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CHEBYSHEV’S BIAS AND GENERALIZED

RIEMANN HYPOTHESIS

ADEL ALAMADHI∗, MICHEL PLANAT†, AND PATRICK SOLÉ‡,∗

Abstract. It is well known that li(x) > π(x) (i) up to the (very large)
Skewes’ number x1 ∼ 1.40 × 10316 [1]. But, according to a Littlewood’s

theorem, there exist infinitely many x that violate the inequality, due to
the specific distribution of non-trivial zeros γ of the Riemann zeta function

ζ(s), encoded by the equation li(x) − π(x) ≈
√

x

log x
[1 + 2

∑
γ

sin(γ log x)
γ

] (1).

If Riemann hypothesis (RH) holds, (i) may be replaced by the equivalent
statement li[ψ(x)] > π(x) (ii) due to Robin [2]. A statement similar to (i)
was found by Chebyshev that π(x; 4, 3) − π(x; 4, 1) > 0 (iii) holds for any
x < 26861 [3] (the notation π(x; k, l) means the number of primes up to
x and congruent to l mod k). The Chebyshev’s bias (iii) is related to the
generalized Riemann hypothesis (GRH) and occurs with a logarithmic den-
sity ≈ 0.9959 [3]. In this paper, we reformulate the Chebyshev’s bias for a
general modulus q as the inequality B(x; q,R) − B(x; q, N) > 0 (iv), where
B(x; k, l) = li[φ(k) ∗ ψ(x; k, l)] − φ(k) ∗ π(x; k, l) is a counting function intro-
duced in Robin’s paper [2] and R( resp. N) is a quadratic residue modulo q
(resp. a non-quadratic residue). We investigate numerically the case q = 4
and a few prime moduli p. Then, we proove that (iv) is equivalent to GRH
for the modulus q.

1. Introduction

In the following, we denote π(x) the prime counting function and π(x; q, a) the
number of primes not exceeding x and congruent to a mod q. The asymptotic law
for the distribution of primes is the prime number theorem π(x) ∼ x

log x . Corre-

spondingly, one gets [4, eq. (14), p. 125]

(1.1) π(x; q, a) ∼ π(x)

φ(q)

that is, one expects the same number of primes in each residue class a mod q, if
(a, q) = 1. Chebyshev’s bias is the observation that, contrarily to expectations,
π(x; q,N) > π(x; q, R) most of the times, when N is a non-square modulo q, but R
is.

Let us start with the bias

(1.2) δ(x, 4) := π(x; 4, 3)− π(x; 4, 1)

found between the number of primes in the non-quadratic residue class N = 3
mod 4 and the number of primes in the quadratic one R = 3 mod 4. The values
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δ(10n, 4), n ≤ 1, form the increasing sequence

A091295 = {1, 2, 7, 10, 25, 147, 218, 446, 551, 5960, . . .}.

The bias is found to be negative in thin zones of size

{2, 410, 15 358, 41346, 42 233 786, 416 889 978, . . .}

spread over the location of primes of maximum negative bias [5]

{26861, 623 681, 12 366 589, 951 867 937, 6 345 026 833, 18 699 356 321 . . .}.

It has been proved that there are are infinitely many sign changes in the Cheby-
shev’s bias (1.2). This follows from the Littlewood’s oscillation theorem [6, 7]

(1.3) δ(x, 4) := Ω±

(

x1/2

log x
log3 x

)

.

A useful measure of the Chebyshev’s bias is the logarithmic density [3, 6, 8]

(1.4) d(A) = lim
x→∞

1

log x

∑

a∈A,a≤x

1

a

for the positive ∆+ and negative ∆− regions calculated as d(∆+) = 0.9959 and
d(∆−) = 0.0041.

In essence, Chebyshev’s bias δ(x, 4) is similar to the bias

(1.5) δ(x) := Li(x)− π(x).

It is known that δ(x) > 0 up to the (very large) Skewes’ number x1 ∼ 1.40× 10316

but, according to Littlewood’s theorem, there also are infinitely many sign changes
of δ(x) [7].

The reason why the asymmetry in (1.5) is so much pronounced is encoded in the
following approximation of the bias [3, 9]1

(1.6) δ(x) ∼
√
x

log x

(

1 + 2
∑

γ

sin(γ log x+ αγ)
√

1/4 + γ2

)

,

where αγ = cot−1(2γ) and γ is the imaginary part of the non-trivial zeros of the
Riemann zeta function ζ(s). The smallest value of γ is quite large, γ1 ∼ 14.134,
and leads to a large asymmetry in (1.5).

Under the assumption that the generalized Riemann hypothesis (GRH) holds
that is, if the Dirichlet L-function with non trivial real character κ4

(1.7) L(s, κ4) =
∑

n≥0

(−1)n

(2n+ 1)s
,

has all its non-trivial zeros located on the vertical axis ℜ(s) = 1
2 , then the formula

(1.6) also holds for the Chebyshev’s bias δ(x, 4). The smallest non-trivial zero of
L(s, κ4) is at γ1 ∼ 6.02, a much smaller value than than the one corresponding to
ζ(s), so that the bias is also much smaller.

1The bias may also be approached in a different way by relating it to the second order Landau-
Ramanujan constant [10].
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A second factor controls the aforementionned assymmetry of a L-function of real
non-trivial character κ, it is the variance [11]

(1.8) V (κ) =
∑

γ>0

2

1/4 + γ2
.

For the function ζ(s) and L(s, κ4) one gets V = 0.045 and V=0.155, respectively.

Our main goal. In a groundbreaking paper, Robin reformulated the unconditional
bias (1.5) as a conditional one involving the second Chebyshev function ψ(x) =
∑

pk≤x log p

(1.9) The equality δ′(x) := li[ψ(x)] − π(x) > 0 is equivalent to RH.

This statement is given as Corollary 1.2 in [12] and led the second and third author
of the present work to derive a good prime counting function

(1.10) π(x) =

3
∑

n=1

µ(n)li[ψ(x)1/n].

Here, we are interested in a similar method to regularize the Chebyshev’s bias
in a conditional way similar to (1.9). In [2], Robin introduced the function

(1.11) B(x; q, a) = li[φ(q)ψ(x; q, a)] − φ(q)π(x; q, a),

that generalizes (1.9) and applies it to the residue class a mod q, with ψ(x, q, a) the
generalized second Chebyshev’s function. Under GRH he proved that [2, Lemma
2, p. 265]

(1.12) B(x; q, a) = Ω±

( √
x

log2 x

)

,

that is

(1.13) The inequality B(x; q, a) > 0 is equivalent to GRH.

For the Chebyshev’s bias, we now need a proposition taking into account two
residue classes such that a = N(a non-quadratic residue) and a = R (a quadratic
one).

Proposition 1.1. Let B(x; q, a) be the Robin B-function defined in (1.11), and R
(resp. N) be a quadratic residue modulo q (resp. a non-quadratic residue), then
the statement δ′(x, q) := B(x; q, R)− B(x; q,N) > 0, ∀x (i), is equivalent to GRH
for the modulus q.

The present paper deals about the numerical justification of proposition 1.1 in
Sec. 2 and its proof in Sec. 3. The calculations are performed with the soft-
ware Magma [13] available on a 96 MB segment of the cluster at the University of
Franche-Comté.

2. The regularized Chebyshev’s bias

All over this section, we are interested in the prime champions of the Chebyshev’s
bias δ(x, q) (as defined in (1.2) or (2.3), depending on the context). We separate
the prime champions leading to a positive/negative bias. Thus, the n-th prime
champion satisfies

(2.1) δ(ǫ)(xn, q) = ǫn, ǫ = ±1.
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-40 -20 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

Figure 1. The normalized regularized bias δ′(x, 4)/
√
x versus

the Chebyshev’s bias δ(x, 4) at the prime champions of δ(x, 4)
(when δ(x, 4) > 0) and at the prime champions of −δ(x, 4) (when
δ(x, 4) < 0). The extremal prime champions in the plot are
x = 359327 (with δ = 105) and x = 951867937 (with δ = −48).
The curve is asymmetric around the vertical axis, a fact that re-
flects the asymmetry of the Chebyshev’s bias. As explained in the
text, a violation of GRH would imply a negative value of the regu-
larized bias δ′(x, 4). The small dot curve corresponds to the fit of
δ′(x, 4)/

√
x by 2/ logx calculated in Sec. 3.

We also introduce a new measure of the overall bias b(q), dedicated to our plots, as
follows

(2.2) b(q) =
∑

n,ǫ

δ(ǫ)(xn, q)

xn
.

Indeed, smaller is the bias lower is the value of b(q). Anticipating over the results
presented below, Table 1 summarize the calculations.

Table 1. The new bias (2.2) (column 2) and the standard loga-
rithmic density (1.4) (column 3).

modulus q bias b(q) log density d(∆+) first zero γ1

4 0.7926 0.9959 [3] 14.134

11 0.1841 0.9167 [3] 0.2029

13 0.2803 0.9443 [3] 3.119

163 0.0809 0.55 [9] 2.477
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Chebyshev’s bias for the modulus q = 4. As explained in the introduction,
our goal in this paper is to reexpress a standard Chebyshev’s bias δ(x, q) into
a regularized one δ′(x, q), that is always positive under the condition that GRH
holds. Indeed we do not discover any numerical violation of GRH and we always
obtains a positive δ′(x, q). The asymmetry of Chebyshev’s bias arises in the plot
δ vs δ′, where the fall of the normalized bias δ√

x
is faster for negative values of δ

than for positive ones. Fig. 1 clarifies this effect for the historic modulus q = 4.
We restricted our plot to the champions of the bias δ and separated positive and
negative champions.

Chebyshev’s bias for a prime modulus p. For a prime modulus p, we define the
bias so as to obtain an averaging over all differences π(x; p,N)− π(x; p,R), where
as above N and R denote a non-quadratic and a quadratic residue, respectively

(2.3) δ(x, p) = −
∑

a

(

a

p

)

π(x; p, a),

where
(

a
p

)

is the Legendre symbol. Correspondingly, we define the regularized bias
as

(2.4) δ′(x, p) =
1

⌊p/2⌋
∑

a

(

a

p

)

B(x; p, a).

Proposition 2.1. Let p be a selected prime modulus and δ′(x, p) as in (2.4) then
the statement δ′(x, p) > 0, ∀x, is equivalent to GRH for the modulus p.

As mentioned in the introduction, the Chebyshev’s bias is much influenced by
the location of the first non-trivial zero of the function L(s, κq), κq being the real
non-principal character modulo q. This is especially true for L(s, κ163) with its
smaller non-trivial zero at γ ∼ 0.2029 [9]. The first negative values occur at
{15073, 15077, 15083, . . .}.

Fig. 2 represents the Chebyshev’s bias δ′ for the modulus q = 163 versus the
standard one δ (thick dots). Tha asymmetry of the Chebyshev’s bias is revealed at
small values of |δ| where the the fit of the regularized bias by the curve 2/ logx is
not good (thin dots).

For the modulus q = 13, the imaginary part of the first zero is not especially
small, γ1 ∼ 3.119, but the variance (1.8) is quite high, V (κ−13) ∼ 0.396. The first
negative values of δ(x, 13) at primes occur when {2083, 2089, 10531, . . .}. Fig. 3
represents the Chebyshev’s bias δ′ for the modulus q = 13 versus the standard one
δ (thick dots) as compared to the fit by 2/ logx (thin dots).

Finally, for the modulus q = 11, the imaginary part of the first zero is quite
small, γ1 ∼ 0.209, and the variance is high, V (κ−11) ∼ 0.507. In such a case, as
shown in Fig. 4, the approximation of the regularized bias by 2/ logx is good in
the whole range of values of x.

3. Proof of proposition 1.1

For approaching the proposition 1.1 we reformulate it in a simpler way as

Proposition 3.1. One introduces the regularized couting function π′(x; q, l) :=
π(x; q, l)−ψ(x; q, l)/ log x. The statement π′(x; q,N) > π′(x; q, R), ∀x (ii), is equiv-
alent to GRH for the modulus q.
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Figure 2. The normalized regularized bias δ′(x, 163)/
√
x ver-

sus the Chebyshev’s bias δ(x, 163) at all the prime champions of
|δ(x, 163)| [from |δ(x, 163)| > 74 the bias is δ(x, 163) < 0 negative],
superimposed to the curve at the prime champions of −δ(x, 163)
(when δ(x, 163) < 0). The extremal prime champions in the plot
are x = 68491 (with δ = 74) and x = 174637 (with δ = −86).
The asymmetry is still clearly visible in the range of small values
of |δ| but tends to disappear in the range of high values of |δ|. The
small dot curve corresponds to the fit of δ′(x, 163)/

√
x by 2/ logx

calculated in Sec. 3.

Proof. First observe that proposition 1.1 follows from proposition 3.1. This is
straightforward because according to [2, p. 260], the prime number theorem for
arithmetic progressions leads to the approximation

(3.1) li[φ(q)ψ(x; q, l)] ∼ li(x) +
φ(q)ψ(x; q, l) − x

log x
.

As a result

δ′(x, q) = B(x; q, R)−B(x; q,N)

= li[φ(q)ψ(x; q, R)] − li[φ(q)ψ(x; q,N)] + φ(q)δ(x, q)

∼ φ(q)[π′(x; q,N)− π′(x; q, R)].

The asymtotic equivalence in (3.1) holds up to the error term [2, p. 260] O( R(x)
x log x ),

with

R(x) = min
(

xθq log2 x, xe−a
√
log x

)

, a > 0,

θq = maxκ mod q(supℜ(ρ), ρ a zero of L(s, κ)).

Let us now look at the statement GRH ⇒ (i). Following [3, p 178-179], one has

ψ(x; q, a) =
1

φ(q)

∑

κ mod q

κ̄(a)ψ(x, κ)
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Figure 3. The normalized regularized bias δ′(x, 13)/
√
x versus

the Chebyshev’s bias δ(x, 13) at the prime champions of δ(x, 13)
(when δ(x, 13) > 0), and the curve at the prime champions of
−δ(x, 13) (when δ(x, 13) < 0). The extremal prime champions in
the plot are x = 263881 (with δ = 123) and x = 905761 (with δ =
−40). The small dot curve corresponds to the fit of δ′(x, 13)/

√
x

by 2/ logx calculated in Sec. 3.
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Figure 4. The normalized regularized bias δ′(x, 11)/
√
x versus

the Chebyshev’s bias δ(x, 11) at the prime champions of δ(x, 11)
(when δ(x, 11) > 0), and the curve at the prime champions of
−δ(x, 11) (when δ(x, 11) < 0). The extremal prime champions in
the plot are x = 638567 (with δ = 158) and x = 1867321 (with
δ = −32).The small dot curve corresponds to the (very good) fit
of δ′(x, 11)/

√
x by 2/ logx calculated in Sec. 3.
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and under GRH

π(x; q, a) =
π(x)

φ(q)
− c(q, a)

φ(q)

√
x

log x
+

1

φ(q) log x

∑

κ 6=κ0

κ̄(a)ψ(x, κ) +O(

√
x

log2 x
),

where κ0 is the principal character modulo q and

c(q, a) = −1 + #{1 ≤ b ≤ q : b2 = a mod q}
for coprimes integers a and q. Note that for an odd prime q = p, one has c(p, a) =
(

a
p

)

.

Thus, under GRH

π(x; q,N)− π(x; q, R) = 1
φ(q) log x [

√
x(c(q, R)− c(q,N))

+
∑

κ mod q(κ̄(N)− κ̄(R))ψ(x, κ) +O(
( √

x
log2 x

)

].(3.2)

The sum could be taken over all characters because κ̄0(N) = κ̄0(R). In addition,
we have

(3.3) ψ(x; q,N)− ψ(x; q, R) =
1

φ(q)

∑

κ mod q

[κ̄(N)− κ̄(R)]ψ(x, κ).

Using (3.2) and (3.3) the regularized bias reads

δ′(x, q) ∼ π′(x; q,N)− π′(x; q, R)

=
√
x

log x [c(q, R)− c(q,N)] +O
( √

x
log2 x

)

.(3.4)

For the modulus q = 4, we have c(q, 1) = −1 + 2 = 1 and c(q, 3) = −1 so that

δ′(x, 4) = 2
√
x

log x The same result is obtained for a prime modulus q = p since

c(p,N) = −1 and c(p,R) = c(p, 1) =
(

1
p

)

= 1.

This finalizes the proof that under GRH, one has the inequality π′(x; q,N) >
π′(x; q, R).

If GRH does not hold, then using [2, lemma 2], one has

B(x; q, a) = Ω±(x
ξ) for any ξ < θq.

Applying this assymptotic result to the residue classes a = R and a = N , there
exist infinitely many values x = x1 and x = x2 satisfying

B(x1; q, R) < −xξ1 and B(x2; q,N) > xξ2 for any ξ < θq,

so that one obtains

(3.5) B(x1; q, R)−B(x2; q,N) < −xξ1 − xξ2 < 0.

Selecting a pair (x1, x2) either

B(x1; q, R) > B(x2; q, R)

so that B(x2; q, R)−B(x2; q,N) < 0 and (i) is violated at x2, or

(3.6) B(x1; q, R) < B(x2; q, R).

In the last case, either B(x1; q,N) > B(x2; q,N), so that B(x1; q, R)−B(x1; q,N) <
0 and the inequality (i) is violated at x1, or simultaneously

B(x1; q,N) < B(x2; q,N) and B(x1; q, R) < B(x2; q, R),

which implies (3.5) and the violation of (i) at x = x1 = x2.
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To finalize the proof of 3.1, and simultaneously that of 1.1, one makes use of the
asymptotic equivalence of (i) and (ii), that is if GRH is true ⇒ (ii) ⇒ (i), and if
GRH is wrong, (i) may be violated and (ii) as well.

Then, proposition 2.1 also follows as a straigthforward consequence of proposition
1.1.

�

n

4. Summary

We have found that the asymmetry in the prime counting function π(x; q, a)
between the quadratic residues a = R and the non-quadradic residues a = N for the
modulus q can be encoded in the function B(x; q, a) [defined in (1.11)] introduced
by Robin the context of GRH [2], or into the regularized prime counting function
π′(x; q, a), as in Proposition 3.1. The bias in π′ reflects the bias in π conditionaly
under GRH for the modulus q. Our conjecture has been initiated by detailed
computer calculations presented in Sec. 2 and proved in Sec. 3. Further work
could follow the work about the connection of π, and thus of π′, to the sum of
squares function r2(n) [10].
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