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We study the mechanism of wrinkling of suspended graphene, by means of atomistic simulations.
We argue that the structural instability under edge compression is the essential physical reason for
the formation of periodic ripples in graphene. The ripple wavelength and out-of-plane amplitude
are found to obey 1/4-power scaling laws with respect to edge compression. Our results also show
that parallel displacement of the clamped boundaries can induce periodic ripples, with oscillation
amplitude roughly proportional to the 1/4 power of edge displacement. The results are fundamental
to graphene’s applications in electronics.

Graphene’s unique electronic properties makes it ideal
candidate for integrated circuits component. Theoreti-
cally, conduction in a perfectly flat graphene sheet can be
ballistic, despite what observed experimentally is quite
different. This is because that ripples are manifested1–3

by developing a band gap, introducing additional effec-
tive magnetic fields.4 Hence, understanding the rippling
mechanisms is crucial for applications of graphene in na-
noelectronics. Recently, it is reported that the ripple
structure can be controlled by thermal treatment.5 This
brings out a straightforward way to the band gap en-
gineering of graphene.6 Some relevant theoretical works
have attempted to study this rippling using molecular dy-
namics (MD), simulating suspended graphene under ax-
ial compression at different temperatures.7 Graphene rip-
pling by thermal treatment is known to be related to its
negative thermal expansion coefficient (TEC),7,8 and its
membrane-natured mechanical properties.9,10 However,
the intrinsic mechanism responsible for the periodic rip-
pling of suspended graphene is not fully understood.

From a mechanical point of view, there are in general
two ways to induce periodic ripples in a suspended thin
film: 1 Stretching in the axial direction which is perpen-
dicular to the fixed boundaries, or, 2 Compression of the
fixed edges in the lateral direction.11 Here we focus on
the later case (so-called edge contraction), in view of the
experimental observation of Bao et al., which shows bi-
axial compression of graphene after annealing.5 We show
the origin of edge compression due to heat treatment in
Fig.1 (a): During heating, a difference in thermal defor-
mation is created between the suspended graphene and
the substrates, due to their different TEC. The graphene
is stretched by the friction force given by the expand-
ing substrate during the heating process. When, on the
contrary, the system is cooling down, compressive force
will be applied to the fixed boundaries from the interface.
The deformation of the graphene boundaries becomes ir-
reversible, because graphene exhibits high structure in-
stability under in-plane compression.12

In our MD simulation, we start with a graphene sheet
suspended between two parallel supports, with an in-
plane compressive strain imposed on its two edges fixed
on substrate. The equations of motion are integrated by

FIG. 1: (Color online) (a) Schematic of edge compression
of suspended graphene after heating and cooling. (b) Topo-
graphic diagram of edge-compression-induced periodic ripples
in a graphene sheet (w×L = 13nm×5nm). Color scale shows
the height profile (position along z axis).

the Verlet algorithm with a time step of 1 fs. The system
consists of 1000 − 20000 atoms. A Nosé-Hoover ther-
mostat is used to help the system to reach equilibrium
at 300 K in the first 500000 simulation steps. We let
the system progressively reach further equilibrium in the
next 500000 steps without manual thermal control. Fur-
ther details about the simulation techniques can be found
elsewhere.13 We note that the compressive strain is ap-
plied on the fixed edges along the direction parallel to
the trench, in order to generate ripples in experimentally
observed direction. This makes the rippling orientation
studied in this work perpendicular to that simulated in
the relevant work of Abedpour et al..7 We also note that
the here-simulated ripples are different from the intrinsic
ones due to thermal fluctuation, which were found to dis-
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tribute randomly over the surface with height variation
down to the atomic level.14

The total interatomic potential involves many-body
terms,15 as a collection of that of individual bonds,

Up =
1

2

N∑
i=1

N∑
j=1
j 6=i

[
ϕR (ri,j)− bi,jϕA (ri,j) + ϕLJ (ri,j) +

N∑
k=1
k 6=i,j

N∑̀
=1

` 6=i,j,k

ϕtorkij`

]

(1)
where ϕR and ϕA are the interatomic repulsion and at-
traction terms between valence electrons, respectively, for
bound atoms. The long-range interactions are included
by adding ϕLJ , a parameterized Lennard-Jones 12-6 po-
tential term. ϕtor is a single-bond torsion term. The
bond order function bij includes the many body effects,

bij =
1

2

(
bσ−πij + bσ−πji + bRCji + bDHji

)
(2)

where bσ−πij depends on the atomic distance and bond

angle, bRCji represents the influence of bond conjugation.

bDHji is a dihedral-angle term for double bonds. This po-
tential is an extension of the second generation of reactive
empirical bond-order (REBO) model.16 The derivatives
of −Up (force components) are analytically computed.
This semi-empirical approach has recently been used in
many simulation works on the structural properties of
carbon nanotube (CNTs) and graphene (e.g. Refs.12,17–
20). It has also been used in one of our previous studies
for investigating the nonlinear elasticity of CNTs,21 in
which we obtained quantitative agreement between the
AIREBO-calculated Young’s modulus of CNTs and that
from ab-initio calculations. Compared to first-principle
methods, an important feature of this empirical potential
is its ability to deal with large systems. This is particu-
larly important in case that the number of atoms cannot
be reduced by using periodic condition.

Fig.2a shows an example of how the system attains
thermodynamic equilibrium during the simulation, de-
picting temperature and energy variations. We observe
significant thermal fluctuations at the beginning of sim-
ulation. During the thermal equilibrium phase, the tem-
perature fluctuation is reduced from 150K to about 20K,
which corresponds to the inter-atomic potential energy
variation from 20 to 2.5 meV/atom. The simulation re-
sult is taken as the average atomic configuration over
the production phase. The resulting ripples are in well-
ordered periodic wave shape (e.g. Fig.1b), however, ran-
dom disorder due to intrinsic thermal perturbation can
be observed at any given instant during the simulation
(Fig.2b). This is in agreement with the Monte-Carlo sim-
ulation results of Ref.14.

The maximum number of atoms which can be simu-
lated by our MD code is around 20000, which is already
a large number in the atomic simulation world. How-
ever, the graphene size used in experiments can be up

FIG. 2: (Color online) (a) Temperature and potential energy
variations during a simulation for the graphene shown in Fig.1
(b). (b) Snapshot of the system at an arbitrary instant during
the production phase.

to 106 times larger. It is therefore important to under-
stand the influence of graphene size on the ripple struc-
ture. In Fig.3(a) we show the atomic configuration of
a graphene sheet submitted to edge compressive strain
ε = ∆w/w = 0.05. An interesting phenomenon observed
in this figure is that the waves tend to merge into each
other when they propagate from the edge to the center.
e.g. 6 wave undulations can be observed near the edge
(solid line in Fig.3(a), while only 2 are left in the sheet
middle (dashed line). Also, it is found that the wave am-
plitude in the middle is larger than that near the edges.

To show the size effect, we plot in Fig.3(b) the height
profile of ripple shape at the middle of three graphene
sheets with different length L. We can see that, for a
given edge contraction, the wavelength λ and amplitude
A increase with L. As a consequence, the ripples wave
become less dense in the graphene middle and the wave
form is changed. We find that the oscillation amplitude
becomes about 4 times larger for the sheet 5 times longer.
According to an analysis using the Föppl von Kármán
equations,10 the wavelength and the out-of-plane dis-
placement in the region far away from the clamped
boundaries should be roughly proportional to

√
L. In

our simulation we observed that A and λ both increase
with L. The exactly linear dependence on

√
L is however

not clearly shown, due to the fact that our graphene is
not large enough. To show the full length dependence
of the ripples, large-scale modeling approaches such as
finite-element simulations are required for graphene size
consistent with experiments, as pointed out by Shenoy et
al..12

Fig.4(a) shows the height profile at the middle cross
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FIG. 3: (Color online) (a) Graphene (w×L = 12nm×24nm)
submitted to compressive edge strain ε = ∆w/w = 0.05. The
solid lines show the shape of height profile. (b) Height profile
of the middle cross section of graphene with different L.

section of a graphene under compressive edge strains
ranging from 0.01 to 0.1. It can be observed that more
waves appear with larger oscillation amplitudes A when
edge strain increases. Ref.10 suggests that λ4 and A−4

should roughly hold a linear relationship with the lon-
gitudinal strain γ. Since in our simulations the ripples
are induced by a lateral deformation ε , for establishing
the correlation between the lateral strain ε and λ, we
have used ε ≈ γυ from the original definition of the Pois-
son’s ratio υ. Hence, according to Ref.10, the dependence
of the ripple structure on the compressive edge strain ε
should be governed by

{
λ4 ≈ 4π2υL2t2/

[
3(1− υ2)ε

]
A4 ≈ 16υL2t2ε/

[
3π2(1− υ2)

] , (3)

where t is the thickness. The Eq.3 suggests λ ∝ ε−1/4

and A ∝ ε1/4.
These linear dependences are clearly shown when we

plot the values of λ and A as functions of ε1/4. Tak-
ing t = 0.339nm (as graphite’s Van der Waals interlayer
spacing), we find that the slopes of the two best-fitted
lines suggest that the value of υ is approximately 0.145,
which is close to the ab-initio-calculated value.22 How-
ever, it is necessary to note that there is still no general

FIG. 4: (Color online) (a) Height profile of the middle cross
section of a graphene (w×L = 19.4nm× 14.6nm) submitted
to different edge strain ε. (b) Wavelength λ and out-of-plane

amplitude A versus ε1/4. The symbols represent simulation
results and the lines stand for the best-fitted curves.

agreement about the value of t of a one-atom-thick car-
bon sheet, in particular when the surface is curved and
involves Van der Waals interactions by π-stacking.23,24

The data fluctuation in Fig.4(b) is due to the small size of
the simulated graphene, since the 1/4-power law is only
valid for the region far away from the clamped bound-
aries. In the case of thermal treatment such as that
shown in Ref.5, neglecting graphene’s resistance to in-
plane compressive stress, the strain ε could be approxi-
mated by

ε ≈ ∆T (αs − αg) + ∆T 2αsαg (4)

where ∆T is the magnitude of heating or cooling tem-
perature, αs and αg are TEC of substrate and graphene,
respectively. Neglecting the second order term, we obtain
ε ≈ ∆T (αs − αg). The wrinkling mechanism explained
above also suggests that ripples can appear by only cool-
ing without heating.

Besides the thermal effects, our simulation results
demonstrate that periodic ripples can be induced by in-
troducing parallel displacement of the fixed boundaries.
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FIG. 5: (Color online) (a) Atomic configuration of a sus-
pended graphene (w×L = 13nm×5nm) submitted to 0.65nm
of edge displacement D (indicated by the arrow). (b) Out-of-
plane amplitude A versus D. The symbols represent simula-
tion results and the curve stands for the best-fitted one.

As shown in Fig.5 (a), in such a case the ripples are
not perpendicular to the trench, as those observed in ex-
periments without thermal-treated samples.25 The ripple
orientation seems to be not very sensitive to the magni-
tude of displacement D. The fitting curve of out-of-plane
amplitude in Fig.5 (b) suggests that A roughly follows a
1/4-power scaling law of D as A ≈ 0.34D1/4. This cor-
relation can be explained by the fact that λ4 should be
proportional to the longitudinal strain γ,10 while the ef-
fective value of γ should be proportional to the edge dis-
placement D. This results implies that the wavelength λ
is controllable by adjusting the displacement, since λ×A
should be roughly constant.

In summary, we have investigated the effects of edge
contraction and displacement on the structural insta-
bility of suspended graphene. Our simulation results
show that periodic ripples are manifested in graphene,
when longitudinal compression is applied to the fixed
boundaries by thermal effects. The 1/4-power law for-
malisms are found to be valid for the wavelength and
the out-of-plane amplitude as functions of edge strain.
The wavenumber is found to be larger at the graphene
edge than that in the center. Besides the thermal effects,
we show that parallel displacement of the fixed edge can
induce periodic ripples in suspended graphene. In such
a case the oscillation amplitude roughly holds a linear
relationship with 1/4 power of the displacement. These
results are essential for understanding the experimentally
observed ripples on suspended graphene.
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