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electrostatically actuated carbon nanotube-based mass sensors

S. Souayeh, N. Kacem∗
FEMTO-ST Institute – UMR 6174, CNRS-UFC-ENSMM-UTBM, 24, chemin de l’Épitaphe, F-25000 Besançon, France

A comprehensive multiphysics model of a cantilevered carbon nanotube (CNT) including geometric and

electrostatic nonlinearities is developed. The continuous model is reduced to a finite degree of freedom

system by the Galerkin discretization and solved using the harmonic balance method (HBM) coupled with

the asymptotic numerical method (ANM). The influence of higher modes on the nonlinear dynamics of

the considered resonator is investigated in order to retain the number of modes which will be used by

the HBM+ANM procedure. Several simulations are performed for a specific CNT design in order to obtain

a wide range of frequency shifts with respect to the mass and position of an added particle. This model

is an intuitive way for designers to develop resonant nanosensors vibrating at large amplitudes for mass

detection. Particularly, it is demonstrated that the mass and position of a particle can be determined

based on the proposed model reduced to the first bending mode coupled with the analytical expressions

of the linear frequency shifts for the second and third modes.

1. Introduction

Electromechanical resonators play an important role in a vari-

ety of fields [1]. One of the most important applications is the

mass detection, particularly, the detection of tiny amounts of mass

[2–6]. For highly sensitive tasks, we talk about mass spectrometry.

For example, mass spectrometry can provide quantitative identi-

fication of individual protein species in real time [7]. Among the

most sensitive ones are sensors based on thin film [8], micron-

sized cantilevers [9], the acoustic vibratory modes of crystals [10],

nanocantilevers [11] and carbon nanotubes [7,12,13]. Mass spec-

trometers are composed by three parts: analyte ionization, analyte

separation and detection [14]. These systems are widely used for

several applications such as proteomics [15,16].

The micro [17]/nano [2]-electromechanical systems have large

quality factors and reduced dimensions allowing to achieve fem-

togram (1fg = 10−15 g) [3,18], attogram (1ag = 10−18 g)[11] and

zeptogram [5] (1zg = 10−21 g) resolutions. Recently, some devices

can reach the mass sensitivity of the range of Dalton (1 Da = 1 AMU)

[19–22]. The sensitivity of a resonant mass sensor may be estab-

lished by two properties: the resonant’s effective vibratory mass

determined by its geometry and material properties and the stabil-

ity of the frequency for long and short term governed by intrinsic

and extrinsic processes [19].

∗ Corresponding author. Tel.: +33 381 66 67 02; fax: +33 381 66 67 00.

E-mail addresses: najib.kacem@femto-st.fr, najib.kacem@univ-fcomte.fr

(N. Kacem).

Nonlinear dynamics is one of the most important properties for

NEMS, allowing them to display interesting behaviors. Nonlinear-

ities in nanoresonators can be inertial, geometric [23] or obtained

by external forces [24]. A multitude of nonlinear phenomena have

been observed in NEMS such as periodic attractors [25], bifurcation

topology [26] and bistability [27].

Different methods have been used in order to solve the resulting

non-linear equations of motion of a resonator such as the shooting

method [28], time integration method [29], perturbation methods

[30] and the method of non-linear normal forms [31]. In order to

study the vibrational behavior of NEMS, some researches have been

done using finite element-formulation [32]. For nonlinear vibra-

tions, it is often required to calculate the periodic solutions of

nonlinear differential equations. To this end, numerical methods

are used. They are subdivided into two approaches: those relying on

the time-domain formulation and those relying on the frequency-

domain formulation. The first approach consists on transforming

the original differential system into a set of algebraic equations

by using an integration algorithm, and then, solving the obtained

equations by continuation. The shooting method is an example

of this category. The second approach is the harmonic balance

method (HBM) for which the unknown variables are decomposed

into truncated Fourier series. The choice between the time-domain

or the frequency-domain approach depends on whether the peri-

odic solution can be decomposed with a few Fourier components.

Cantilevered sensors are very useful for biological, chemical

and physical sensors [3,33,34]. It is commonly known that the

dynamic range (DR) of cantilevers is very large compared to the DR

of the clamped–clamped beams (>20 times) [35]. Furthermore, the
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Fig. 1. Schematic of a cantilevered carbon nanotube oscillator electrostatically actuated.

miniaturization of such devices will produce nanocantilevers with

higher frequencies [36] and low power consumption, which make

them the most appropriate candidates for mass sensing applica-

tions.

An attached mass to a cantilever will cause the frequency shift

in the fundamental mode of vibration [19,20]. The position and the

mass of an added particle will change the mass response of the res-

onator [37]. Therefore, it is essential to provide a method allowing

the simultaneous detection of the mass and position. Such method

can be of a great interest for hollow cantilevers [38] in which the

molecules are adsorbed on the internal surface at an unknown

position. The most sensitive hollow device is the carbon nanotube,

since the carbon is a material of choice for ultrasensitive resonators

[39–41]. Due to the low mass of the nanotube (few attograms),

a tiny amount of atoms deposited onto it represents a significant

fraction of the total mass. In addition, nanotubes are mechanically

ultra-rigid permitting the increase of the resonance frequency. Two

major possibilities of the position of the added molecules on the res-

onators can be considered: the particules are added as a point mass

[42] or are in a homogeneous layer covering all of the cantilever [5].

The response of the cantilever is sensitive to the variation of the

position of the mass [43]. So, the particle position should be known

in order to determine effectively the mass value. Several investi-

gations were done in order to develop a technique allowing the

simultaneous position and mass detection. But, such algorithms

are very complicated and demand a sophisticated mathematical

methods to be solved. The alternative to avoid this problem is to

find relations between mass and position of the added particules

and the resonant frequencies of the cantilever [44] by measuring

the resonant frequencies of the beam without and with added mass

for several vibrational modes.

In this paper, the nonlinear dynamics of a carbon nanotube

(CNT) is investigated. To this end, a multiphysics model including

the main sources of nonlinearities is developed. The mechanical

nonlinearity is principally geometric while the electrostatic one is

expanded in Taylor series up to the fifth order to take into account

all relevant nonlinear terms for NEMS [26,45]. In order to investi-

gate the responses of a CNT oscillator for the detection of the mass

and the position of an added particle, an efficient numerical proce-

dure has been used. The main idea is to provide numerical tools for

NEMS designers in order to enhance the performances of resonant

mass sensors.

Firstly, a design of an electrostatically actuated CNT is proposed

and modeled. The electrode has the particularity to be placed at

a specific position relatively to the nanotube in order to enlarge

the NEMS dynamic range and localize a specific position of the

transduction close to the fixed end of the CNT. Then, the Galerkin

discretization procedure is used in order to transform the mul-

tiphysics continuum problem into a finite system of nonlinear

ordinary differential equations in time. The reduced-order model

is solved numerically using the harmonic balance method coupled

with the asymptotic numerical continuation technique. Based on

these numerical methods, the frequency responses of the CNT for

several design parameters are derived and investigated in the lin-

ear and nonlinear configurations, so that, we can retain the number

of modes which gives the most accurate results.

Finally, the frequency shifts of the resonance peaks are numeri-

cally tracked on three modes for a particular CNT design and several

added masses in different positions along the NEMS length. The

maps of the frequency shifts are derived with respect to the mass

and position of the added particle for linear and nonlinear configu-

rations. By comparing the two cases, a hybrid analytical–numerical

approach is proposed which is computationally less time consum-

ing allowing the construction of larger frequency shift maps in

order to enhance the mass detection accuracy.

2. Design and model

We consider a carbon nanotube (CNT) resonator depicted in

Fig. 1. It consists of a single nanocantilever with an annular cross

section initially straight, clamped at one end and free at the other

end. It is actuated by an electrostatic force v(t̃) = Vdc + Vac cos(�̃t̃),

where Vdc is the dc polarization voltage, Vac is the amplitude of the

applied ac voltage, t̃ is the time and �̃ is the excitation frequency.

The electrode is positioned at a distance d1 from the fixed end in

order to place a piezoelectric or piezoresistive transduction [46]

and at a distance d2 from the free extremity in order to enlarge the

oscillator dynamic range below the upper bound limit which is the

pull-in [28], since the coefficients of the bending modes are lower

at L − d2 in comparison with the ones at L.

The CNT is modeled as an Euler-Bernoulli beam of length L and

with a quality factor Q. It has an internal radius R̃1, an external one

R̃2.

2.1. Equation of motion

The equation of motion of the CNT can be written as [13]:

EI∂x̃,x̃,x̃,x̃w̃ + �A∂t̃,t̃w̃ + c̃∂t̃w̃ = EI∂x̃(∂x̃w̃∂x̃(∂x̃w̃∂x̃,x̃w̃)) + H(x̃)F̃ (1)

H(x̃) = H(x̃ − d1) − H(x̃ − L + d2)

where ∂x̃ denotes the partial differentiation with respect to x̃
which is the coordinate along the nanotube length L, ∂t̃ is the

partial differentiation with respect to the time t̃, w̃(x̃, t̃) is the

in-plane bending deflection, E is the effective Young’s modulus,

I = (�/4)(R̃2
4

− R̃1
4
) is the moment of inertia of the circular cross-

section, � is the density of the nanotube material, A = �(R̃2
2

− R̃1
2
)
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is the cross-section area and c̃ is the coefficient of the viscous damp-

ing per unit length.

The carbon nanotube is subject to the electrostatic actuation

H(x̃)F̃ , where H(x̃) includes heaviside functions H in order to indi-

cate the position of the electrode with respect to the oscillator,

wherein d1 + d2 < L, and F̃ is the electrostatic force expressed as

F̃ =
��0(Vdc + Vac cos(�̃t̃))

2

√

(g − w̃)(g − w̃ + 2R̃)(cosh−1(1 + (g − w̃)/R̃))
2

(2)

where �0 is the dielectric constant of the gap medium. The

boundary conditions are:

w̃(0, t̃) = 0, ∂x̃w̃(0, t̃) = 0,

∂x̃,x̃w̃(L, t̃) = 0, ∂x̃,x̃,x̃w̃(L, t̃) = 0
(3)

2.2. Normalization

For convenience, Eq. (1) is normalized. To this end, the following

nondimensional variables are introduced:

w =
w̃

g
, x =

x̃

L
, t =

t̃

�
(4)

where � is a time constant defined by

� =

√

�AL4

EI

Substitution of Eq. (4) into Eqs. (1) and (3) yields:

∂x,x,x,xw + ∂t,tw + c∂tw = ˛1

∂x(∂xw∂x(∂xw∂x,xw)) + ˛2H(x)F
(5)

H(x) = H

(

x −
d1

L

)

− H

(

x − 1 +
d2

L

)

w(0, t) = 0, ∂xw(0, t) = 0,

∂x,xw(1, t) = 0, ∂x,x,xw(1, t) = 0
(6)

where d1 + d2/L < 1 and

F =
(Vac cos(�t) + Vdc)

2

√

(1 − w(x, t) + R2)2
− R2

2
cosh−1

(

1−w(x,t)
R2

+ 1
2

(7)

Expressions of nondimensional parameters introduced in Eq. (5)

are

˛1 =

(

g

L

)2

, ˛2 =
��0L4

EIg2
, c = c̃

L4

EI�
, � =

�̃

�
, R2 =

R̃2

g
(8)

2.3. Reduced-order model

In order to eliminate the spatial dependence, the Galerkin

decomposition method is applied to Eq. (5) to transform it into mul-

tiple degree-of-freedom system. To this end, the beam deflection

w(x, t) can be written in this form

w(x, t) =

Nm
∑

k=1

ak(t)�k(x) (9)

where Nm is the number of modes retained in the solution, ak(t)

is the kth nondimensional modal coordinate and �k(x) is the kth

normalized linear undamped mode shape of a straight beam which

is the eigenmode solution of

d4�k(x)

dx4
= �4

k�k(x) (10)

where �k is the solution of the transcendental equation

1 + cos(�k) cosh(�k) = 0 (11)

To simplify the Galerkin procedure [31], the electrostatic force

in Eq. (5) is expanded in a fifth-order Taylor series. The modal pro-

jection consists in substituting Eq. (9) into Eq. (5), multiplying the

result by �k (x), using Eq. (10) to eliminate (d4�k(x))/dx4 and inte-

grating the outcome from x = 0 to 1. Doing so, Eq. (5) becomes

a
′′

i + cia
′
i + �4

i ai + ˛1

Nm
∑

j=1

Nm
∑

k=1

Nm
∑

l=1

(

∫ 1

0

�i�j�
′
k�′

l dx)�4
j ajakal

+ ˛1

Nm
∑

j=1

Nm
∑

k=1

Nm
∑

l=1

(

∫ 1

0

�i�
′′

j �
′′

k�
′′

l dx)ajakal

+ 4˛1

Nm
∑

j=1

Nm
∑

k=1

Nm
∑

l=1

(

∫ 1

0

�i�
′
j�

′′

k�(3)

l
dx)ajakal

= ˛2f (ai, �i) i ∈ {1, . . ., Nm} (12)

Eq. (12) can be written in matrix–vector form as

M0a
′′

i + C0a′
i + K0ai + ˛1[KT (a) + KT1(a) + KT2(a)]ai

+ ˛2[D0 + D1(a) + D2(a)]ai + ˛2[E1(a) + E2(a)]T2(a)ai=˛2F1

(13)

where a(t) = [a1(t), a2(t), a3(t), . . ., aNm (t)]T . The components

of matrices M0, C0, K0, KT(a), KT1(a), KT2(a), D0, D1(a), D2(a), E1(a)

and E2(a) are respectively M0ij, C0ij, K0ij, KTij, KT1ij, KT2ij, D0ij, D1ij, D2ij,

E1ij and E2ij:

M0ij = ıij

C0ij = ciıij

K0ij = �4
i
ıij

KTij = �4
i

Nm
∑

k=1

Nm
∑

l=1

(
∫ 1

0

�i�j�
′
k�′

l dx alak

KT1ij = 4

Nm
∑

k=1

Nm
∑

l=1

(
∫ 1

0

�i�
′
j�

′′

k�(3)

l
dx alak

KT2ij =

Nm
∑

k=1

Nm
∑

l=1

(
∫ 1

0

�i�
′′

j �
′′

k�
′′

l dx alak

D0ij = F2

(
∫ 1

0

H(x)�i�j dx

D1ij = F3

Nm
∑

k=1

(
∫ 1

0

H(x)�i�j�k dx ak

D2ij = F4

Nm
∑

k=1

Nm
∑

l=1

(
∫ 1

0

H(x)�i�j�k�l dx alak

E1ij = F5

Nm
∑

k=1

(
∫ 1

0

H(x)�i�j�k dx ak

E2ij = F6

Nm
∑

k=1

Nm
∑

l=1

(
∫ 1

0

H(x)�i�j�k�l dx alak

(14)
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The scalar T2(a) and the entries of F1 are

T2(a) =

Nm
∑

m=1

Nm
∑

n=1

(
∫ 1

0

�n�m dx anam

F1i = F1

∫ 1

0

H(x)�i(x) dx

(15)

where F1, F2, F3, F4, F5 and F6 are the coefficients derived from

the Taylor expansion up to the fifth-order and the modal projection

of the electrostatic force of Eq. (7).

3. HBM+ANM for periodic solutions

For nonlinear oscillators, it is often required to calculate the peri-

odic solutions of nonlinear differential equations. To this end, the

first step consists in transforming the nonlinearities of the orig-

inal system into quadratic terms. Cochelin and Vergez [47] have

proposed this technique in order to apply HBM with many harmon-

ics. It can be a limitation of the method because it is not always

easy, for any system, to recast it in polynomial quadratic form.

Then, the quadratic recast equations are decomposed into trun-

cated Fourier series by means of the harmonic balance method

(HBM). The unknowns, in the final algebraic system, are the Fourier

coefficients of the original unknowns. The continuation method

(ANM) is applied on the resulting system. Finally, numerical results

are derived. We apply this method, described in [47], on our sys-

tem (5) to obtain the numerical results. Thereafter, a detailed

description of the quadratic recast and of the combined technique

HBM+ANM is given.

3.1. Quadratic recast

A periodically forced system has this form:

ẇ = f (t, w, �) (16)

where w is a vector of unknowns, f is periodic in t and � is a real

parameter. To simplify the application of HBM method, the first step

is to transform Eq. (16) into a new system where the nonlinearities

are at most quadratic polynomials as

m(Ż) = c(t, �) + l(Z) + q(Z, Z) (17)

where c is a constant vector with respect to the unknown Z, l(.)

is a linear vector with respect to the vector entry and q(. , .) is a

quadratic vector linear with respect to both entries.

The following variables are introduced in order to transform Eq.

(13) into a quadratic system, as described previously.

V = ȧ(sizeNm)

y = v̇(sizeNm)

Ktot = KT (a) + KT1(a) + KT2(a)(sizeN2
m)

Dtot = D1(a) + D2(a)(sizeN2
m)

Etot = E1(a) + E2(a)(sizeN2
m)

S = Etota(sizeNm)

T = T2(a)(size1)

(18)

System (13) can be rewritten as

ȧ = 0 + v + 0

v̇ = 0 + y + 0

0 = 0 + Ktot + −KT (a)−

KT1(a) −

KT2(a)

0 = 0 + Dtot−

D1(a)

+ −D2(a)

0 = 0 + Etot−

E1(a)

+ −E2(a)

0 = 0 + S + −Etot a

0 = 0 + T + −T2(a)

0 = −α2F(1+

cos(Ωt))2

+ M0 y+

C0 v+

K0 a+

D0 a

+ α1Ktota+

Dtota +

S T

m(Ż) = c(t, Ω) + l(Z) + q(Z, Z) (19)

where Z = (a, v, y, Ktot, Dtot, Etot, S, T)T is the unknown vector of

size Neq = 4Nm + 3N2
m + 1, c is a constant vector with respect to Z,

l(.) and m(.) are linear vectors valued operators with respect to Z,

and q(. , .) is a quadratic vector. In our case, Neq = 8 corresponding

to the number of equations of system (19).

3.2. The harmonic balance method (HBM)

The harmonic balance method is now applied to the system of

Eqs. (19). The unknown vector Z is decomposed into Fourier series

with H harmonics

Z(t) = Z0 +

H
∑

k=1

Zc,k cos(kωt) +

H
∑

k=1

Zs,k sin(kωt) (20)

Then, column vector U, with size (2H + 1) × Neq, where Neq is

the number of equations in Eq. (19), collects the components of the

Fourier series as

U = [Zt
0 + Zt

c,1 + Zt
s,1 + Zt

c,2 + · · · + Zt
c,H + Zt

s,H]
t

(21)

Substituting Eq. (21) into Eq. (19), collecting the terms of the

same harmonic index and neglecting the higher order harmonics,

we obtain this set of equations

ωM(U) = C + L(U) + Q (U, U) (22)

It contains (2H + 1) × Neq equations for the (2H + 1) × Neq

unknowns U. Operators M(.), C, L(.), and Q(. , .) depend only on the

operators m(.), c, l(.) and q(. , .) of Eq. (19) and on the number of

harmonics H.

3.3. The continuation procedure

From Eq. (22), an algebraic system is obtained

R(U) = 0 (23)

4
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Fig. 2. Shape of the first, second and third bending modes of a carbon nanotube.

where R ∈ RN+1 and U =
[

Ut, �, ω
]

∈ RN+1. The Asymptotic

numerical method (ANM), which is based on the quadratic recast-

ing, is applied to Eq. (22) to obtain

R(U) = L0 + L(U) + Q (U, U) (24)

where L0, L(.) and Q(. , .) are respectively constant, linear and

bilinear vectors. Then, the solutions are obtained by considering

the branches of solution as power series. Indeed, if U0 is a point

solution, the branch passing by U0 is a power series expansion of the

path parameter a = (U − U0)tU1, where U1 is the tangent vector at U0

and U(a) = U0 + aU1 + a2U2 + a3U3 + · · · + anUn. This series is replaced

in Eq. (23) where the powers of a are equated to zero providing a

set of linear systems.

4. Results and discussions

Using the HBM+ANM procedure, we plot the frequency-

amplitude diagrams of the carbon nanotube for several parameter

designs. Fig. 2, representing the first three bending modes with

respect to the dimensionless position x/L, shows that the problem

is not symmetric, where �i, i ∈ {1, 2, 3}, is the ith linear undamped

bending mode shape of the carbon nanotube. Hence, both odd and

even modes are considered.

Due to the kind of the dominant nonlinearities, the even har-

monics have no influence. In addition and after verifications, the

first harmonic gives the most important informations. So, in our

case, we have plotted the amplitudes Wmax−i, i ∈ {1, 2, 3}, of the first

three modes normalized by the gap g at x = L and corresponding to

the first harmonic. Two oscillator designs, listed in Table 1, having

the same quality factor Q = 5000 and representing different behav-

iors, are considered in order to show the impact of each mode on the

frequency responses and to retain the most appropriate number of

used modes.

The HBM+ANM technique is used to extract the dynamic

responses of the first three modes when using one, two or three

modes in the reduced-order model. The solution is computed

with H = 5 harmonics for the HBM and Nm = 3 modes for the

Galerkin procedure. For the following investigations, the elec-

trode is placed at d1/L = d2/L = 0.3. Consequently, the maximum

amplitude Wmax = Wmax−1 + Wmax−2 + Wmax−3 ≈ Wmax−1 is equal to

|�1(1)/2�1(0.7)| ≈84.62 % of the gap g.

Table 1

Design parameters of investigated resonators.

Resonator L(�m) R1(nm) R2(nm) g(nm)

1 1 10 20 100

2 20 180 300 100

Fig. 3. Confrontation of the frequency responses of the first mode obtained for one,

two and three modes of a linear configuration.

Fig. 4. Confrontation of the frequency responses of the second mode obtained for

one, two and three modes of a linear configuration.

Initially, numerical simulations have been performed to track

the frequency responses of the first nanotube in Table 1 under a

moderate electrostatic force (Vac = 0.4V, Vdc = 5V) in order to con-

serve a linear dynamics. The confrontation is shown in Fig. 3 for

this configuration when using one or several modes. The frequency

responses of the two first modes are depicted in Figs. 3 and 4 with

one, two and three modes. Fig. 5 represents the frequency response

of the third mode with one and three modes. Particularly, at this

linear level, the results are identical independently of the number

of retained modes. Indeed, for a linear configuration, the nonlinear

terms of Eq. (5) are negligible which implies that the finite degree

of freedom system (12), obtained by Galerkin discretization, is

uncoupled. Consequently, for this particular case, one mode is

Fig. 5. Confrontation of the frequency responses of the third mode obtained for one

and three modes of a linear configuration.
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Fig. 6. Confrontation of the frequency responses of the first mode obtained for one,

two and three modes of a hardening behavior. The response corresponding to the

use of one mode is slightly different.

Fig. 7. Confrontation of the frequency responses of the second mode obtained for

one and two modes of a hardening configuration. The response corresponding to

the use of three modes is slightly different.

sufficient to describe the dynamical behavior of the considered

nanotube.

Then, investigations are conducted on the same nanotube

design driven at large displacements. To do so, the electrostatic

force amplitude is increased significantly (Vac = 2 V, Vdc = 15 V). At

this actuation level, the resonator exhibits hardening frequency

responses, since the external radius R2 of the nanotube is much

lower than the gap g (R2/g = 0.2 < 1). In this case, as shown in Fig. 6

the responses of the first mode, when using one, two or three

modes, are noticeably different and this is due to the amplifica-

tion of the coupling nonlinear terms. Nevertheless, the variations

between the different curves are very slight. They are below 0.05%

Fig. 8. Confrontation of the frequency responses of the third mode obtained for one

and three modes of a hardening configuration.

Fig. 9. Confrontation of the frequency responses of the first mode obtained for one,

two and three modes of a softening configuration.

Fig. 10. Confrontation of the frequency responses of the second mode obtained for

one, two and three modes of a softening configuration.

in peak amplitude and a negligible shift frequency, which are lower

than 5% in peak amplitude [48] and less than 0.5% in frequency due

to imperfections in micromachining or to residual stress [49].

Finally, in order to confirm the previous deductions, the same

investigations are made on a different oscillator presented by

design 2 in Table 1 where Vac = 1V and Vdc = 10V. This device has a

narrow gap with respect to the nanotube radius (R2/g = 3 >1) which

gives rise to the softening behavior. Figs. 9–11, display the con-

frontation of the frequency responses with one or several modes.

The same conclusions as before can be reported concerning the

accuracy.

For each design parameters, the number of equations required

for the HBM+ANM procedure, for each mode, is (2 ∗ H + 1) ∗ Neq =

Fig. 11. Confrontation of the frequency responses of the third mode obtained for

one and three modes of a softening configuration.
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Fig. 12. Schematic of an electrostatically actuated carbon nanotube with an added

mass.

88 where H = 5 and Neq = 8. The HBM+ANM provides relatively fast

and precise results. We have shown the impact of the number of

the used modes on several configurations. As a conclusion, we can

consider a single mode in our investigations, since it gives accurate

results concerning the dynamics of the nanotube at large displace-

ments.

5. Resonant mass sensing

The principle of the mass sensing, based on the frequency shift

technique, consists on the measurement of the shift of the fre-

quency resulted by an accreted mass at a cantilever. Naik et al.

[14], Lavrik and Datskos [3], Yang et al. [5] and Verd et al. [4] have

detected the mass of several particles by using this technique. Their

investigations were done with resonators having linear behav-

ior. To our knowledge, it is the first time that a carbon nanotube

actuated electrostatically, having a nonlinear behavior and with a

specific position of the electrode is investigated for mass sensing

applications. The resonant sensing technique is used in order to

derive the frequency shifts of the maximum amplitudes (Fig. 13)

for several added particles.

5.1. Bending modes

In the left and right regions of the attached mass (Fig. 12,), the

bending mode is decomposed into w1,n(x, t) and w2,n(x, t), where

n is the considered mode, subject to the differential equation (5).

At the mass location ıM = xM/L, the corresponding matching con-

ditions are:

w1,n(ıM, t) = w2,n(ıM, t), w1,n′(ıM, t) = w2,n′(ıM, t), w1,n′′(ıM, t) = w2,n′′(ıM, t)

EI(w1,n′′′(ıM, t) − w2,n′′′(ıM, t)) = Mẅ2,n(ıM, t)
(25)

and the boundary conditions at the clamped and the free

extremities are:

w1,n (0, t) = 0, w1,n′ (0, t) = 0,

w2,n′′ (1, t) = 0, w2,n′′′ (1, t) = 0
(26)

The transversal displacements on the two parts of the nanotube

are wi,n(x, t) = �i,n(x) cos(ωnt − �), i ∈ {1, 2}, where ωn is the nat-

ural frequency of the nth mode, yielding to the following linear

undamped bending modes

�1,n(ıx) = A1 cos(�nıx) + A2 sin(�nıx) + A3 cosh(�nıx) + A4 sinh(�nıx), ıx ∈

[

0,
xM

L

]

�2,n(ıx) = A5 cos(�nıx) + A6 sin(�nıx) + A7 cosh(�nıx) + A8 sinh(�nıx), ıx ∈

[

xM

L
, 1

]

(27)

where �n is the nth natural frequency of the mechanical struc-

ture, Ai, i ∈ {1, . . ., 8} are integration constants determined from the

matching and boundary conditions for w1,n and w2,n, respectively

Eqs. (25) and (26). These constants are obtained by equating the

corresponding determinant of coefficients to zero. The determinant

equation includes the following nondimensional parameters

ıx =
x

L
, ıM =

M

�AL
,

�n =
ω4

n�AL4

EI

(28)

where ωn is the natural frequency corresponding to the nth

mode, x is the coordinate along the beam and ıM = M/MCNT is the

mass ratio between the weights of a particle and of the CNT, respec-

tively M and MCNT.

5.2. Determination of the mass and the position of an added

particle

Despite the fact that a single mode provides very precise fre-

quency responses, as demonstrated previously, it is not sufficient

for mass sensing applications. Indeed, one mode defines only one

equation, while an added particle is identified by two unknowns:

the mass and the position. Thus, at least two modes must be used

to derive two equations which can be effectively solved. Neverthe-

less, Fig. 2 shows that the second mode has a node approximately at

x/L = 0.8 for which the resonator has no response. Thus, it is impos-

sible to obtain the mass of a particle placed at this specific position

by using only two modes. Consequently, three modes, at least, are

necessary for an efficient mass detection. That is why, hereafter,

the numerical simulations are performed on a three degree of free-

dom reduced-order model considering only the three first bending

modes.

The frequency responses of the CNT are investigated for the

first design parameters of Table 1 (L = 1 �m, g = 100 nm, Vdc =15 V,

Vac = 2 V, Q =5000, R1 = 10 nm, R2 = 20 nm and d1 = d2 = 0.3), produc-

ing a hardening behavior (R2/g = 0.2 < 1). For ten values of ıx ∈ [0.1,

1] and ten values of ıM ∈ [0.01, 2](%), 300 frequency responses of

the first three modes are plotted using the HBM+ANM procedure.

Fig. 13 shows the frequency responses of the first mode of the

nanotube for the particular case of an added particle at the posi-

tion ıx = 0.9 and for ten values of ıM. The ultimate goal is to derive

the frequency shifts ıfi−NL, represented by Eq. (29), between the fi,M
(peak frequency with added mass) and the resonance frequency of

the CNT without added mass fi for each mode (i ∈ {1, 2, 3}). A shift is

illustrated in Fig. 13, ıf2−NL, corresponding to a mass ratio ıM = 1%

placed at ıx = 0.9.

ıfi−NL =
fi − fi,M

fi
, i ∈ {1, 2, 3} (29)

Firstly, for each mode and for the different values of ıx and ıM,

we compute analytically the bending modes �1,i(x) and �2,i(x) and

the natural frequencies �i and �i,ıx,ıM, for the ith mode of the

CNT respectively without and with added particle at ıx and hav-

ing a mass ratio ıM. The frequency shifts of linear and nonlinear
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Fig. 13. Frequency responses of the carbon nanotube of the first mode for ıx = 0.9 and for ten different values of ıM (ıM ∈ [0.01, 2](%)). ıf2−NL is the frequency shift between

the two resonance peaks of the nanotube, respectively, without and with added mass ıM = 1% at the position ıx = 0.9.

configurations are derived separately. For the linear case, the shifts

are obtained directly by using the following formula

ıfi−L =
�2

i
− �2

i,ıx,ıM

�2
i

, i ∈ {1, 2, 3} (30)

However, for the nonlinear case, a numerical method should

be used in order to detect the peak amplitudes of the nonlinear

curves. Practically, the modal projection is applied on Eq. (5) using

the first three modes defined as piecewise functions in Eq. (27).

Then, the steady state periodic solutions of the three-degree-of-

freedom system are determined numerically using the harmonic

balance method (HBM) transforming the coupled differential equa-

tions into a system of coupled nonlinear algebraic equations. The

resulting system is solved using the asymptotic numerical method

(ANM). Doing so, the branches of the nonlinear frequency responses

can be extracted and the peak amplitudes can be automatically

tracked. The shifts ıfi−NL are evaluated for each peak amplitude.

Finally, the maps representing the frequency shifts, computed for

linear and nonlinear configurations, are plotted as a function of ıx

and ıM for the three first modes.

The maps of the frequency shifts of the first mode are depicted

in Fig. 14(a) and (b) respectively for the linear and the nonlinear

configurations. For the linear case, the maximum shift is obtained

for a particle placed at the extremity of the nanotube (ıx = 1) and

for the highest mass ratio (ıM = 2%). In fact, as shown in Fig. 2, the

largest value of the mode is obtained at the free end of the resonator

(for x/L = 1, | �1 (1) |= 2) and the beam deflection w (x, t) is written

as a function of the mode (Eq. (9)). So, for higher values of ıx, the

frequency responses are largely shifted with respect to the reso-

nance frequency of the CNT without added mass. Analogically, the

same remarks can be reported for the lowest shift corresponding

to the couple (ıx = 0.1,ıM = 0.01%).

The nonlinear configuration is illustrated by Fig. 14(b). Identical

frequency shifts are identified between the linear and the nonlinear

cases for ıx ∈ [0.7, 1] or ıM ∈ [0.01 % , 0.4 %]. The rest of the maps are

remarkably different. The pronounced spring hardening effect in

the frequency responses of the first mode are at the origin of these

differences, as depicted in Fig. 14.

Similarly to the first mode, the second mode has the highest and

the lowest shifts for the same values of ıx and ıM (Fig. 15(a) and (b)).

Notably, the maps of the linear and the nonlinear configurations are

perfectly similar for the second and third modes (Figs. 15 and 16)

which is due to the fact that the frequency responses are linear as

shown in Figs. 7 and 8. Hence, the analytical expression of the shift

(Eq. (30)) can be used as in the linear case for the second and third

modes in order to reduce considerably the computational time.

Moreover, Fig. 16(a) and (b) depict dark columns for ıx equal to

0.5 and to 0.9. Indeed, Fig. 2 shows that the shape of the third mode

intersects the x-axis in two points near the positions 0.5 and 0.9, for

which, the peak amplitude of the NEMS frequency response around

the considered bending mode is null.

From the frequency shift maps of the first mode, we can deter-

mine the mass and the position of a particle based on the frequency

shifts. But, this method is no longer valid if different particles admit

the same value of the shift. For instance, using Fig. 14 (a), the two

cases c1 = (ıx = 0.6, ıM = 0.05 %) and c2 = (ıx = 0.4, ıM = 0.2 %) have the

same frequency shift (ıf = 0.0021). Thus, the effective added mass

cannot be identified by simply using only the first mode. The alter-

native is to use the shifts for the linear configuration of the second

mode depicted in Fig. 15 (a). The two couples c1 and c2 have respec-

tively s1 = 0.0181 and s2 = 0.0104 which are different. Therefore, the

exact added mass is determined using the frequency shift maps of

the second mode.

Unlike Fig. 14 of the first mode, the maps of Fig. 15 show a

dark column for ıx = 0.8 representing very low frequency shifts. This

describes that the CNT has small deflection in this position. Effec-

tively, in Fig. 2, the shape of the second mode intersects the mode

coefficient axis in a position near x/L = 0.8. It corresponds to a null

coefficient of the mode for which the resonator is insensitive to any

added mass. Consequently, the mass and position of an added par-

ticle at ıx ≈ 0.8 cannot be determined using only two modes. This

issue can be illustrated by the cases c3 = (ıx = 0.8, ıM = 0.0001) and

c4 = (ıx = 0.4, ıM = 0.001) in Fig. 14(a) for which we have the same

frequency shift equal to 0.000105. The data displayed in Fig. 15(a) is

therefore used in order to find the correct position and mass of the

added particle. We observe that for c3, the value of the frequency

shift is almost null (9.8 × 10−7) while it is equal to 0.00093 for c4.

These data do not provide reliable results, because, the frequency

shift of c3 corresponding to the second mode is very small. There-

fore, one cannot conclude whether c3 or c4 is the correct solution.

In order to avoid this issue, the frequency shift map of the third

mode is used (Fig. 16(a)). It gives two different results, s3 = 0.000031

and s4 = 0.000055 respectively for c3 and c4. Based on s3 and s4, the

correct solution can be identified.

As synthesis, there are strong similarities between the linear

and the nonlinear maps corresponding to the second and the

third modes (Figs. 15 and 16). This can be explained by the sim-

ple fact that the frequency responses of both second and third

modes are linear. Consequently, the frequency shifts can be com-

puted directly by using their analytical formulas. Inversely, the

linear and nonlinear configurations of the first mode (Fig. 14(a) and

(b)) have several differences, and then for this particular case, the

use of the HBM+ANM procedure is essential. Concretely, a hybrid
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Fig. 14. Frequency shifts of the first mode for the design parameters L = 1�m, g = 100 nm, Q = 5000, R1 = 10 nm, R2 = 20 nm and d1/L = d2/L = 0.3 for (a) a linear configuration

subject to a moderate electrostatic force (Vdc = 5 V, Vac = 0.4 V) and (b) a nonlinear hardening behavior under a high electrostatic actuation (Vdc = 15 V, Vac = 2 V). In each case,

these frequency shifts are derived for ten values of the position ratio ıx = xM/L ∈ [0.1, 1] and ten values of the mass ratio ıM = M/MCNT ∈ [0.01, 2](%). The minimum frequency

shift is obtained for a particle placed close to the clamped end of the nanotube (ıx = 0.1) and for the lowest mass ratio (ıM = 0.01%) while the maximum one is obtained for

ıx = 1 and ıM = 2%. The maps for the linear and the nonlinear cases, respectively (a) and (b), have several differences, except in the intervals ıx ∈ [0.7, 1] or ıM∈[0.01%, 0.4%]

wherein they are perfectly identical.

Fig. 15. Frequency shifts of the second mode for the design parameters L = 1�m, g = 100 nm, Q = 5000, R1 = 10 nm, R2 = 20 nm and d1/L = d2/L = 0.3 for (a) a linear configuration

subject to a moderate electrostatic force (Vdc = 5V, Vac =0.4 V) and (b) a nonlinear hardening behavior under a high electrostatic actuation (Vdc = 15 V, Vac = 2 V). In each case,

these frequency shifts are derived for ten values of the position ratio ıx = xM/L ∈ [0.1, 1] and ten values of the mass ratio ıM = M/MCNT ∈ [0.01, 2](%), where MCNT is the mass of

the carbon nanotube. The maps for the linear and the nonlinear cases, respectively (a) and (b), are perfectly identical for all values of ıM and ıx. Consequently, the frequency

shifts of the second mode corresponding to the nonlinear configuration can be derived by directly using the analytical expression of Eq. (30).

Fig. 16. Frequency shifts of the third mode for the design parameters L = 1�m, g = 100 nm, Q = 5000, R1 = 10 nm, R2 = 20 nm and d1/L = d2/L = 0.3 for (a) a linear configuration

subject to a moderate electrostatic force (Vdc = 5 V, Vac = 0.4 V) and (b) a nonlinear hardening behavior under a high electrostatic actuation (Vdc = 15 V, Vac = 2 V). In each case,

these frequency shifts are derived for ten values of the position ratio ıx = xM/L ∈ [0.1, 1] and ten values of the mass ratio ıM = M/MCNT ∈ [0.01, 2](%), where MCNT is the mass of

the carbon nanotube. The maps for the linear and the nonlinear cases, respectively (a) and (b), are perfectly identical for all values of ıM and ıx. Consequently, the frequency

shifts of the third mode corresponding to the nonlinear configuration can be derived by directly using the analytical expression of Eq. (30).

analytical–numerical approach can be used in order to reduce the

computational time. In practice, we can obtain larger maps for the

three modes giving a wide range of configurations of added par-

ticles. It is also possible to investigate analytically the frequency

shifts of higher modes in order to provide more precise results.

6. Conclusion

In this paper, the nonlinear dynamics of a cantilevered car-

bon nanotube actuated under primary resonance and including

geometric and electrostatic nonlinearities was modeled. The
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Euler–Bernoulli partial differential equation describing the non-

linear motion of the resonator is transformed into a system

of coupled nonlinear ordinary differential equations using the

Galerkin decomposition method.

Firstly, we developed a numerical multimodal approach based

on the harmonic balance method (HBM) and the asymptotic

numerical method (ANM). It was demonstrated, for several design

parameters, that the use of a single mode is sufficient to capture the

main nonlinear phenomena of the considered device. Nevertheless,

for mass detection, it is required to work at least with three modes.

Indeed, it was shown by means of the mode shapes that, for partic-

ular positions along the nanotube length, certain mode coefficients

are null. Thus, the device has no response and it is insensitive to

any added particle. Therefore, a reduced-order model considering

three modes was developed.

Then, because the detection of the position and the mass of a

particle demands very sophisticated mathematical tools, we have

treated this problem in an inverse way. Indeed, for a particular

nonlinear design, we derived the frequency shifts corresponding

to several positions and with different masses. A specific Galerkin

procedure based on piecewise functions is used, combined with

the HBM+ANM for the numerical computation of the frequency

responses. In these investigations, we have demonstrated that the

use of at least three modes is essential to determine effectively the

mass and position of the added particle. In fact, two different par-

ticles can give the same frequency shift for the first mode. So, the

second mode is used to avoid this problem. However, the position

of the particle on the nanotube can potentially coincide with the

node of the second mode for which the resonator has no response.

Consequently, the use of the third mode is essential in order to

detect effectively the mass and the position of the added mass.

The maps of the frequency shifts for the two cases of linear and

nonlinear devices and for the second and third modes are partic-

ularly identical. This is explained by the fact that the responses of

these two modes are linear. For these cases, an analytical approach

can be used to determine the frequency shifts. Unlike the sec-

ond and the third mode, the response of the first mode exhibits

a nonlinear behavior. Thus, the maps of the frequency shifts corre-

sponding to linear and nonlinear oscillators are different. For this

case, the HBM+ANM procedure is applied. In practice, the use of

a hybrid analytical–numerical approach provides larger frequency

shift maps to deal efficiently with the resonant mass sensing tech-

nique while keeping an acceptable accuracy with respect to the

device resolution.
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