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Calibration of imprecise and inaccurate numerical models

considering fidelity and robustness: a multi-objective optimization-

based approach

Sez Atamturktur, Zhifeng Liu, Scott Cogan, Hsein Juang

Abstract Traditionally, model calibration is formulated as a

single objective problem, where fidelity to measurements is

maximized by adjustingmodel parameters. In such a formulation

however, the model with best fidelity merely represents an

optimum compromise between various forms of errors and

uncertainties and thus, multiple calibrated models can be found

to demonstrate comparable fidelity producing non-unique solu-

tions. To alleviate this problem, the authors formulate model

calibration as a multi-objective problem with two distinct objec-

tives: fidelity and robustness. Herein, robustness is defined as the

maximum allowable uncertainty in calibrating model parameters

with which the model continues to yield acceptable agreement

with measurements. The proposed approach is demonstrated

through the calibration of a finite element model of a steel

moment resisting frame.
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1 Introduction

Due to inevitably uncertain model parameters and incomplete

representations of underlying physics, computer models only

provide an approximate representation of reality. The approx-

imate nature of computer modeling has motivated the devel-

opment of calibration techniques through which model pa-

rameters are tuned to achieve an improved agreement between

model predictions and measurements. In the calibration of

computer models, heuristic search algorithms developed for

optimization problems are reported to be particularly well

suited and thus, are widely implemented in many engineering

fields (Nagai and Kadoya 1979; Bekey and Masri 1983; Luce

and Cundy 1994; Franchini et al. 1998; Solomatinée 1999;

Mattsson et al. 2001; Farajpour and Atamturktur 2013).

Traditionally, in optimization-based calibration, fidelity to

measurements is treated as the sole objective, in that a set of

model parameter values is sought that maximizes the agree-

ment between model predictions and experimentally-

measured responses. In such treatments of model calibration

however, compensations between various forms of uncer-

tainties and errors inherent to the formulation and parameter-

ization of the numerical model as well as the nature of the

available experiments become inevitable. These compensa-

tions might be due to the limited spatial and frequency points,

noisy data, model form errors, collinearity between parame-

ters, etc. Thus, the obtained optimal fidelity model merely

represents the best compromise between uncertainties and

errors originating from diverse sources. These compensating

effects leads to a family of plausible models, each displaying a

comparablemeasure of fidelity to experiments, an issue com-

monly known as non-uniqueness (Berman 1995). What is

more, the number of non-unique solutions tends to increase

as measurement uncertainty increases or as the number of

available measurements decreases. It is also important to note

that these optimal and a forteriori suboptimal solutions may

still not yield acceptable levels of fidelity for an intended use.

Among candidate models demonstrating comparable fidel-

ity, a model could be considered preferable over another if it
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exhibits greater robustness to parameter uncertainty, meaning

that the model predictions remain within a predefined thresh-

old even when the uncertainties in the model parameters (or

model form) are considered. Such robustness can be conve-

niently calculated using the framework of info-gap decision

theory (Hemez and Ben-Haim 2004).

In this paper, the authors contend that not only the

fidelity of the model predictions but also the robustness

of this fidelity against uncertainty are important attri-

butes to be considered during model calibration. Hence,

the authors treat model calibration as a multi-objective

optimization problem where both the model’s fidelity to

measurements and robustness to parameter uncertainty

are treated as objectives. When these two objectives are

conflicting, the multi-objective treatment of model cali-

bration results in what is widely known as a Pareto

front presenting multiple plausible solutions and demon-

strating a trade-off relationship between the model’s

fidelity and robustness. Although multi-objective optimi-

zation can supply a clear picture of the trade-off rela-

tionship between fidelity and robustness, the decision

maker may still be left to select one, best-performing

model for a given intended use. Thus, an approach is

suggested herein to select a model that yields a prefer-

able compromise between the two objectives for a spe-

cific prediction. This paper formally presents the con-

ceptual framework of multi-objective model calibration

and demonstrates its application through a case study of

a steel frame building with imprecisely known connec-

tion parameters and an incompletely known model form. The

paper concludes with a discussion on incorporating the

intended use of a numerical model into the optimization

framework through the computation of self-consistency of

predictions.

2 Robustness in model calibration

Let’s consider a model predicting a system response, ys is a

function of model parameters, θ:

ys θð Þ ð1Þ

Model calibration, in the most traditional sense, involves

adjusting the values of θ in Eq. (1) to improve the agreement

between model predictions and measurements, ym. Optimal

values for θ are then sought to minimize the difference be-

tween model predictions and measurements. Herein, the vec-

tor of parameter values that yields maximum fidelity (i.e.,

minimum disagreement between predictions and measure-

ments) is indicated by θe f .

An alternative approach proposed by Ben-Haim et al.

(1998), Hemez and Ben-Haim (2004), and Ben-Haim (2004,

2012) is to satisfy a fidelity threshold, Rc, and optimize the

robustness of the model against uncertainty while delivering

this threshold fidelity (Eq. (2)).

ys θð Þ−ymj j < Rc ð2Þ

Within this approach, robustness is defined as the maxi-

mum allowable uncertainty in the poorly known θ parameters

such that model predictions agree with measurements no

worse than an amount Rc. Herein, the vector of θ parameter

values that yield maximum robustness is indicated by θer .
The difference between these two approaches to model

calibration, optimizing fidelity versus optimizing robustness,

is illustrated in Fig. 1 for a model with a single model param-

eter. Here, the model output, ys, is plotted as a function of the

model parameter, θ. As seen in this figure, the parameter value

that exhibits optimal fidelity, θe f , yields the smallest possible

error between predictions and measurements denoted as Rf.

This fidelity however is not assured due to the unavoidable

presence of both aleatory and epistemic uncertainties. The

former form of uncertainty reflects that the calibration param-

eters may have natural, irreducible variability. The latter re-

flects that in the context of model calibration, one cannot

guarantee that θe f represents the so-called true parameter

value due to inevitable compensations between various forms

of uncertainties and errors. Therefore, uncertainty remains in

the fidelity-optimal parameter value, θe f and as seen in Fig. 1,

when this uncertainty is considered, with only a slight devia-

tion from θe f denoted as bα f (indicating an absolute value),

model predictions reach errors beyond acceptable levels de-

fined by Rc.

On the other hand, the parameter value that exhibits optimal

robustness to uncertainty, θe f yields solutions that satisfy the

fidelity threshold, Rc, even when large deviations from θe f

denoted as bαr are considered (bαr >>bα f ). However, this

robust-optimal parameter value, θe f yields a larger error between

the predictions and experiments denoted as Rr compared to the

Fig. 1 Notional illustration of robustness and fidelity for a one-dimen-

sional problem
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fidelity-optimal parameter value (Rr>>Rf). As evident in Fig. 1,

the fidelity- and robust-optimal solutions would converge if the

relationship between the θ parameter and the ys output was linear.

Hence, robust-optimal calibration exploits the nonlinear relation-

ship between model inputs and outputs.

The multi-objective model calibration methodology imple-

mented herein can then be expressed as:

For a given Rc;

Find a population of θe to optimize : R θe
� �

and αb θe
� �

ð3Þ

where θe are the calibrated, best estimate model parameters

to be used as the nominal values in the rob bα f ustness

analysis. Note that in the formulation given in Eq. (3), error

between measurements and predictions at the best estimate

parameter values, R θe
� �

is minimized, while robustness, bα
θe
� �

is maximized. Satisfying these two objectives will lead to

multiple plausible solutions for θe . Further discussion on this

concept will be provided later.

The difference between fidelity-optimal and robust-optimal

parameter calibration is further illustrated in Fig. 2a, which

notionally plots prediction error, R against uncertainty in

model parameters, α, where low prediction error indicates

high fidelity. The fidelity-optimal model shown in Fig. 2

yields the smallest possible error when α=0 indicated with

Rf, but can only tolerate a small amount of uncertainly, before

it fails to satisfy the fidelity threshold, Rc. On the other hand,

the robust optimal model, which tolerates larger uncertainties,

bαr compared to the fidelity-optimal model yields higher

nominal errors, Rr. Therefore, Rf and bαr define the bounding

limits for maximum fidelity (i.e., minimum error) and robust-

ness obtained in the model predictions ys for a given Rc. The

most desirable outcome of course would be to reach bαr and Rf
simultaneously, what is widely known as the utopia point in

multi-objective optimization. When objectives are conflicting

as in this case, what is obtained instead is a family of compet-

ing solutions as shown in Fig. 2b. Once these competing

solutions are obtained, a decision maker may still need to

determine the preferred solution (Deb and Gupta 2010), i.e.

the model that strikes a balance between fidelity and

robustness.

We must emphasize that herein bαr is determined for a

given Rc. In info-gap analysis, one need not select the fidelity

threshold, Rc, a priori. Instead, the selection of Rc depends on

the trade-off between model robustness and a given fidelity

threshold (Hemez and Ben-Haim 2004). Thus, the model that

minimizes the shaded area shown in Fig. 2c would yield high

robustness considering all values of model fidelity bounded

by the predefined fidelity threshold, Rc. Minimization of the

shaded area is attractive as it strives to find a solution that is

robust for not only a specific fidelity level defined by the

threshold Rc but also for all fidelity levels that satisfy Rc.

This approach will be implemented in our research and de-

tailed in the remainder of the paper.

3 Background perspectives

In this section, approaches taken to achieve single objective

solutions to model calibration, i.e. fidelity-optimal and robust-

optimal solutions, will first be presented, followed by a dis-

cussion of the multi-objective optimization technique imple-

mented herein.

3.1 Calibration of imprecise and inaccurate numerical models

The model discussed in the previous section, ys(θ), can be

generalized to reflect control parameters, x, that define the

operational domain of the model, the domain within which the

numerical model is executed in a predictive capacity:

ys x; θð Þ ð4Þ

Control parameters define the operational and environmen-

tal settings. The range assigned for the control parameters

define the domain of applicability. It is within this domain

the engineering system operates and the computer model of

interest is used to make predictions. Hence, for model calibra-

tion, experiments must be conducted to explore the domain of

applicability. There is a clear distinction between control

parameters, x and calibration parameters, θ in that the former

Fig. 2 a α−bR αð Þ curves for

fidelity optimal and robustness

optimal model (b) α−bR αð Þ
curves for a family of alternative

models (c) The shaded area is to

be minimized while searching for

preferable compromise between

fidelity and robustness objectives

(Note: Within this figure, α

indicates the absolute value)
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can be controlled by the experimentalist and is assumed to be

known with certainty.

Provided that uncertainties in numerical solutions and ex-

perimental measurements are negligible, disagreements be-

tween the model predictions and experimental measurements

can primarily be attributed to two factors: parameter uncer-

tainty and model bias. In model calibration, parameter uncer-

tainty is typically addressed by adjusting model parameter

values to reduce the disagreement between experimental mea-

surements and simulation either deterministically (Ma and

Abdulhai 2001; Zhang et al. 2009) or stochastically

(Campbell 2006; Higdon et al. 2004). Moreover, model bias,

also known as model form error, arises due to simplified or

omitted representation of physical phenomena during the

development of the numerical model (Draper 1995). In model

calibration, model bias is typically addressed by empirically

training a mathematical error model to bias correct the predic-

tions (Kennedy and O’Hagan 2001; Higdon et al. 2007;

Atamturktur et al. 2011). Considering both parameter uncer-

tainty and model bias, experimental measurement, ym, can

then be related to simulation result, ys, through the following

equation:

ym xið Þ ¼ ys xi; tð Þ þ ψ xið Þ þ τ xið Þ; i ¼ 1;…; n ð5Þ

where n is the number of experiments, t is the true but

unknown vector of values for model parameters, θ, ψ(xi)

represents model bias, and τ(xi) represents experimental error,

commonly defined by a zero-mean Gaussian random variable.

In Eq. (5), the symbol t drops out of ym as t becomes a constant

(true) value during experiments. The implication of Eq. (5) is

that the response of the physical system can be predicted more

accurately by bias-correcting the inexact simulation model,

provided that model bias can be estimated at settings where

experiments are unavailable.

Consider a hypothetical model, ys with one model param-

eter that is set at its best estimate value, θe . Figure 3a illustrates

the incompleteness of this hypothetical model by comparing

the model predictions to five available physical experiments,

where it can be clearly seen that this model is unable to match

the experiments throughout the domain. One possible expla-

nation for this disagreement might be the use of an incorrect

value for θ (i.e. miscalibration of the model). In Fig. 3b, an

ensemble of model predictions is obtained by selecting alter-

native values of θ from a range of possibilities. When this

ensemble of predictions is compared to the five available

physical experiments, it becomes evident that no θ value is

correctly predicting all of the available five experiments.

Thus, the numerical model is inadequate and possibly

missing the necessary parameters to fully describe the

physical response of interest. Figure 3c shows that this

model incompleteness results in systematic bias in model

predictions. If this model inadequacy is not taken into

account while calibrating the uncertain model parameters,

parameters might be calibrated to mathematically viable but

physically incorrect values that compensate for model bias.

Draper (1995) emphasized that such compensating effects

typically lead to over-confidence in model predictions.

At tested settings of control parameters, xi, model bias,

ψ(xi), can be calculated as the difference between ym(xi) and

ys(xi, θe ). For untested settings, however, the model form error

is unknown and an independent error model must be trained

(Farajpour and Atamturktur 2013). This discrepancy model is

an approximation of the true model bias, ψ(x), obtained by

fitting a purely mathematical model to the known values of

model form error at the tested settings. Symbolically, the

discrepancy model is expressed as, δ(x, γ), where γ represents

a vector of coefficients that describes the discrepancy model.

These coefficients must be identified during model calibra-

tion. Note that the calibrated values of γ are dependent upon

the calibrated, best-estimate parameter values of the simula-

tion model, θe . With discrepancy model trained, best-estimate

predictions, bζ xð Þ , can then be obtained by summing the

calibrated model predictions with those of the trained discrep-

ancy model:

bζ xð Þ ¼ ys x; θe
� �

þ δ x;γð Þ ð6Þ

All too often, model bias is neglected during parameter

calibration, possibly leading to questionable eθ values. It is

however important to evaluate the role of model bias while

calibrating the model parameters. Only when the model bias is

determined sufficiently small, its omission can be justified.

Later in this paper, we will revisit the role of model bias in

model calibration.

3.2 Info-gap decision theory

Herein, lack of knowledge regarding the precise values of the

model parameters is represented with an info-gap uncertainty

model (Ben-Haim 2006), specifically the envelope model. In

this study, the uncertainty in parameters, α, also known as the

horizon of uncertainty, is measured by the ratio of the absolute

difference between the uncertain parameters, θ, and their

nominal values, θe , to the nominal values, as given in Eq. (7).

U α; θe
� �

¼ θ :
θ−θe
θe

����
����≤α

� �
;α≥0 ð7Þ

Therefore, in the envelope info-gap model used herein, the

horizon of uncertainty represents the uncertainty introduced to

the nominal value as a fraction.

Note that in the context of the present work, θe is the vector

of best estimate values obtained through parameter calibration

to reduce the disagreement between model predictions and

measurements. As uncertainty is introduced to this best
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estimate value, agreement between model predictions and

measurements may deteriorate. This deterioration is quanti-

fied by searching for the model with the worst predictive

ability for a given horizon of uncertainty, α. The function that

yields the worst case model predictions for increasing values

of horizon of uncertainty can be calculated as follows:

bR αð Þ ¼ max
θ U α;θeð ÞR θð Þ ð8Þ

where there will be a separate function for each calibrated θe .

As shown in Fig. 4, bR αð Þ is a monotonic, non-decreasing

function of α. As α increases, uncertain parameters are

allowed to vary within a larger range, thereby encompassing

a new worst-case value of bR αð Þ . For a given threshold

fidelity, Rc, robustness, bα , consistent with the manner intro-

duced earlier in this paper, can then be calculated as follows:

bα ¼ max α : bR αð Þ≤Rc

n o
ð9Þ

Conceptually, bα is the maximum horizon to which the

info-gap uncertainty model is allowed to expand before the bR
αð Þ exceeds the critical performance value, Rc (see Fig. 4).

The larger bα is, the larger the amount of uncertainty the model

can tolerate and thus the greater the robustness. Hence, the

horizon of uncertainty plotted against worst case model

prediction as shown in Fig. 4 (and shown earlier in Fig. 2) is

referred to as robustness function. It should be clear that bR αð Þ
supplies the inverse of the robustness function.

3.3 Multi-objective optimization

The approach proposed in the previous section for model

calibration naturally leads to a multi-objective optimization

problem with two distinct objectives: improving the fidelity

and robustness of the model predictions. When these two

objectives conflict, a single solution that optimizes both of

these objectives would not exist in the solution space.

However, a set of solutions, referred to as a Pareto front, that

are better than all other solutions can be obtained. In Fig. 5, a

Fig. 3 a Comparison between

experiments and nominal model

predictions (b) Ensemble of

model predictions ys(x,θ)

obtained with −1 ≤ θ ≤ +1 (c)

Comparison of prediction

statistics, “truth” function, and

model form error

Fig. 4 Illustration of Info-gap robustness
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few representative Pareto fronts are shown for two-objective

optimization problems. The shape of the Pareto front visually

displays the level of compromise needed from one criteria to

improve other and hence, reflects the nature and complexity of

the tradeoff between multiple objectives of model calibration.

Of course, if the fidelity and robustness objectives do not

conflict for a particular problem then the optimum solutions

for both objectives would merge at a single point in the

solution space.

In this study, the Non-dominated Sorting Genetic

Algorithm II (NSGA-II) is implemented because of its proven

capability in identifying the Pareto front efficiently while

maintaining solution diversity (Deb et al. 2002; Cagkan

et al. 2006). NSGA-II is a variant of the Genetic Algorithm,

with the essential part of non-dominated sorting. In the context

of NSGA-II, the Pareto front presents a set of solutions that are

not dominated by all other designs. The domination relation is

defined as follows (Marler and Arora 2004): B is dominated

byA if A is not inferior to B in all objectives, and A is superior

to B in at least one objective (Fig. 5). As for a two-objective

case, B is dominated by A if only one of the following

criterions is satisfied: 1) A is better than B in both objectives

or 2) A is better than B in one objective, but A equals B in the

second objective. If one solution is not dominated by any

other solution, it belongs to the Pareto front.

In NSGA-II, the Genetic Algorithm operators, such as

selection, recombination and mutation are used to guide the

evolution of populations (i.e. group of solutions) from gener-

ation to generation until the solution reaches an optimum state.

In our study, a population size of 50 is used for each genera-

tion with the Pareto front acquired after 100 generations. The

intermediate method is selected as a crossover operator with a

crossover ratio of 1.2; the Gaussian method is selected as a

mutation operator with scale and shrink coefficients set to 0.1

and 0.5, respectively (Lobo et al. 2007).

Being a population-based optimization method, NSGA-II

operates on a group of solutions rather than one solution at a

time thus efficiently yielding the Pareto front in a single run. Of

course, many other multi-objective optimization methods can

also be implemented to derive the Pareto front, a comprehensive

survey of which is provided by Marler and Arora (2004).

4 Case study

The proposed model calibration methodology is demonstrated

on the plastic deformation of a steel portal frame with pinned

supports shown in Fig. 6 using the object-oriented, open

source software framework, The Open System for

Earthquake Engineering Simulation (OpenSees). Beam plas-

ticity is represented using an elastic beam with nonlinear

rotational springs at both ends. The nonlinear rotational

f 1

Pareto

front

f 2

solution
space

solution
space

solution
spacesolution

space

Pareto

front

Pareto

front

Pareto

front

utopia

point

utopia

point

utopia

point

utopia

point

f 1

f 2

f 1

f 2

f 1

f 2

B

A

(b)(a)

(d)(c)

Fig. 5 Plausible forms of Pareto

fronts that can be obtained in a bi-

objective space
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springs are modeled using the Ibarra Krawinkler (IK) model

(Ibarra et al. 2005) (Fig. 6).

The IK model used to represent the nonlinear rotational

spring shown in Fig. 7 requires the definition of five param-

eters (Lignos and Krawinkler 2009):

(1) Ki, the initial stiffness of the linear segment;

(2) My, the moment at which the beam begins to yield;

(3) β1, the strain hardening ratio, a ratio of the pre-capping

stiffness to Ki;

(4) βc, the post-capping hardening ratio, a ratio of the post-

capping stiffness to Ki;

(5) Mc/My, which is the ratio of the moment at the capping

point (Mc) to yielding moment.

Figure 6a shows the hypothetical ‘accurate’ model that con-

siders a rigid offset and uses the hypothetical ‘precise’ values of

the five IK model parameters (listed in Table 1). Using this

model, synthetic experimental data is generated through push-

over analysis where the load P is applied in 25 steps until 10 %

drift is reached. Applied force at each increment of 0.4 % drift is

recorded to obtain drift-force curves as shown in Fig. 8.

Two different scenarios are evaluated. In the first scenario,

the model developer is assumed to be completely knowledge-

able about the physical nature of the problem in that an exact

model form is assumed to be available. In the second scenario,

the model developer, is assumed to neglect the rigid-offset

necessary to model the panel zone (resulting in model bias). In

either scenario, the model developer is assumed to be unaware

of the precise values of IK model parameters but knowledge-

able about their plausible ranges (resulting in parameter un-

certainty). The ranges for these parameters are taken from

those suggested by Lignos and Krawinkler (2011) (see

Table 1). Hence, the problem in hand is one of calibrating

the poorly-known model parameters (i.e. IK connection pa-

rameters) and when necessary, bias correcting the model

prediction to account for model incompleteness (i.e. lack of

rigid offset to model panel zone).

In the following sections, the proposed multi-objective

optimization-based methodology to model calibration is dem-

onstrated on three different schemes considering varying

knowledge levels of the model developer:

1) An accurate model with imprecise parameters, where

only model parameters are calibrated (i.e., model devel-

oper has knowledge of the correct model form);

2) An inaccurate model with imprecise parameters, where

model parameters are calibrated and a discrepancy model

is trained (i.e. model developer does not have the knowl-

edge of the correct model form, but is aware of the

model’s inadequacy);

Fig. 6 a Hypothetical accurate

model with precise IK model

parameter values used to generate

synthetic experimental data (b)

Inaccurate model missing rigid

offset with unknown parameter

values

Fig. 7 Ibarra Krawinkler deterioration model (adopted from Lignos and

Krawinkler 2011)

Table 1 Precise values and plausible ranges for the five IK model

parameters

Ki (kip*in/rad) β1 βc My (kip*in) Mc/My

Exact value 2000000 0.03 −0.05 12000 1.2

Lower bound 1800000 0.02 −0.08 10000 1

Upper bound 2200000 0.04 −0.03 14000 1.4

7



3) An inaccurate model with imprecise parameters, where

only model parameters are calibrated and discrepancy is

neglected (i.e. model developed does not have the knowl-

edge of the correct model form, and is not aware of the

model’s inadequacy).

For all three schemes, NSGA-II is employed to solve the

proposed multi-objective calibration problem simultaneously

considering fidelity and robustness of the predictions. A total

of 25 measurements for the drift at varying load levels are

assumed available for model calibration (recall Fig. 8).

4.1 Scheme 1: exact model form with poorly known

parameters

The proposed calibration methodology is first deployed on an

accurate model without the need to consider prediction bias.

Therefore, R(θ) is defined as follows:

R θð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk

i¼1
ym xið Þ−ys xi; θð Þð Þ

2
r

i ¼ 1;…; n ð10Þ

where ys denotes the plastic deformation predictions of the

OpenSees model of the steel portal frame with pinned sup-

ports, and n denotes the number of experiments. Here, an

accurate model i.e., the model with panel zone is considered.

For each set of calibrated model parameter values, bR αð Þ , is

calculated considering fractional uncertainty in parameter

values between 0 and 0.1 in steps of 0.01. For a threshold

fidelity value (Rc of 12 kips), info-gap robustness, bα , is then

determined as the α value of the intersection point of the α−

bR αð Þ curve with bR αð Þ ¼ Rc . Multi-objective optimization as

previously presented in Eq. (3) is solved to optimize both

fidelity and robustness of model predictions. Figure 9 presents

the evolution of the fidelity and robustness of model predic-

tions obtained through NSGA-II generations.

As evident in Fig. 9, solutions of the first generation

perform poorly in both bα and R(θe ), however solutions evolve

from generation to generation and ultimately reach the con-

verged Pareto front yieldingmodels with improved robustness

and fidelity. Within the Pareto front solutions, the tradeoff

relationship between bα and R(θe ) can be clearly observed in

Fig. 9, where the model with larger bα exhibits a greater R(θe ),

and the model with smaller R(θe ) exhibits a lesser bα .

Evaluating the two extremes, the fidelity-optimum solution

has an R(θe ) of 0.2552 and an bα of 0.0457, while the

robustness-optimum solution has an R(θe ) of 7.804 and an bα
of 0.0889. As shown, though the fidelity-optimal model yields

the smallest nominal errors, it tolerates the smallest amount of

uncertainly before the fidelity threshold, Rc, is violated. While

the robust-optimal model can tolerate the maximum amount

of uncertainties, it yields the largest nominal errors.

In Fig. 10, the fidelity- and robust-optimum solutions are

visually compared against all other Pareto front solutions by

overlapping the α−bR αð Þ curves. As discussed earlier, among

all Pareto front solutions finding an alternative model that

strikes a compromise between the two objectives is possible
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Fig. 8 Drift-force curve obtained using the precise and accurate (i.e. true)

model, also referred to as synthetic experiments

Fig. 9 Distribution of robustness and fidelity of candidate models at

selected generations for Scheme 1

Fig. 10 α−bR αð Þ curves for obtained Pareto front solutions for Scheme 1
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by minimizing the area above the α−bR αð Þ curve, referred

henceforth as area-optimum model. This area-optimum solu-

tion, shown in Fig. 10, has an R(eθ ) of 3.105 (a roughly

60 % reduction in R(θe ) compared to the robust-optimal

model), an bα of 0.078 (a roughly 70% gain in bα compared to

the fidelity-optimal model).

The calibrated parameter values, bα , R(θe ) and area

above the α−bR αð Þ curve are listed in Table 2 for the

three optimality conditions (i.e. fidelity-, robustness- and

area-optimum). Although the model developer is as-

sumed in this scheme to be perfectly knowledgeable of

the model form (which is rarely the case in practical

applications), model calibration fails to yield the ‘true’

values for the parameters due to the unavoidable com-

pensations between five calibration parameters. It must

be noted that the fidelity-optimum model yields the

highest errors (up to 25 %) in the five calibrated IK

parameters compared to the robust-optimum and area-

optimum solutions.

4.2 Scheme 2: inexact model form with poorly known

parameters (with bias-correction)

For the second scheme, the model developer is assumed to

disregard the panel zones thereby introducing inaccuracy, or

model bias. However, the model developer is assumed to be

aware of the presence of such bias. Hence, to account for the

resulting model incompleteness, a discrepancy model is

trained to bias correct the inaccurate model. Here, R(θ) is

defined as follows:

R θð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk

i¼1
ym xið Þ−ys xi;θð Þ−δ xi; γ

���θ

0
@

1
A

0
@

1
A

2
vuuut i ¼ 1;…; n

ð11Þ

where ys denotes the model prediction based on the inac-

curate model, and n denotes the number of experiments.

Fidelity is inversely related to the prediction error, which is

defined as the difference between measurements, ym and

calibrated and bias corrected predictions, bζ xð Þ (see Eq. (6)).

While training the discrepancy model for bias correction, the

procedure described in Farajpour and Atamturktur (2013) is

followed by gradually increasing the order of the polynomial

emulator and observing the calibration (at the training points)

and generalization (at other than the training points) errors.

Accordingly, a 7th order polynomial model is trained to

approximate the discrepancy bias. Consistent with the previ-

ous scheme, an Rc level of 12 kips is used. The evolution of

the NSGA-II algorithm obtained for this scheme is shown in

Fig. 11, and the α−bR αð Þ curves for the Pareto front solutions

are plotted in Fig. 12. The calibrated parameter values,αe ,R(θe )
and area above the α−bR αð Þ curve are listed in Table 3 for the

three optimality conditions (i.e. fidelity-, robustness- and area-

optimum).

Consistent with the observations of Scheme 1, Fig. 12

demonstrates that the fidelity-optimal model yields the

smallest nominal errors, but can tolerate the smallest amount

of uncertainly before Rc is violated. The robust-optimal mod-

el, which can tolerate the maximum amount of uncertainty,

yields the largest nominal errors. Hence, calibrating the model

parameters for only one objective leads to a calibrated model

that performs worst in the other objective. However, the area-

optimum model strikes a balance between R(eθ ) and bα in that

a 31% gain in fidelity is achieved at the expense of only a 6 %

loss in robustness. Once again the compensating effects result

in calibrated model parameter values deviating from their

hypothetical true values (up to 15 % for the robust- and

area-optimum models). It is important to note that no optimal-

ity criterion offers a remedy to fully prevent the compensation

between calibration parameters as well as the emulator trained

to represent model bias.

Table 2 Properties of the calibrated models for Scheme 1 evaluated for fidelity optimum, robustness optimum and area optimum solutions

Ki (kip*in/ rad) β1 βc My (kip*in) Mc/My bα R θe
� �

Area (kips)

Exact value 2000000 0.03 −0.05 12000.00 1.20 – – –

Fidelity optimum

Calibrated value 2047470 0.032 −0.039 12283 1.261 0.0457 0.2552 0.293

Percent difference 2.35 % 6.45 % −24.72 % 2.33 % 4.96 % – – –

Robustness optimum

Calibrated value 1988312 0.0293 −0.045 12086 1.202 0.0889 7.804 0.272

Percent difference −0.59 % −2.36 % −10.53 % 0.71 % 0.17 % – – –

Area optimum

Calibrated value 1992300 0.0297 −0.042 12181 1.233 0.078 3.105 0.251

Percent difference −0.39 % −1.01 % −17.39 % 1.50 % 2.71 % – – –
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4.3 Scheme 3: inexact model form with poorly known

parameters (without bias-correction)

As in the second scheme, the model developer in the third

scheme is assumed to neglect the panel zones resulting in

model bias. Unlike the previous scheme however, the model

developer is assumed to be unaware of model incompleteness.

Hence, here a discrepancy model is not trained, meaning that

the calibrated model parameters, θ, are likely to compensate

for the model bias. R(θ) is then defined as follows:

R θð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk

i¼1
ym xið Þ−ys xi; θð Þð Þ

2
r

i ¼ 1;…n ð12Þ

where ys denotes the model prediction based on the inac-

curate model and n denotes the number of experiments.

Since the model predictions are not bias corrected in this

scheme, the disagreement between model predictions and

measurements is significantly higher compared to the first

two schemes in that no solution can be found that satisfies

the fidelity threshold of 12 kips (Rc value used in schemes 1

and 2). Therefore, an Rc value of 150 kips is defined in this

scheme with the objective being to obtain a number of plau-

sible solutions similar to the first two schemes evaluated

herein. As before, the evolution process of bα and R(eθ ) is

shown in Fig. 13. The α−bR αð Þ curves for the Pareto front

solutions are plotted in Fig. 14. The calibration parameters bα ,

R(eθ ) and area above the α−bR αð Þ curve are listed in Table 4

for fidelity-optimum, robustness-optimum and area-optimum

solutions.

Compared to the first two schemes, the calibration param-

eters deviate significantly more from the exact values. This is

expected since the best estimate predictions are not bias-

corrected resulting in the model error being lumped into

parameter errors. This observation is true for all optimality

conditions, where the deviations from true values are as high

as 50% for the robust- and area-optimummodel. A close look

at the calibratedmodel parameters reveals that the fidelity- and

robust-optimal models reach two significantly different sets of

parameters. The area-optimal model presents yet another al-

ternative solution that can be said to outperform the robust-

optimal model with the exception of Ki. However, none of the

optimality conditions entirely prevent calibration parameters

from compensating for each other as well as for the inherent

bias in model predictions. This observation demonstrates the

fundamental flaw in the prevailing engineering paradigm of

selecting a single, optimum model in model calibration.

5 Intended use of the model

The proposed multi-objective optimization-based model cali-

bration approach can be extended to incorporate other objec-

tives, such as the intended use of the model. Computer models

are typically developed with the intent to predict a response

(either the same as or different from the calibration experi-

ments) at untested settings or configurations. Hence, experi-

ments are rarely available to determine the fidelity or robustness

of the model specifically for its intended use. While evaluating

the performance of a model to fulfill its intended use in cases

where experiments are unavailable, the self-consistency ofmod-

el predictions supplies an alternative (Ben-Haim and Hemez

2012). The term self-consistency implies the tightness (or lack

of variability) of the model predictions when the uncertainties

in model parameters are considered.

For demonstration purposes, the model calibration problem

is configured as a three-objective optimization with fidelity,

robustness and self-consistency as objectives. The aim herein

is to maximize the self-consistency of the model predictions

for the intended use of the model. The model developed to

analyze the portal frame, shown earlier in Fig. 6, is utilized

and the intended use is assumed to be the prediction of the

spring rotation (IK model). Self-consistency is calculated

considering the predictions of the model at untested settings

using the calibrated parameter values, eθ , and the associated

Fig. 11 Distribution of robustness and fidelity at selected generations for

Scheme 2

Fig. 12 α−bR αð Þ curves for obtained Pareto front solutions for Scheme 2
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robustness, bα . The NSGA-II algorithm is employed with 200

individuals in the population and is executed for 200

generations.

The trade-offs between self-consistency and the fidelity of

the model for a predefined desirable robustness level are shown

in Fig. 15. In this figure, there are three distinct zones. In the

first zone, a small but rapid improvement in self-consistency

can be obtained by incurring an insignificant loss in fidelity. In

the second zone, an insignificant gain in self-consistency can be

had at the expense of a large loss in fidelity. Finally, a third zone

exists in which a significant gain in self-consistency can be

achieved with a minimal loss of fidelity. For instance, if the

decision maker decides to stay in the first zone, among models

with identical robustness and almost identical fidelity, it would

be logical to justify the selection of the model with the highest

self-consistency. Of course, model calibration must be repeated

if the intended use of the model changes.

6 Conclusions

The non-unique solutions that are commonly obtained through

optimization-based model calibration, where different combi-

nations of calibration parameters reproduce experimental data

with similar fidelity, clearly demonstrate that model fidelity is

an incomplete metric for parameter calibration. The findings

obtained through the case study structure reveal that optimizing

calibration parameters solely to maximize fidelity to measure-

ments would yield an arbitrary solution from a family of

plausible sets of parameter values. Hence, in model calibration,

the compensation between the parameters is an inevitable issue

even with the absence of bias in the model predictions. This

finding is demonstrated in Scheme 1 where the calibrated

parameters of the exact model converge to values that are

different than the true values. When bias is presented in the

model predictions, which is represented in Schemes 2 and 3, the

compensating effects are reduced when an independent error

model is trained to consider the bias (as evident in Scheme 2)

compared to the case when model incompleteness is neglected

(as observed in Scheme 3). The findings of this paper demon-

strate that the prevailing engineering paradigm of selecting a

single, fidelity-optimal model in calibration is fundamentally

flawed due to compensating effects, especially when the model

incompleteness is neglected.

An alternative approach to calibrating a model with respect

to its fidelity is calibrating it with respect to its robustness. In

this approach, a model that satisfies a certain fidelity threshold

Table 3 Properties of the calibrated models for Scheme 2 evaluated for fidelity optimum, robustness optimum and area optimum solutions

Ki (kip*in/ rad) β1 βc My (kip*in) Mc/My bα R θe
� �

Area (kips)

Exact value 2000000 0.03 −0.05 12000 1.20 – – –

Fidelity optimum

Calibrated value 2047470 0.03 −0.045 12176 1.232 0.06 2.243 0.201

Percent difference 2.35 % 0.00 % −10.53 % 1.46 % 2.63 % – – –

Robustness optimum

Calibrated value 1977420 0.0291 −0.043 12047 1.176 0.089 8.263 0.191

Percent difference −1.14 % −3.05 % −15.05 % 0.39 % −2.02 % – – –

Area optimum

Calibrated value 1994300 0.0298 −0.043 12082 1.212 0.087 6.375 0.124

Percent difference −0.29 % −0.67 % −15.05 % 0.68 % 1.00 % – – –

Fig. 13 Distribution of robustness and fidelity at selected generations for

Scheme 3 Fig. 14 α−bR αð Þ curves for obtained Pareto front solutions for Scheme 3
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and maximizes the robustness against uncertainties in model

parameters is sought. In this study, such robust-optimal solu-

tions are observed to yield the most truthful model parameters

for the case with no inherent bias. However, the presence of

model bias is observed to increase the severity of compensat-

ing effects in robustness-based calibration where obtained

solutions deviate significantly from their true parameter

values. In cases where model incompleteness is remedied

through bias correction, deviations from true parameter values

are seen to be as high as 15 %; however when model incom-

pleteness is neglected altogether during model calibration, the

deviations reach as high as 50 %. Moreover, the results

obtained in this study demonstrate that the selected robust-

optimal model is strictly dependent upon the predefined fidel-

ity threshold, Rc, and is not guaranteed to be optimal for all

fidelity levels that satisfy the threshold requirement (R<Rc).

The Pareto front solutions obtained in this study demon-

strate that calibrating a model strictly for one objective

(fidelity or robustness) results in the worst performance in

the other objective. Furthermore, the two extreme cases (fi-

delity-optimum versus robust-optimum) may yield solutions

that may greatly sacrifice one objective to marginally improve

the other. Thus, it might be necessary to search for a compro-

mise between these two approaches. In that regard, the authors

suggest one such approach that aims to maximize the robust-

ness for any fidelity threshold (lower than Rc). These area-

optimal solutions are observed to find a preferable trade-off

between fidelity and robustness for all three schemes. Other

definitions of suitable compromise between fidelity and ro-

bustness can also be defined based on the specifics of the

problem.

Note that none of the three optimality criterion fully rem-

edy the risk of converging to a set of model parameters that

best compensate for each other (and/or for model bias) to

minimize a certain objective and only additional dedicated

tests would be able to reduce this effect. Consequently, the

authors contend that the evaluation of the calibrated model

parameter values for all Pareto front solutions is necessary to

determine the severity of such compensating effects. The lack

of a mechanism to make a clear distinction between family of

plausible solution can hence be listed as the major weakness

of the multi-objective calibration approach. Future research

will focus on investigating the possible clustering of the

calibrated model parameter values of Pareto front solutions.

The multi-objective calibration approach can be extended

to incorporate additional objectives that may be important for

a specific problem. In this paper, this versatility is demonstrat-

ed focusing on the self-consistency of the model predictions at

settings where experiments are not available. Here, self-

consistency is defined to be inversely proportional to the

variability of the model predictions obtained with parameter

values sampled from a convex domain with a dimension of

alpha. With this implementation, calibration parameters that

minimize the error between model predictions and experi-

ments (i.e. at tested settings), maximize the robustness of the

Table 4 Properties of the calibrated models for Scheme 3 evaluated for fidelity optimum, robustness optimum and area optimum solutions

Ki (kip*in/ rad) β1 βc My (kip*in) Mc/My bα R θe
� �

Area (kips)

Exact value 2000000 0.03 −0.05 12000 1.20 – – –

Fidelity optimum

Calibrated value 2199360 0.0343 −0.051 13124 1.186 0.0558 22.59 2.0533

Percent difference 9.49 % 13.37 % 1.98 % 8.95 % −1.17 % – – –

Robustness optimum

Calibrated value 2035200 0.04 −0.03 13973 1.0702 0.1 41.69 1.3086

Percent difference 1.74 % 28.57 % −50.00 % 15.19 % −11.44 % – – –

Area optimum

Calibrated value 2190690 0.0398 −0.03 12892 1.167 0.0891 34.71 0.7237

Percent difference 9.10 % 28.08 % −50.00 % 7.17 % −2.79 % – – –

Fig. 15 Configuring model calibration specific to the intended use of the

model in a three-objective optimization problem

12



model predictions to uncertainty in input parameters (i.e. at

tested settings) and minimize the spread of the model predic-

tions (i.e. at untested settings).

The drawback of the multi-objective calibration is its high

computational demands. The case-study problem implement-

ed herein included a model that was amenable for obtaining a

large number of computer runs quickly. The multi-objective

calibration still took approximately 50 h on a laptop with i7-

3632 QM cpu @ 2.2 GHz for all three schemes with two

objective optimization. The multi-objective calibration con-

sidering three objectives (as discussed in the section 5) took

approximately 3 weeks to complete on the same laptop.

Hence, if multi-objective calibration is to be applied for more

computationally demanding problems, implementation of a

fast-running emulator (also known as surrogate model or

meta-model) would be crucial.
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