Robotics, 21(4):621–631, 2005.

[18] J Bateau, A Clark, K McEachern, E Schutze, and
J Walter. Increasing the efficiency of distributed
goal-filling algorithms for self-reconfigurable hexago-
nal metamorphic robots. In Proceedings of the In-
ternational Conference on Parallel and Distributed
Techniques and Applications, pages 509–515, 2012.

[19] Hicham Lakhlef, Julien Bourgeois, Hakim Mabed,
and Seth Copen Goldstein. Energy-aware paral-
lel self-reconfiguration for chains microrobot net-
works. Journal of Parallel and Distributed Comput-
ing, 75:67–80, 2015.

[20] Hicham Lakhlef and Julien Bourgeois. Fast and
robust self-organization for micro-electro-mechanical
robotic systems. Computer Networks, 93:141–152,
2015.

[21] Stanton Wong and Jennifer Walter. Deterministic
distributed algorithm for self-reconfiguration of mod-
ular robots from arbitrary to straight chain configu-
rations. In Robotics and Automation (ICRA), 2013
IEEE International Conference on, pages 537–543.
IEEE, 2013.

[22] S Wong, S Zhu, and J Walter. Unpacking a clus-
ter of modular robots. In Proceedings of the Inter-
national Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA), page
103. WorldComp, 2015.

[23] Michael De Rosa, Seth Goldstein, Peter Lee, Ja-
son Campbell, and Padmanabhan Pillai. Scalable
shape sculpting via hole motion: Motion planning
in lattice-constrained modular robots. In Proceedings
2006 IEEE International Conference on Robotics and
Automation, 2006. ICRA 2006., pages 1462–1468.
IEEE, 2006.

[24] Michael Rubenstein, Alejandro Cornejo, and Radhika
Nagpal. Programmable self-assembly in a thousand-
robot swarm. Science, 345(6198):795–799, 2014.

[25] Michael Rubenstein, Christian Ahler, and Radhika
Nagpal. Kilobot: A low cost scalable robot system
for collective behaviors. In Robotics and Automa-
tion (ICRA), 2012 IEEE International Conference
on, pages 3293–3298. IEEE, 2012.

