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An intriguing correspondence between four-qubit systems and simple singularity of type D 4 is established. We first consider the algebraic variety X of separable states within the projective Hilbert space P(H) = P 15 . Then, cutting X with a specific hyperplane H, we prove that the X-hypersurface, defined from the section X ∩ H ⊂ X, has an isolated singularity of type D 4 ; it is also shown that this is the "worstpossible" isolated singularity one can obtain by this construction. Moreover, it is demonstrated that this correspondence admits a dual version by proving that the equation of the dual variety of X, which is nothing but the Cayley hyperdeterminant of type 2 × 2 × 2 × 2, can be expressed in terms of the SLOCC invariant polynomials as the discriminant of the miniversal deformation of the D 4 -singularity.

I. INTRODUCTION

Several branches of geometry and algebra tend to play an increasing role in quantum information theory. We have in mind algebraic geometry for describing entanglement classes of multiple qubits [START_REF] Brody | Geometric quantum mechanics[END_REF][START_REF] Heydari | Geometrical Structure of Entangled States and the Secant Variety[END_REF][START_REF] Holweck | Geometric descriptions of entangled states by auxiliary varieties[END_REF][START_REF] Miyake | Multipartite entanglement in 2 × 2 × n quatum systems[END_REF] , representation theory and Jordan algebras for entanglement and the black-hole/qubit correspondence 3-5 , and geometries over finite fields/rings for deriving point-line configurations of observables relevant to quantum contextuality [START_REF] Levay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF][START_REF] Planat | Distinguished three-qubit 'magicity' via automorphisms of the split Cayley hexagon[END_REF][START_REF] Saniga | Mermin's pentagram as an ovoid of PG(3, 2)[END_REF] . The topology of hypersurface singularitites, and the related Coxeter-Dynkin diagrams, represent another field worthwhile to be investigated in quantum information, as shown in this paper.

Dynkin diagrams are well known for classifying simple Lie algebras, Weyl groups, subgroups of SU(2) and simple singularities, i.e. isolated singularities of complex hypersurfaces that are stable under small perturbations. More precisely, if we consider simple-laced Dynkin diagrams, i.e. diagrams of type A -D -E, we find objects of different nature classified by the same diagrams: Type Lie algebra Subgroup of SU(2) Hypersurface with simple singularity

A n sl n+1 (C) cyclic group x n+1 1 + x 2 2 + • • • + x 2 k = 0 D n so 2n (C) binary dihedral group x n-1 1 + x 1 x 2 2 + x 2 3 + • • • + x 2 k = 0 E 6 e 6 binary tetrahedral x 4 1 + x 3 2 + x 2 3 + • • • + x 2 k = 0 E 7
e 7 binary octahedral

x 3 1 x 2 + x 3 2 + x 2 3 + • • • + x 2 k = 0 E 8 e 8 binary icosahedral x 5 1 + x 3 2 + x 2 3 + • • • + x 2 k = 0
A challenging question in mathematics is to understand these ADE-correspondences by establishing a direct construction from one class of objects to the other. For instance, the construction of surfaces with simple singularities from the corresponding subgroup of SU (2) is called the McKay correspondence. A construction due to Grothendieck allows us to recover the simple singularities of a given type from the nullcone (the set of nilpotent elements) of the corresponding simple Lie algebra. For an overview of such ADE correspondences, see

Ref [START_REF] Slodowy | Simple singularities and simple algebraic groups[END_REF][START_REF] Slodowy | Platonic solids, Kleinian singularities, and Lie groups[END_REF] and references therein.

Another construction connecting simple Lie algebras and simple singularities is due to Knop [START_REF] Knop | Ein neuer Zusammenhang zwischen einfachen Gruppen und einfachen Singularitäten[END_REF] . In his construction, Knop considers a unique smooth orbit, X, for the adjoint action of Lie group G on the projectivization of its Lie algebra P(g) and cuts this variety by a specific hyperplane. The resulting X-hypersurface has a unique singular point of the same type as g.

Looking at ADE-correspondences in the context of QIT is a way to understand the role played by those diagrams in this field. In different classification schemes of four-qubit systems, the Dynkin diagram D 4 has already appeared thanks to the role played by the Lie algebra so (8) (that is the type D 4 ). In the present paper, we will establish a correspondence between four-qubit systems and D 4 -singularities by using a construction inspired by Knop's paper. In other words, we will establish an ADE-type correspondence between SO(4, 4) and singularities of type D 4 using the Hilbert space of four qubits. 

Let H = C 2 ⊗ C 2 ⊗ C 2 ⊗ C 2 be
(C) × SL 2 (C) × SL 2 (C) × SL 2 (C). It is well
known that G acts transitively on the set of separable states. The projectivization of the corresponding orbit -also called the highest weight orbit -is the unique smooth orbit X

for the action of G on P(H), that is

X = P(G.|0000 ) = {The set of separable states} ⊂ P 15 .
A parametrization of X is given by the Segre embedding of four projective lines [START_REF] Heydari | Geometrical Structure of Entangled States and the Secant Variety[END_REF][START_REF] Holweck | Geometric descriptions of entangled states by auxiliary varieties[END_REF] φ :

   P 1 × P 1 × P 1 × P 1 → P 15 ([w 0 : w 1 ], [x 0 : x 1 ], [y 0 : y 1 ], [z 0 : z 1 ]) → [w 0 x 0 y 0 z 0 : • • • : W J : • • • : w 1 x 1 y 1 z 1 ]
where W J = w i x j y k z l for J = {i, j, k, l} ∈ {0, 1} 4 and the monomial order is such that

W J 1 ≺ W J 2 if 8i 1 + 4j 1 + 2k 1 + l 1 ≤ 8i 2 + 4j 2 + 2k 2 + l 2 .
A hyperplane equivalently, X ∩ Ψ|, will be the hypersurface of X given by

Ψ|φ(P 1 × P 1 × P 1 × P 1 ) = 0≤i,j,k≤1 h ijkl w i x j y k z l = 0. (1) 
To state our main Theorem, let us recall that the ring of polynomials invariant under G is generated by 4 invariants [START_REF] Luque | The polynomial invariants of four qubits[END_REF] . Let us denote by Ĩ1 , Ĩ2 , Ĩ3 , Ĩ4 a choice of four generators of the ring of invariants (that choice will be explained in Section III B), i.e.

C[H] G = C[ Ĩ1 , Ĩ2 , Ĩ3 , Ĩ4 ].
The quotient map Φ : H → C 4 is defined by Φ(x) = ( Ĩ1 (x), Ĩ2 (x), Ĩ3 (x), Ĩ4 (x)). The main result of this article is the following theorem: Let us denote by (f, 0) the germ of a holomorphic function, f : (C k , 0) → (C, 0) at 0, and by O k the set of all those germs. We consider the group D k of biholomorphic maps

Theorem 1. Let H = Ψ|
g : (C k , 0) → (C k , 0) acting of O k such that g.f = f • g -1 .
A singularity is an equivalence class of a germ (f, 0) such that ∂f ∂x i (0) = 0 for i = 1, . . . , k. In other words, a singularity is an orbit in O k and we will write [(f, 0)] for the orbit of the representative (f, 0). We denote by S k ⊂ O k the set of all singular germs. Let f be a representative of a singularity and let us denote by

A = ∂ 2 f ∂x i ∂x j (0) i,j
the corresponding Hessian matrix. The corank of the germ (f, 0) is the dimension of the kernel of A. From the definition of the action of D k it follows that equivalent germs will have the same corank, which means that the corank is an invariant of a singularity.

Definition II.1. A singularity is said to be non-degenerate, or quadratic, or of the Morse type, if, and only if, its corank is zero.

The Morse Lemma [START_REF] Milnor | Singular Points of Complex Hypersurfaces[END_REF] ensures that if (f, 0) is a non-degenerate singular germ, then f ∼

x 2 1 + • • • + x 2 k . The non-degenerate singularity is a dense orbit in S k . Assume that [(f, 0)] is a singularity of corank l, a generalization of Morse's Lemma 1 tells us that f ∼ h(x 1 , . . . , x l ) + x 2 l+1 + • • • + x 2
k and leads to an equivalence relation between germs of distinct number of variables.

Definition II.2. Two function germs f : (C k , 0) → (C, 0) and g : (C m , 0) → (C, 0), with k < m, are said to be stably equivalent if, and only if,

f (x 1 , . . . , x k ) + x 2 k+1 + • • • + x 2 m ∼ g(x 1 , . . . , x m ).
Remark II.1. In terms of the last definition we can compare singularities of functions which do not have the same number of variables. Adding quadratic terms of full rank in new variables do not affect the classification of the singular type.

Another important invariant of singular germs is the famous Milnor number [START_REF] Milnor | Singular Points of Complex Hypersurfaces[END_REF] . Let (f, 0) be a singular germ and consider

I ∇f = O k < ∂f ∂x 1 (0), . . . , ∂f ∂x k (0) > the gradient ideal.
Definition II.3. The Milnor number µ of a singular germ (f, 0) is equal to the dimension of the local algebra of (f, 0), i.e. the quotient of the algebra O k by I ∇f ,

µ = dim C (O k I ∇f ) .
The critical point 0 of the function f will be isolated if, and only if, its Milnor number is finite.

Let us now state what, in the sense of Vladimir Arnol'd, a simple singularity is .

Definition II.4. The orbit [(f, 0)] is a simple singularity if, and only if, a sufficiently small neighborhood of (f, 0) intersects S k with a finite number of non-equivalent orbits.

Remark II.2. If we consider a representative of a non-degenerate singularity

f ∼ x 2 1 + • • • + x 2
k , a small perturbation of f in S k , i.e. f + εh with h ∈ S k , will still have a Hessian of full rank for ǫ small. Thus f ∼ f + εh, which means that non-degenerate singularity is the most stable type of singularity. We can rephrase Definition II.4 by saying that [(f, 0)] is a simple singularity if, and only if, a small perturbation of a representative f will only lead to a finite number of non-equivalent singularities.

In his classification of simple singularities 1 , Arnol'd proved that being simple is equivalent to the following conditions:

• µ < +∞, • corank ∂ 2 f ∂x i ∂x j (0) ≤ 2,
• if corank ∂ 2 f ∂x i ∂x j (0) = 2 the cubic term in the degenerate direction of the Hessian is non-zero,

• if corank = 2 and the cubic term is a cube then µ < 9.

With these conditions Arnol'd obtained the classification of simple singularities into five different types (Table I).

Type A n D n E 6 E 7 E 8
Normal forms x n+1 x n-1 + xy 2 x 3 + y 4 x 3 + xy 3 x 3 + y 5

Milnor number n n 6 7 8

Table I. Simple singularities.

Remark II.3. The functions given in Table I are stably equivalent to the hypersurfaces given in the introduction. They are also clearly equivalent to the rational double points of algebraic surfaces.

The classification given by Arnol'd furnishes an algorithm to test if a singularity is simple or not.

Algorithm II.1. Let (f, 0) be a singularity.

• Compute µ; if µ = ∞ the singularity is not isolated (and not simple),

• If not, compute r = corank(Hess(f, 0)).

if r ≥ 3, the singularity is not simple,

-if r = 1, the singularity is of type A µ ,
if r = 2, then * if the cubic term in the degenerate directions is non-zero and is not a cube, then the singularity is of type D µ , * if the cubic term in the degenerate directions is a cube and µ < 9, then the singularity is of type E µ , * if not, the singularity is not simple.

In the next section we will follow this algorithm to compute the singular type of a given hyperplane section.

B. Computing singularities of hyperplane sections

Before we prove the first proposition, let us consider two examples in order to explain how we calculate the singular type of a hyperplane section.

Example II.1. Let H ∈ P(H * ) be a hyperplane, or a linear form, given by H = Ψ 1 | = 0011| + 1100|. The corresponding hyperplane section X ∩ H is tangent to |1111 . Indeed, a tangent vector to X at |1111 will be of the form |v = α|0111 + β|1011 + γ|1101 + δ|1110 and it is clear that Ψ 1 |v = 0. The homogeneous form of the linear section X ∩ H corresponds to its restriction to (the cone over) X, that is to

f (w 0 , w 1 , x 0 , x 1 , y 0 , y 1 , z 0 , z 1 ) = w 0 x 0 y 1 z 1 + w 1 x 1 y 0 z 0 .
In a non-homogeneous form f can be written in the chart corresponding to w 1 , x 1 , y 1 , z 1 = 1 as f (w 0 , x 0 , y 1 , z 1 ) = w 0 x 0 + y 0 z 0 . In this chart the point |1111 has coordinates (0, 0, 0, 0)

and (we can forget about the subscripts) the hyperplane section is a hypersurface of X defined (locally) by the equation

f (w, x, y, z) = wx + yz = 0.
This hypersurface has a unique singularity ∂f ∂w (a), ∂f ∂x (a), ∂f ∂y (a), ∂f ∂z (a) = (0, 0, 0, 0) ⇔ a = (0, 0, 0, 0), which corresponds to |1111 , and the Hessian matrix

       0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0       
is of the full rank. One concludes that (X ∩ H, |1111 ) is an isolated singularity of type A 1 and we denote it by (X ∩ H, |1111 ) ∼ A 1 , or, equivalently, by

(X ∩ Ψ 1 |, |1111 ) ∼ A 1 .
Example II.2. Let us consider the hyperplane section defined by H = Ψ 2 | = 0000| + 1011| + 1101| + 1110| ∈ H * . This section X ∩ H is tangent to |0111 . It is clear that a tangent vector to X at |0111 will be of the form |v = α|1111 + β|0011 + γ|0101 + |0110 and H|v = 0. The homogeneous linear form corresponding to X ∩ H is f (w 0 , w 1 , x 0 , x 1 , y 0 , y 1 , z 0 , z 1 ) = w 0 x 0 y 0 z 0 + w 1 x 0 y 1 z 1 + w 1 x 1 y 0 z 1 + w 1 x 1 y 1 z 0 . In the chart one can check that µ x=(0,0,0,0) (f ) = 4 and the rank of the Hessian

w 0 = x 1 = y 1 = z 1 =
       0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0        is 2. Thus, we conclude that (X ∩ H, |0111 ) ∼ D 4 , or, equivalently, (X ∩ Ψ 2 |, |0111 ) ∼ D 4
(i.e. the unique isolated singularity where the corank equals 2 and µ = 4).

We can now prove our first proposition.

Proposition II.1. Let X ∩ H be a singular hyperplane section of the variety of separable states for four-qubit systems, i.e. X = P 1 × P 1 × P 1 × P 1 , with an isolated singularity

x ∈ X ∩ H. Then the singularity (X ∩ H, x) will be of type A 1 , A 2 , A 3 or D 4 and each type can be obtained by such a linear section of X.

Proof. To prove Proposition II.1, we compute the singular type of all possible hyperplane sections of X. As the variety X is G-homogeneous, the singular type of X ∩ H will be identical for any representative of the G orbit of H. By the duality of the Hilbert space, a hyperplane H corresponds to a point h ∈ P(H). But the G orbits of P(H) have been classified

by Verstraete et al. [START_REF] Verstraete | Four qubits can be entangled in nine different ways[END_REF] (with a corrected version provided by Chterental and Djokovic 7 ).

According to Verstraete et al.'s classification, the G-orbits of the four-qubit Hilbert space consist of 9 families (3 families are parameter free and 6 of them depend on parameters) and normal forms for each family are known [START_REF] Chterental | Normal forms and tensor ranks of pure states of four qubits[END_REF][START_REF] Verstraete | Four qubits can be entangled in nine different ways[END_REF] 

L 0 5⊕3 0000| + 0101| + 1000| + 1110| non-isolated L 0 3⊕1 0 3⊕1 0000| + 0111| non-isolated
Table II. Hyperplanes and the corresponding sections which do not depend on parameters.

Remark II.4. Tables III, IV, V show that the classification of entangled states into 9

families can be refined according to the singular type of the corresponding section. The singular type of the linear section X ∩ Ψ| is an invariant of the G-orbit of |Ψ and may be used to distinguish two non-equivalent classes of entanglement. Thus, the values of the parameters which distinguish the sections indicate how we can decompose further the classification. However, to fully distinguish non-equivalent sections from their singular type, it would be necessary to investigate more precisely the non-isolated singular sections.

Remark II. 

+ a-b 2 ( 0110| + 1001|) a = b = 0 non-isolated + i √ 2 ( 0001| + 0010| -0111| -1011|) L a 2 b 2 a(|0000 + |1111 ) + b(|0101 + |1010 ) a, b generic smooth section +|0110 + |0011 a = 0 or b = 0 non-isolated a = b = 0 non-isolated L abc 2 a+b 2 ( 0000| + 1111|) + a-b 2 ( 0011| + 1100|) a, b, c generic A 1 (a unique singularity) c( 1010| + 0101|) + 0110| a = ±b A 1 c = 0 A 1 a = ±b = ±c non-isolated a = c = 0 or b = c = 0 non-isolated a = b = c = 0 non-isolated G abcd a+d 2 (|0000 + |1111 ) + a-d 2 (|0011 + |1100 ) a, b, c, d generic smooth section + b+c 2 (|0101 + |1010 ) + b-c 2 (|0110 + |1001 ) see Table IV A 1 see Table V non-isolated
Table III. Hyperplanes and the corresponding sections which do depend on parameters.

III. THE CAYLEY 2 × 2 × 2 × 2 HYPERDETERMINANT AND THE D 4 -DISCRIMINANT
Another fundamental concept associated with a simple singularity is its discriminant, i.e.

the locus that parametrizes the deformation of the singular germs. In this section, we will show that the discriminant of the D 4 -singularity is linked to the dual variety, in the sense of the projective duality, of the set of separable four-qubit states.

A. Discriminant of the miniversal deformation of the singularity

Consider a holomorphic germ f : (C k , 0) → (C, 0) with a simple isolated singularity of Milnor number µ(f, 0) = n. A miniversal deformation 1 of the germ f is given by

f + λ i g i , where (g 1 , . . . , g n ) is a basis of O k I ∇f . Definition III.1. The discriminant Σ ⊂ C n is the subset of values (λ 1 , . . . , λ n ) ∈ C n such that the miniversal deformation f + λ i g i is singular, i.e. Σ = {(λ 1 , . . . , λ n ) ∈ C n , ∆(f + n i=1 λ i g i ) = 0},
where ∆ is the usual notion of discriminant.

Remark III.1. The discriminant parametrizes all singular deformations of (f, 0). It is known [START_REF] Wirthmüller | Singularities determined by their discriminants[END_REF] that for hypersurfaces endowed with a simple singularity, the discriminant of the singularity characterizes its type.

Example III.1. Let (f, 0) be a singularity of type A n , i.e. f ∼ x n+1 . Then O 1 I ∇x n+1 =< 1, x, . . . , x n-1 >. Thus, a miniversal deformation of f is

F (x, λ) = x n+1 + λ 1 x n-1 + λ 2 x n-2 + • • • + λ n .
The corresponding discriminant is the hypersurface Σ An ⊂ C n defined by

∆(x n+1 + λ 1 x n-1 + λ 2 x n-2 + • • • + λ n ) = 0.
In the case where n = 2, i.e. when f ∼ x 3 is a singularity of type A 2 , then its discriminant is given by ∆(x 3 +λ 1 x+λ 2 ) = 0, i.e. the discriminant is a cubic curve defined by -4λ 3 1 -27λ 2 2 = 0.

The following example will be useful to prove the main result of the next section.

Example III.2. Consider now a singular germ (f, 0) of type D n ; then f ∼ x n-1 + xy 2 .

A basis of the local algebra O 2 I ∇(x n-1 +xy 2 ) is (1, x, . . . , x n-2 , y) and, hence, a miniversal deformation is

F (x, y, λ) = x n-1 + xy 2 + λ 1 x n-2 + . . . λ n-2 x + λ n-1 + λ n y.
Its discriminant is given by

∆(x n-1 + xy 2 + λ 1 x n-2 + . . . λ n-2 x + λ n-1 + λ n y) = 0.
(2)

The following lemma proposes an alternative expression of the discriminant of the D n singularities.

Lemma 1. The discriminant of the miniversal deformation of f ∼ x n-1 + xy 2 is the hypersurface Σ Dn ⊂ C n defined by

∆(λ 1 , . . . , λ n ) = ∆(t n + λ 1 t n-1 + • • • + λ n-1 -( 1 2 λ n ) 2 ) = 0. (3) 
Proof. Let us denote by Σ ⊂ C n the locus defined by eq. (3). To prove that equations ( 2)

and (3) are equivalent, we will show that Σ = Σ Dn .

To this end, let us characterize the hypersurfaces Σ and Σ Dn . Given the definition of the discriminant, the expression ∆(F (t, λ)) = 0 means there exists t 0 such that F (t 0 ) = 0 and ∂F ∂t (t 0 ) = 0. In other words, (λ 1 , . . . , λ n ) ∈ Σ if, and only if, there exists t 0 such that   

t n 0 + λ 1 t n-1 0 + • • • + λ n-1 t 0 -( 1 2 λ n ) 2 = 0, nt n-1 0 + (n -1)λ 1 t n-2 0 + • • • + λ n-1 = 0.    (4) 
Similarly, (λ 1 , . . . , λ n ) ∈ Σ Dn if, and only if, there exists (x 0 , y 0 ) such that F (x 0 , y 0 , λ) = ∂F ∂x (x 0 , y 0 , λ) = ∂F ∂y (x 0 , y 0 , λ) = 0, i.e.

         x n-1 0 + x 0 y 2 0 + λ 1 x n-2 0 + • • • + λ n-2 x 0 + λ n-1 + λ n y 0 = 0, (n -1)x n-2 0 + y 2 0 + (n -2)λ 1 x n-3 0 + . . . λ n-2 = 0, 2x 0 y 0 + λ n = 0.          (5) 
Let us assume that λ n = 0, then if (λ 1 , . . . , λ n ) ∈ Σ there exists t 0 such that the system (4) is satisfied. It is obvious that λ n = 0 implies t 0 = 0 and thus one can check that the system (5) is also satisfied for (x 0 , y 0 ) = (t 0 , -λ n 2t 0

). This proves that (λ 1 , . . . , λ n ) ∈ Σ Dn . On the other hand, if (λ 1 , . . . , λ n ) ∈ Σ Dn and (x 0 , y 0 ) is a solution of (5), then necessarily y 0 = -λn x 0 . One can further show that t 0 = x 0 is a solution of (4) and, therefore, (λ 1 , . . . , λ n ) ∈ Σ. Let us now consider the case λ n = 0. Then (λ 1 , . . . , λ n ) ∈ Σ for a given t 0 implies (λ 1 , . . . , λ n ) ∈ Σ Dn for (x 0 , y 0 ) = (t 0 , 0). On the other hand, let us assume (λ 1 , . . . , λ n ) ∈ Σ Dn for a given (x 0 , y 0 ).

The equation 2x 0 y 0 + λ n = 0 forces x 0 or y 0 to be zero. But if x 0 = 0 then necessarily also a n-1 = 0 and t 0 = 0 is a solution of (4), proving (λ 1 , . . . , λ n ) ∈ Σ. If x 0 = 0, then y 0 = 0 and t 0 = x 0 is a solution of (4), proving again

(λ 1 , . . . , λ n ) ∈ Σ. ✷ B. Hyperdeterminant of format 2 × 2 × 2 × 2 and D 4 -discriminant
The hyperdeterminant of format 2×2×2×2 is a SLOCC-invariant polynomial generalizing the ideas of Cayley for defining a higher dimensional counterpart of the determinant for multimatrices. From a geometrical perspective, the hyperdeterminant and its generalization have been studied by Gelfand, Kapranov and Zelevinsky 10 in terms of the concept of dual varieties. The geometric definition is the following one: Let X ⊂ P(V ) be a (smooth) projective variety, we denote by X * the dual variety of X, defined by

X * = {H ∈ P(H * ), ∃x ∈ X, T x X ⊂ H}.
For the case X = P 1 × P 1 × P 1 × P 1 , the dual variety, denoted X * , is a SLOCC-invariant hypersurface, whose equation is called the hyperdeterminant of format 2 × 2 × 2 × 2. This invariant polynomial, denoted as ∆ 4 , is an irreducible polynomial (X * is irreducible because X is), its degree is 24, and the corresponding hypersurface is singular [START_REF] Miyake | Multipartite entanglement in 2 × 2 × n quatum systems[END_REF][START_REF] Weyman | Singularities of Hyperdeterminants[END_REF] in codimension 1.

By definition, X * parametrizes the singular hyperplane sections of X (alternatively, H / ∈ X * is equivalent to saying that X ∩ H is a smooth section).

It would be difficult to quote all the papers in QIT (as well as in theoretical physics)

referring to the concept of hyperdeterminant [START_REF] Borsten | Black holes, qubits and octonions[END_REF][START_REF] Borsten | Explicit orbit classification of reducible Jordan algebras and Freudenthal triple systems[END_REF][START_REF] Holweck | Geometric descriptions of entangled states by auxiliary varieties[END_REF][START_REF] Levay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF][START_REF] Luque | The polynomial invariants of four qubits[END_REF][START_REF] Miyake | Classification of multipartite entangled states by multidimensional determinants[END_REF][START_REF] Miyake | Multipartite entanglement in 2 × 2 × n quatum systems[END_REF] , but it is clear that this invariant polynomial plays a central role in understanding the symmetries involved in the SLOCC group action.

In the case of four-qubit systems, the ring of polynomials invariant under the group SLOCC was determined by Luque and Thibon [START_REF] Luque | The polynomial invariants of four qubits[END_REF] . It is a finitely-generated ring with four generators B, L, M and D, of respective degrees 2, 4, 4 and 6 (explicit expressions, with the same notations, can be found in Ref [START_REF] Holweck | Entanglement of four qubit systems: a geometrical atlas with polynomial compass I (the finite world)[END_REF] ). In other words, any SLOCC-invariant polynomial P

over H = C 2 ⊗ C 2 ⊗ C 2 ⊗ C 2 belongs to C[B, L, M, D].
In particular, the hyperdeterminant of format 2 × 2 × 2 × 2 can be expressed as a polynomial in the generators of the ring of invariants and one gets 18 Lévay's motivation to define this new set of generators was to obtain a more geometrical and uniform description of those polynomials, as it is shown in his paper [START_REF] Lévay | On the geometry of four-qubit invariants[END_REF] . These news invariants I 1 , I 2 , I 3 , I 4 allow one to get a new expression of ∆ 4 . In particular, Lévay proved (Eq (56) [START_REF] Lévay | On the geometry of four-qubit invariants[END_REF] ) that

∆ 4 = 1 256 ∆(t 4 -(4I 1 )t 3 + (6I 2 )t 2 -(4I 3 )t + I 2 4 ) (6) 
(where ∆ is the discriminant of the polynomial in the t variable). This particular finding leads to the following claim:

Proposition III. (6) appears also in the conclusion of a previous paper involving the first two authors [START_REF] Holweck | Entanglement of four qubit systems: a geometrical atlas with polynomial compass I (the finite world)[END_REF] . When we evaluate this quartic on the G abcd state, i.e. when we consider the quartic

Q(t) = t 4 -(4I 1 (G abcbd ))t 3 + (6I 2 (G abcd ))t 2 -(4I 3 (G abcd ))t + I 4 (G abcd ) 2 , one obtains Q(t) = (t -a 2 )(t -b 2 )(t -c 2 )(t -d 2 ).
The state G abcd will cancel ∆ 4 if and only if the quartic Q has (at least) a repeated root, i.e.

there is (at least) a relation (among the parameters) of type m = ±n with m ∈ {a, b, c, d} and n ∈ {a, b, c, d} \ m. Obviously this condition is satisfied by all values of the parameters {a, b, c, d} of Tables IV and V because the corresponding states belong to the dual of X (and thus vanish ∆ 4 ). However the relations between the hyperplane sections of Tables IV and V and the number of repeated roots of the quartic Q is probably worth to be further investigate.

Remark III.4. Proposition III.1 establishes a connexion between two types of discriminant.

As pointed out earlier, the dual variety of X is a discriminant in the sense that it parametrizes the singular hyperplane sections of X. The D 4 -discriminant parametrizes the singular deformation of the germ x 3 +xy. The most singular deformation of x 3 +xy 2 +λ 1 x 2 +λ 2 x+λ 3 +λ 4 y is obtained for (λ 1 , λ 2 , λ 3 , λ 4 ) = (0, 0, 0, 0) . The preimage via the quotient map of (0, 0, 0, 0) is given by the zero-locus of (all) invariant polynomials

Φ -1 (0, 0, 0, 0) = {|Ψ , Ĩ1 (|Ψ ) = Ĩ2 (|Ψ ) = Ĩ3 (|Ψ ) = Ĩ4 (|Ψ ) = 0}.
This set does not depend on our choice of Φ and, after projectivization, it corresponds to a well-known variety N ⊂ P(H), the nullcone, which was already invoked to describe the entanglement classes of a four-qubit system [START_REF] Borsten | Four-Qubit Entanglement Classification from String Theory[END_REF][START_REF] Holweck | Entanglement of four qubit systems: a geometrical atlas with polynomial compass I (the finite world)[END_REF] . As first pointed out in Ref 

X ∩ H ∼ D 4 ←→ H ∈ N smooth ⊂ X *   Φ x 3 + xy 2 ←→ (0, 0, 0, 0) ∈ Σ D 4 ⊂ C 4 .

IV. CONCLUSION

We have introduced a new construction that assigns to any quantum state |Ψ a complex hypersurface defined by the hyperplane section X ∩ Ψ| of the set X of all separable states. This hypersurface may have singular points, which can be studied using the theory of singularity. Because the variety of separable states is G-homogeneous, this construction is G-invariant and two states |Ψ 1 and |Ψ 2 which do not define equivalent (singular) hyperplane sections will not be SLOCC equivalent. For four qubits, this construction allowed us to realize the singularity of type D 4 as a specific hyperplane section and we also proved that no "higher" isolated singularities can be obtained by this construction.

The D 4 singularity is obtained only when we consider the section X ∩ Ψ|, where |Ψ is a point of an orbit of maximal dimension of the nullcone [START_REF] Holweck | Entanglement of four qubit systems: a geometrical atlas with polynomial compass I (the finite world)[END_REF] (i.e. a smooth point of the nullcone).

This is emphasized when we rephrase the notion of Cayley 2 × 2 × 2 × 2 hyperdeterminant, i.e. the dual equation of the set of separable states, in terms of the discriminant of a D 4singularity. The stratification of the discriminant Σ D 4 in terms of mutiplicities induces a stratification of the dual variety X * -a variety that is of great relevance in the study of entanglement of four qubits, as pointed out by Miyake [START_REF] Miyake | Classification of multipartite entangled states by multidimensional determinants[END_REF][START_REF] Miyake | Multipartite entanglement in 2 × 2 × n quatum systems[END_REF] .

Although the correspondence between four qubits and simple Lie algebra of type 

  For instance, Verstraete et al's classification 26 is based on the classification of the SO(4) × SO(4) ⊂ SO(8) orbits on M 4 (C). Chterental and Djokovic 7 use the same group action and refer to (Remark 5.3 of Ref 7) the Hilbert space of four qubits as a subspace of so(8) whose SLOCC orbits arise from the trace of the adjoint SO(8) orbits. In their study of the four-qubit classification from the string theory point of view, Borsten et al 2 employ a correspondence between nilpotent orbits of so(4, 4) (the real form of so(8) with signature (4, 4)) and nilpotent orbits of four-qubit systems. Last but not least, the relation between so(8) and four-qubit systems has been pointed out byLévay 15 in his paper on the black-hole/qubit correspondence. In this paper Lévay describes the Hilbert space of four qubits as the tangent space of SO(4, 4)/(SO(4) × SO(4)).

1

 1 the form becomes a hypersurface defined by xyz + wx + wy + wz = 0 and (0, 0, 0, 0) is the only singularity of this hypersurface. Using the software SINGULAR[START_REF] Decker | Schönemann SINGULAR 3.1.6: a computer algebra system for polynomial computations[END_REF] 

2 - 6 (B 2 +

 262 4(L + M)) 2 -24(BD + 2LM) and T = 1 216 ((B 2 -4(L + M)) 3 -3(B 2 -48(L + M))(BD + 2LM) + 216D 2 ). In his attempt to give a geometric meaning of the invariants of Luque and Thibon, Lévay 16 introduced some alternatives generators which are related to the previous ones as I 1 = 1 2 B, I 2 = 1 2L -4M), I 3 = D + 1 2 BL and I 4 = L.

  2 , the nullcone admits a stratification into 9 distinguished classes of orbits which relate to the 9 families of Verstraete et al.'s classification. To emphasize the connexion with the D 4 singular type, let us point out that H = Ψ 2 | = 0000| + 1011| + 1101| + 1110| (the hyperplane of Example II.2) is a smooth point of N and this characterizes the hyperplanes of X with a D 4 -singular point. This correspondence can diagrammatically be sketched as:

D 4

 4 is now clear from the action of the SLOCC group, the correspondence established in this paper between four qubits and a simple singularity of type D 4 is rather surprising and points out to a novel relationship between simple Lie algebra and simple singularity of type D 4 .{a = 0, b = 0, c = 0, d = d}, {a = 0, b = 0, c = c, d = 0}, {a = 0, b = b, c = 0, d = 0}, {a = a, b = 0, c = 0, d = 0}, {a = a, b = d, c = d, d = d}, {a = a, b = -c, c = c, d = -c}, {a = a, b = -d, c = d, d = d}, {a = a, b = -d, c = -d, d = d}, {a = b, b = b, c = 0, d = b}, {a = b, b = b, c = 0, d = -b}, {a = c, b = 0, c = c, d = c}, {a = c, b = 0, c = c, d = -c}, {a = c, b = c, c = c, d = d}, {a = c, b = -c, c = c, d = d}, {a = d, b = b, c = d, d = d}, {a = d, b = d, c = c, d = d}, {a = d, b = d, c = d, d = d}, {a = d, b = -d, c = d, d = d}, {a = -b, b = b, c = 0, d = b}, {a = -b, b = b, c = 0, d = -b}, {a = -b, b = b, c = c, d = -b}, {a = -c, b = 0, c = c, d = c}, {a = -c, b = 0, c = c, d = -c}, {a = -c, b = b, c = c, d = -c}, {a = -c, b = c, c = c, d = d}, {a = -c, b = c, c = c, d = -c}, {a = -c, b = -c, c = c, d = d}, {a = -c, b = -c, c = c, d = -c},{a = -d, b = b, c = d, d = d}, {a = -d, b = b, c = -d, d = d}, {a = -d, b = d, c = c, d = d}, {a = -d, b = d, c = d, d = d}, {a = -d, b = d, c = -d, d = d}, {a = -d, b = -d, c = c, d = d}, {a = -d, b = -d, c = d, d = d}, {a = -d, b = -d, c = -d, d = d} Table V. Hyperplane sections of type G abcd with non-isolated singularities.

  X is the hypersurface of X defined by the restriction of L H to X. Due to the duality of Hilbert spaces, for any H ⊂ P(H) there exists a state |Ψ ∈ P(H) such that H is defined by the linear form Ψ|. In what follows, we will often identify the hyperplane H and the linear form defining it, and write H = Ψ| = 0≤i,j,k,l≤1 h ijkl ijkl| with h ijkl ∈ C. The hyperplane section X ∩ H, or,

H ⊂ P(H) is the set of states |Φ ∈ P(H) on which a linear form L H ∈ H * vanishes. Given H ⊂ P(H), the hyperplane section X ∩ H ⊂

  be a hyperplane of P(H) tangent to X and such that X ∩ H has only isolated singular points. Then the singularities are either of types A 1 , A 2 , A 3 , A 4 , or of type D 4 , and there exist hyperplanes realizing each type of singularity. Moreover, if we denote by X * ⊂ H the cone over the dual variety of X, i.e. the zero locus of the Cayleyhyperdeterminant of format 2 × 2 × 2 × 2, then the quotient map Φ : H → C 4 is such that Φ( X * ) = Σ D 4 ,where Σ D 4 is the discriminant of the miniversal deformation of the D 4 -singularity.

	III, we will establish a dual version of Proposition II.1. We will first define the notion of
	discriminant of a singularity (see Section III A) and then show how it allows us to give a
	new expression for the Cayley hyperdeterminant ∆ 4 (Section III B) and prove Proposition
	III.1 about the relation between ∆ 4 and Σ D 4 . Propositions II.1 and III.1 lead to the proof
	of Theorem 1.
	II. SIMPLE SINGULARITIES AND HYPERPLANE SECTIONS OF
	SEPARABLE STATES
	A. Simple singularities following Arnol'd classification
	Simple singularities have been studied from an algebraic geometrical viewpoint as ratio-
	nal double points of algebraic surfaces, Du Val singularities, and from a complex analytic
	perspective as critical points of holomorphic functions in several variables. These approaches
	lead to many equivalent characterizations of what a simple singularity is 9 . Here, we select the
	complex analytic approach introduced by Vladimir Arnol'd. We first recall the ingredients
	The paper is organized as follows. In Section II, we will give the definition of a simple
	singularity and the invariants that follow from the Arnol'd classification 1 (Section II A).
	Then we will compute the singularity type of any hyperplane section of the set of separable
	states featuring only isolated singularities (see Section II B Proposition II.1). In Section

of Arnol'd classification of simple singularities 1 .

  Then we look at isolated singular points of each hyperplane section and we calculate the corresponding singular type with a formal algebra system following the procedure described in examples II.1, II.2 and Algorithm II.1. For the normal forms depending on parameters, the singular type of the hyperplane sections will depend on values of the parameters. The results of our calculations are given in Tables II and III and provide a proof of the proposition.✷

	Verstraete et al.'s notation	Hyperplane	Singular type of the hyperplane section
	L 0 7⊕1	0000| + 1011| + 1101| + 1110|	D 4 (a unique singularity )

. From each of Verstraete et al.'s normal forms |Ψ we compute the corresponding hyperplane section X ∩ Ψ|.

  5. It is worthwile to point out that the different isolated singular types we obtain by this construction (A 1 , A 2 , A 3 and D 4 ) are exactly the possible degenerations of the D 4 -singularity. In particular, any small neighborhood of the singularity of type D 4 will

	Verstraete's	Hyperplane	parameters	Singular type
	notation			
	L a 2 0 3⊕1 a( 0000| + 1111|) + 0011| + 0101| + 0110|	a generic	A 1
			a = 0	non-isolated
	L a 4	a( 0000| + 0101| + 1010| + 1111|)	a generic	A 3 (a unique singularity)
		+i 0001| + 0110| -i 1011|	a = 0	non-isolated
	L ab 3	a( 0000| + 1111|) + a+b 2 ( 0101| + 1010|)	a, b generic	A 2 (a unique singularity)

meet, in S k , the orbits corresponding to the singular types A 1 , A 2 and A 3 as shown in the adjacency diagrams of Arnold's classification (Corollary 8.7 in Ref

1

). The fact that D 4 is the "worst-possible" isolated singularity we get from the hyperplane sections of the set of separable states will be lighted with Proposition III.1.

  1. Let us consider the quotient map Φ : H → C 4 defined by ) = Σ D 4 . Proof. According to Lévay's equation for the hyperdeterminant ∆ 4 , it is clear that our choice of Φ implies that the equation of Φ( X * ) ⊂ C 4 is

	Φ(|Ψ ) = ( Ĩ1 (|Ψ ), Ĩ2 (|Ψ ), Ĩ3 (|Ψ ), Ĩ4 (|Ψ ),
	where Ĩ1 = -4I 1 , Ĩ2 = 6I 2 , Ĩ3 = -4I 3 and Ĩ4 = I 4 . Then, Φ( X 1 i 2 256 ∆(t 4 + λ 1 t 3 + λ 2 t 2 + λ 3 t -( 1 2 λ 4 ) 2 ) = 0,

*

where (λ 1 , λ 2 , λ 3 , λ 4 ) are coordoninates on C 4 . But Lemma 1 implies that this zero locus is the discriminant of the D 4 simple singularity, i.e. the hypersurface Σ D 4 . ✷ Remark III.2. Propositions II.1 and III.1 prove Theorem 1. Remark III.3. The quartic t 4 -(4I 1 )t 3 + (6I 2 )t 2 -(4I 3 )t + I 2 4 of Eq

Borsten L., Dahanayake D., Duff M. J., Ebrahim H. and Rubens W., "Freudenthal triple classification of three-qubit entanglement", Physical Review A 80, no 3 (2009):032326.
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Appendix A: Hyperplane sections of type G abcd

In this appendix, we will give the different values of the parameters a, b, c, d of the hyperplanes of type G abcd which lead either to hyperplane sections with only A 1 singular points (Table IV) or hyperplane sections with non-isolated singularities (Table V).