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We investigate modal conversion at the boundary between a homogeneous incident
medium and a phononic crystal, with consideration of the impact of symmetry on
the excitation of Bloch waves. We give a quantitative criterion for the appearance
of deaf Bloch waves, which are antisymmetric with respect to a symmetry axis of
the phononic crystal, in the frame of generalized Fresnel formulas for reflection
and transmission at the phononic crystal boundary. This criterion is used to index
Bloch waves in the complex band structure of the phononic crystal, for directions
of incidence along a symmetry axis. We argue that within deaf frequency ranges
transmission is multi-exponential, as it is within frequency band gaps. Copyright
2011 Author(s). This article is distributed under a Creative Commons Attribution 3.0
Unported License. [doi:10.1063/1.3675828]

I. INTRODUCTION

As periodic composite media, phononic crystals (PC) support elastic or acoustic waves whose
properties are prescribed through the Bloch-Floquet theorem.1, 2 The eigenmodes of the Helmholtz
equation for monochromatic wave propagation are called Bloch waves and are each associated with
a (ω, k) pair, with ω the angular frequency and k the Bloch wavevector. For propagating Bloch
waves, the wavevector can be folded inside the first Brillouin zone, whereas for evanescent Bloch
waves this rule applies only to the real part of the wavevector.3–5 Experimental investigations of the
dispersion of a PC usually rely on the excitation of Bloch waves by an external source, for instance
by monitoring the transmission of a particular mode of the medium surrounding a finite size PC.6–8 It
is thus clear that the intrinsic properties of the PC are only explored through modal conversions that
occur at the boundary between the surrounding medium and the PC. Obviously, modal conversion
to different Bloch waves results in different conversion efficiencies. A particularly striking example
is the experimental observation of the non excitation of certain Bloch waves, that have thus been
termed deaf.9

Deaf Bloch waves were originally observed in two-dimensional (2D) PC of rigid rods in air
arranged according to a square lattice.9–12 They were soon to be also found in three-dimensional
(3D) PC of solid spheres in a solid13, 14 or a fluid matrix,15 and in 2D PC of steel rods in water with
hexagonal-type lattices.16 Recently, they have also been observed in phononic crystal slabs.17–19 Deaf
Bloch waves manifest themselves as dips in the transmission, much as band gaps do, and thus lead to
discrepancies between the theoretical band structure and the experimental result. This discrepancy
is soon explained by observing that a plane wave incident normally on the PC is symmetric with
respect to the propagation direction; if a particular Bloch wave is antisymmetric with respect to the
same axis, then it cannot be excited and it cannot contribute to transmission through the PC. In the
band structure, bands formed by deaf Bloch waves are by extension termed deaf bands.

2158-3226/2011/1(4)/041402/11 C© Author(s) 20111, 041402-1
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FIG. 1. Unit-cells for square and hexagonal lattice 2D phononic crystals, containing either a circular or a semi-circular
inclusion. Regarding wave propagation, the circular inclusion preserves all symmetry directions of the lattice, while the
semi-circular inclusion only preserves symmetry along the y axis. Symmetric (S) and non symmetric (NS) directions are
shown for each case.

In this paper, we examine modal conversion at the boundary between a homogeneous incident
medium and a phononic crystal, with consideration of the impact of symmetry on the excitation of
Bloch waves. Consideration of symmetry is indeed essential for modal conversion and the appearance
of deaf Bloch waves, as is illustrated in Section II. We specifically discuss the curing of deafness by
breaking the symmetry of the unit-cell of the PC. In Section III, we consider the problem of modal
conversion to a Bloch wave from an external medium and obtain a numerical criterion for deciding
if a Bloch wave is deaf or not. We find that evanescent Bloch waves and their symmetries must
explicitly be taken into account. Then in Section IV we derive generalized Fresnel formulas that
relate the amplitudes of reflected and transmitted waves to the amplitudes of incident waves. From
these formulas, we explicitly show that deaf Bloch waves cannot be excited by a symmetric incident
plane wave. Finally, in Section V the symmetry of Bloch waves is related to their internal order
of diffraction and used to index complex band structures. This procedure permits the separation of
band foldings occurring at symmetry points of the Brillouin zone from bands becoming propagating
above a given cut-off frequency.

II. DEAFNESS AND UNIT-CELL SYMMETRY

Let us consider 2D phononic crystals such as depicted in Figure 1. Two different lattices are
shown, square (SQ) and hexagonal (HEX). The SQ lattice has symmetries with respect to axes x
and y and with respect to both diagonals, i.e., every nπ /4 with n an integer. The HEX lattice has
symmetries every nπ /6. Two different inclusions are further considered, either a circle or a semi-
circle. While the circular inclusion preserves all lattice symmetries, the semi-circular inclusion only
preserves symmetry along the y axis. It is thus the combination of the symmetries of lattice and
inclusions that defines the symmetry of the unit-cell of the PC. Of course, an inclusion of arbitrary
shape generally removes any symmetry.

Let us now consider wave propagation in the PC. For the sake of simplicity, we consider in
this paper only the case of pressure waves in water. In the following numerical examples, inclusions
are composed of steel and only longitudinal waves are considered. This approximation neglects
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FIG. 2. Pressure fields of Bloch waves depicted for a square-lattice phononic crystal of steel half-cylinders in water with d/a
= 0.8 (unit-cell shown in Fig. 1(b)). First line: first 4 Bloch waves for κx = 0.4 and κy = 0 (X direction of the first Brillouin
zone). Second line: first 4 Bloch waves for κx = 0.4 and κy = 0.4 (M direction of the first BLZ). Third line: first 4 Bloch
waves for κx = 0 and κy = 0.4 (Y direction of the first BLZ).

shear waves in the steel inclusions but has been found to give results comparable with more exact
fluid-solid computations. The Bloch-Floquet theorem states that for a fixed angular frequency ω, the
modes of the phononic crystal have the form

p(r, t) = p̄(r) exp(ı(ωt − k · r)) (1)

where k is the Bloch wavevector and p̄(r) is a periodic function in the unit-cell. For convenience, we
consider in the following reduced wavevectors defined as κ = ka/(2π ). The symmetry directions
of the PC are shared by Bloch waves. It can further be inferred that if the unit-cell has a symmetry
direction, then Bloch waves having their wavevector pointing in that direction part into two groups,
symmetric and antisymmetric.

As an example, we consider in Fig. 2 some Bloch waves of a square-lattice PC with semi-
circular inclusions, as depicted in Fig. 1(b). Three directions of propagation are considered: along
x (direction X), along y (direction Y), and along the first diagonal (direction M). The first 4 Bloch
waves are plotted in each case. It can be seen that for direction Y, Bloch waves number 0, 1 and
3 are symmetric, while Bloch wave number 2 is antisymmetric. The latter is an example of a deaf
Bloch wave. In contrast, there are no special symmetries for the Bloch waves of directions X and
M. If the inclusion had been circular, Bloch waves in direction X would have been identical to those
in direction Y, and Bloch waves number 1 and 3 would have been antisymmetric and thus deaf.
Even in the case of a symmetric lattice and a symmetric inclusion, there is a simple way to break
symmetry: it is sufficient to consider a wavevector that is not along a direction of symmetry. As
a result, changing the angle of incidence even slightly generally removes deafness from all Bloch
waves.
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FIG. 3. Modal conversion problem for a plane wave incident on the boundary of a phononic crystal. The two cases shown
are for a square-lattice 2D PC cut either along (a) direction X and (b) direction M.

III. A CRITERION FOR DEAFNESS

Bloch waves discussed in the previous section are intrinsic modes of the PC. In practice, the PC
is of finite extent and has boundaries separating it from the surrounding medium. Fig. 3 depicts such
a boundary for a square-lattice PC. Two cases have been illustrated, with the PC cut along symmetry
direction X or M. It can be noted that the periodicity along the PC boundary, b, is different in both
cases. A plane wave with angular frequency ω and wavevector k0 is incident on the PC boundary.
The incident pressure field is

pi (r, t) = exp(ı(ωt − k0x x − k0y y)), (2)

with the dispersion relation k2
0x + k2

0y = ω2/c2 and c the velocity in the incident medium. There is
a certain degree of arbitrariness in the exact choice of boundary σ ; in Fig. 3 we have chosen it to lie
exactly on the boundary of the unit-cell, but other choices can be made without changing the result
of the analysis conducted in this section.

We next examine the conversion of the incident wave to Bloch waves. Conservation of energy
and momentum requests conservation of the frequency and of the x component of the wavevector.
Thus, the relevant Bloch waves in the PC are given as solutions of a problem of the form ky(ω; k0x)
that yields a discrete set of complex-valued solutions kny, with n the mode index.3 Anticipating the
results of the next Section, we consider the scalar product between the incident wave and the n-th
Bloch wave, measured along the PC boundary σ , as a measure of modal conversion. This quantity
reduces to a line integral of the periodic part of the Bloch wave solution

〈pi (ω; k0x )|pn(ω; k0x )〉 =
∫

σ

ds exp(ı(k0y − kny)y) p̄n(r). (3)

In the particular case that σ is a simple straight line, as in Fig. 3(a), we can take the integral along y
= 0, in which case the above equation reduces to

〈pi (ω; k0x )|pn(ω; k0x )〉 =
∫

σ

ds p̄n(r). (4)

Even though the incident wavevector doesn’t appear explicitly in this expression, both kny and p̄n(r)
depend on the pair (ω; k0x).

Equation (4) contains all the observations and results of the previous section. Obviously, if the
periodic part of the Bloch wave, p̄n(r), is antisymmetric, then the scalar product is zero. For normal
incidence, i.e. k0x = 0, this property remains true whatever the value of kny and deaf Bloch waves
form deaf bands. When incidence is not normal, i.e. k0x �= 0, deafness is lost immediately since
the wavevector breaks the symmetry. We have indeed verified numerically that deafness is highly
sensitive to the incidence angle: the scalar product in Eq. (4) deviates from zero as soon as kx �= 0.
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FIG. 4. Band structure for a square-lattice 2D PC of circular steels rods in water with d/a = 0.8, shown along direction X,
M and Y in the first Brillouin zone. Antisymmetric (deaf) bands appear in red, while symmetric (non deaf) bands appear in
blue. Note that bands 3 and 4 in directions X and Y are degenerate in frequency, but that band 3 is deaf while band 4 is not.

The line integral defined above provides a simple means of evaluating the symmetry or antisym-
metry of Bloch waves for normal incidence. It can thus be used to investigate the intrinsic symmetry
properties of band structures. Fig. 4 and Fig. 5 display band structures for propagating Bloch waves
for a square-lattice 2D PC of steels rods in water, in the case of the circular and of the semi-circular
inclusion depicted in Fig. 1(a) and Fig. 1(b), respectively. These band structures are obtained as a
solution of the ω(k) eigenvalue problem for k varying along particular directions of the first Brillouin
zone. Bands holding deaf Bloch waves are plotted in red, while bands holding non deaf Bloch waves
are plotted in blue. For the circular inclusion, Fig. 4, the three symmetry directions X, M, and Y
show deaf bands, and directions X and Y are equivalent. For the semi-circular inclusions that only
preserve symmetry along direction Y, deaf bands only appear along this same direction, as Fig. 5
illustrates. It can further be observed that the complete band gap observed in the case of a circular
inclusion disappears for the semi-circular inclusion.

IV. GENERALIZED FRESNEL FORMULAS

We discuss in this Section how the problem of modal conversion at the PC boundary can be
cast in the form of generalized Fresnel formulas. The PC boundary has a periodic corrugation and
thus acts as a diffraction grating with period b. Reflected diffraction orders have the form of plane
waves satisfying the grating law. The m-th reflected diffraction order is the plane wave

pmr (r, t) = exp(ı(ωt − kmx x − kmy y)), (5)

with kmx = kox + 2πm/b, and kmy = −√
ω2/c2 − k2

mx or kmy = ı
√|ω2/c2 − k2

mx | for propagating
and evanescent reflected waves, respectively. Reflected diffraction orders can be cast in the Bloch-
Floquet form by observing that km = (k0x , kmy) and p̄mr (r) = exp(−ı2πmx/b). Note that incident
diffraction orders assume exactly the same form but with the reverse sign in the definition of kmy.

Continuity equations for pressure and normal velocity are next expressed along boundary σ . For
simplicity, we consider in the following that σ is along y = 0, but the general case is not significantly
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FIG. 5. Band structure for a square-lattice 2D PC of semi-circular steels rods in water with d/a = 0.8, shown along direction
X, M and Y in the first Brillouin zone. Antisymmetric (deaf) bands appear in red, while symmetric (non deaf) bands appear
in blue.

different. The continuity equations have the form

vi (r, t) +
∑

m

rmvmr (r, t) =
∑

n

tnvn(r, t), (6)

pi (r, t) +
∑

m

rm pmr (r, t) =
∑

n

tn pn(r, t), (7)

where the rm are the reflected amplitudes and the tn are the transmitted amplitudes. pn and vn are the
pressure and the normal velocity distributions of the n-th Bloch wave, respectively. The expansion
over Bloch waves implicitly assumes that these functions constitute a complete basis for the solution
of the Helmholtz equation in the PC.3 Reflected diffraction orders satisfy20

vmr = kmy

ρω
pmr = −1

Zm
pmr , (8)

where Zm is the mechanical impedance of the m-th diffraction order. The minus sign in the def-
inition of the impedance Zm accounts for reflection. Incident diffraction orders similarly satisfy
vmi = 1

Zm
pmi . We next multiply by exp (ıkoxx)exp (ı2πmx/b) and integrate along σ . Because of the

orthogonality of Fourier exponentials we end up with the matrix relations

1

Zm
im − 1

Zm
rm = Mv(m, n)tn (9)

im + rm = Mp(m, n)tn (10)

with the incident amplitudes im = 1 if m = 0 and im = 0 otherwise. The matrices

Mv(m, n) = 1

b

∫
σ

dx exp(ı2πmx/b)v̄n(r) (11)

and

Mp(m, n) = 1

b

∫
σ

dx exp(ı2πmx/b) p̄n(r) (12)
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govern the modal conversion process. Note that the integral in Eq. (4) is proportional to Mp(0, n).
Solving the matrix equations (9) and (10) is straightforward and results in a generalized version of
the Fresnel formulas for refraction and reflection

t = 2(Mp + Z Mv)−1i (13)

r = (Mp − Z Mv)(Mp + Z Mv)−1i (14)

with the diagonal matrix Z(m, n) = Zmδ(m − n). In the above equations, vectors i, r and t gather the
amplitudes of the incident, reflected and transmitted waves, respectively.

The traditional Fresnel formulas20 must obviously be recovered when the phononic crystal is
replaced by a homogeneous medium. In this case, there is only one reflected and one transmitted
wave, and the matrices above simplify to scalars. Let us consider medium A as the incidence medium
and medium B as the transmission medium. We have Z−1

0 = Z−1
A cos θA, with ZA = ρAcA and θA

the angle of incidence. For the transmitted wave, Mv/Mp = Z−1
B cos θB or −ı|ky|/(ρBω) if it is

propagating or evanescent, respectively. It follows that r = Z B cos θA−Z A cos θB
Z B cos θA+Z A cos θB

if the transmitted wave
is propagating and |r| = 1 if it is evanescent.

We next show that anti-symmetric Bloch waves are not excited in the case of normal incidence
on a PC that is symmetric with respect to the direction of incidence. To that end, we first rearrange
the order of Bloch waves of the PC so has to separate symmetric (S) and antisymmetric (AS) Bloch
waves

t =
(

tS

tAS

)
(15)

Because of normal incidence, we can also recast the reflected diffraction orders into Bloch waves
in the incident medium with km = (k0x , kmy), with p̄mr (r) = cos(2πmx/b) for m ≥ 0 (S) or
sin (2πmx/b) for m > 0 (AS). To achieve this reordering, it is sufficient to recombine the origi-
nal diffraction orders m and −m. Matrices Mp and Mv then become block-diagonal, e.g.,

Mp =
(

Mp,S 0

0 Mp,AS

)
, (16)

Since the incident plane wave is itself symmetric, we conclude that tAS = 0 and rAS = 0, i.e.,
antisymmetric (deaf) Bloch waves are not transmitted and antisymmetric reflected diffraction orders
are not excited. This is a demonstration of the properties that were introduced in the previous sections
based on intuition.

V. COLORING COMPLEX BAND STRUCTURES

We plotted in Fig. 4 and Fig. 5 band structures with the information of symmetry (non deafness)
or antisymmetry (deafness). Though the added information is useful to compare with experiments,
it does not bring clear physical insight on the formation of band gaps or on the origin of the various
bands. Nevertheless, it is clear that symmetry properties apply to Bloch waves irrespective of their
propagating or evanescent character. We then display in Fig. 6 and Fig. 7 complex band structures
with symmetry information for all types of Bloch waves. Fig. 6 can be compared directly with Fig. 4,
and Fig. 7 with Fig. 5.

In direction M and for the circular inclusion, systems of band gaps for S and AS Bloch waves are
observed in the complex band structure of Fig. 6. This is expected, since S and AS Bloch waves are
decoupled, but it would have been difficult to distinguish them without information about symmetry.
The first frequency band gap appears when the fundamental S Bloch wave reaches the M point of
the first Brillouin zone, for ωa/(2π ) ranging between 800 and 1000 m/s, approximately. Within this
frequency range, there are only evanescent Bloch waves. It is then expected that transmission is multi-
exponential,21 with only S evanescent Bloch waves contributing to transmission for a symmetric
source. The dominant S Bloch wave in the transmission is the one with the smallest imaginary part
of the k-vector. We next point out that the first AS Bloch wave, labeled 1 in Fig. 6, is evanescent at
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FIG. 6. Complex band structure for a square-lattice 2D PC of circular steels rods in water with d/a = 0.8, shown along
direction M of the first Brillouin zone. Antisymmetric (deaf) bands appear in red, while symmetric (non deaf) bands appear
in blue.
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FIG. 7. Complex band structure for a square-lattice 2D PC of semi-circular steels rods in water with d/a = 0.8, shown along
direction Y of the first Brillouin zone. Antisymmetric (deaf) bands appear in red, while symmetric (non deaf) bands appear
in blue.
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low frequencies with the real part of the wavevector staying at point M of the first Brillouin zone,
and acquires a negative group velocity above its first cut-off frequency. Above its first band gap, for
ωa/(2π ) above 1550 m/s, all S Bloch waves are evanescent; transmission for a symmetric source is
again multi-exponential and governed by the S Bloch wave with the smallest imaginary part of the
wavevectors. In direction Y and for the semi-circular inclusion, Fig. 7, the systems of band gaps for
S and AS Bloch waves are decoupled again. The rather flat AS bands that were observed in Fig. 5
are seen to be connected by evanescent bands.

VI. CONCLUSION

We have investigated modal conversion at the boundary between a homogeneous incident
medium and a phononic crystal. We have emphasized the importance of symmetry on the excitation of
Bloch waves. Bloch waves separate between symmetric and antisymmetric provided the wavevector
varies along a symmetry axis of the phononic crystal. Generalized Fresnel formulas for reflection
and transmission at the phononic crystal boundary have been obtained and used to show that
antisymmetric Bloch waves are not excited by a symmetric incident plane wave and are thus deaf.
Symmetry has been further used to index Bloch waves in the complex band structure of the phononic
crystal, for directions of incidence along a symmetry axis. It is found in particular that transmission
is multi-exponential within deaf frequency ranges, as it is within frequency band gaps.
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APPENDIX

In this appendix, we summarize the variational formulations that are used in this paper for
obtaining band structures and complex band structures based on a finite element method (FEM).
The presentation is restricted to the fluid case with longitudinal waves only, but it can be generalized
to elastic wave propagation in solids along similar lines. Only modal computations are considered,
so there are no applied external forces. The basic equations for propagation of acoustic waves in a
fluid are taken as:

−∇ p(r, t) = ρ(r)
∂v(r, t)

∂t
, (A1)

∂p(r, t)

∂t
= −B(r)∇ · v(r, t), (A2)

where variable dependence have been stressed and will not be repeated in the following. In the
computations presented in this paper, we have used ρ = 1000 kg/m3 and B = 2.2 GPa for water, and
ρ = 7800 kg/m3 and B = 160 GPa for steel. Further assuming monochromaticity, we have

− 1

ρ
∇ p = ıωv, (A3)

ω2 1

B
p = ıω∇ · v = −∇ ·

(
1

ρ
∇ p

)
. (A4)

From the Bloch-Floquet theorem as expressed by Eq. (1), the unknown fields are p̄ and v̄, and each
solution is associated with a pair (ω, k). Space differentiation follows the rule

∇ p = (∇ p̄ − ık p̄) exp(ı(ωt − kr)) (A5)
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Multiplying with a test function q̄ , integrating over the domain, and performing an integration by
parts, we obtain

ω2
∫




dr
(

q̄∗ 1

B
p̄

)
=

∫



dr
(

(∇q̄ − ıkq̄)† 1

ρ
(∇ p̄ − ık p̄)

)
,∀q (A6)

This variational equation is used to obtain band structures by varying the wavevector in the first
Brillouin zone. As a result of Hermitian symmetry in case the material parameters are purely real
(no material loss), the resulting eigenvalue problem for ω2 has only real and positive solutions. The
FEM formulation only requires truly periodic boundary conditions. Hussein22 proposes a similar
approach for elastic waves in solids.

To obtain a variational formulation of the complex band structure of a phononic crystal, we seek
to obtain an eigenvalue equation for the modulus of k while ω is a now a parameter. We write3

k = kα + k0 (A7)

where α is a unit vector accounting for a direction in reciprocal (Brillouin) space and k0 is a fixed
point in the same space. In the following, ∇ p̄ must be understood as a shorthand for ∇ p̄ − ık0 p̄.
We rewrite Equations (A3) and (A4)

− 1

ρ
∇ p̄ + ıkα

1

ρ
p̄ = ıωv̄ (A8)

ω2 1

B
p̄ = ∇ · (ıωv̄) − ıkα · (ıωv̄). (A9)

Next we define the normal acceleration (or acceleration along the propagation direction) as

φ = ıωα · v̄ (A10)

and we transform the two equations above to the two scalar equations

−α · 1

ρ
∇ p̄ + ık

1

ρ
p̄ = φ (A11)

ω2 1

B
p̄ = −∇ · (

1

ρ
∇ p̄) + ık(∇ · α)

1

ρ
p̄ − ıkφ. (A12)

Rearranging the terms we get

φ + 1

ρ
(α · ∇) p̄ = ık

1

ρ
p̄ (A13)

ω2 1

B
p̄ + ∇ · (

1

ρ
∇ p̄) = ık(α · ∇)

1

ρ
p̄ − ıkφ. (A14)

A variational form of these equations is obtained by considering a vector of two test functions
(ψ, q̄) living in the same finite element space as (φ, p̄)∫




drA(ψ, q̄; φ, p̄) = (ık)
∫




drB(ψ, q̄; φ, p̄),∀(ψ, q) (A15)

with

A(ψ, q̄; φ, p̄) = ψ∗φ + ψ∗ 1

ρ
(α · ∇) p̄ + ω2q̄∗ 1

B
p̄ − (∇q̄)† 1

ρ
∇ p̄ (A16)

B(ψ, q̄; φ, p̄) = ψ∗ 1

ρ
p̄ − (α · ∇q̄)∗

1

ρ
p̄ − q̄∗φ (A17)

The matrix form of this variational problem obtained by a FEM again assumes the form of a
generalized eigenvalue problem (but now for ık), with non symmetrical matrices. As a consequence,
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the eigenvalues are in general complex. In case B and ρ are real-valued functions, eigenvalues come
out as complex conjugate pairs.
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