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RÉSUMÉ. Cet article propose une méthode de réduction robuste dédiée aux problèmes vibroa-
coustiques non-linéaires. Le type de non-linéarité envisagé dans cette étude est géométrique
localisée. La méthode de réduction introduite consiste à enrichir la base modale tronquée du
système découplé sans non-linéarité par des réponses statiques de la structure dues à des ef-
forts unitaires sur les degrés de liberté non-linéaires ainsi que par la réponse statique du fluide
induite par le couplage avec la structure. Les réponses temporelles d’une plaque appuyée sur
une cavité acoustique et d’un tuyau sonore suspendu sont simulées pour montrer l’efficacité de
la méthode proposée.

ABSTRACT. This paper propose a robust reduced method dedicated to non-linear vibroacoustic
problems in the context of localized geometrical non-linearities. The method consists in en-
riching the truncated uncoupled modal basis of the linear model by a static response due to
unit forces on the non-linear degrees of freedom and by the static response of the fluid due to
the interaction with the structure. To show the effectiveness of the proposed method, numerical
simulations of responses of an elastic plate closing an acoustic cavity and a hang-on exhaust
are performed.

MOTS-CLÉS : Réduction de modèle, Interaction fluide structure, Vibration non-linéaire, Couplage
vibroacoustique, Intégration temporelle.

KEYWORDS: Reduced model, Fluid structure interaction, Nonlinear vibration, Vibro-acoustic
coupling, Time integration.
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1. Introduction

This paper presents a reduced model method dedicated to non-linear vibroacoustic
problems. Modeling this problem still remains a heavy exercise for industrial applica-
tions. The starting point is the formulation choice ; structural displacement and acous-
tic pressure (u, p) are used in this paper. Modeling the problem using the finite ele-
ment method (FEM) leads to an unsymmetrical matrix system with large dimensions.
Model reduction seems to be a required tool for optimisation and robustness studies.
Most of the applications do not consider the non-linear behaviour which is found in
many examples. The few of them treating non-linear effect use specific methods de-
dicated to non-linear dynamics. Problems are solved through the proper orthogonal
decomposition or the non-linear normal modes (Amabili et al., 2007; Amabili, 2008).
Modeling the problem using an interaction between the finite element method (struc-
ture) and the boundary element method (BEM) for fluid is also possible (Soares-Jr
et al., 2005). This study is based on the development of a reduced basis dedicated for
non-linear vibroacoustic problem where geometrical non-linearities are localized. The
formulation of the non-linear vibroacoustic problem with structural displacements and
acoustic pressure formulation is first carried out. Reduced order method of the studied
problem is presented in section 3. Newmark algorithm dedicated to temporal integra-
tions is studied in section 4 (Géradin et al., 1997; Bathe, 1982). Section 5 presents the
predictor indicators used for comparison with the full model.

2. Formulation of non-linear vibroacoustic problem

Figure 1. Vibroacoustic problem

The studied vibroacoustic problem is presented in figure 1. Let us consider a fluid-
filled domain Ωf coupled with a structure Ωs presenting large displacements. Γfs

presents the coupled surface. The structure is submitted to volume and surface loads
fv(t) and fs(t).

2



2 European Journal of Computational Mechanics. Volume 0 – n˚0/2010

2.1. Structural problem formulation

The structural equation of motion is deduced from the virtual work principle writ-
ten as :

δ

∫ t2

t1

(U + T )dt = 0, [1]

where :

– T is the kinetic energy :

T =
1
2

∫
Ωs

ρsu̇u̇dΩ, [2]

– U is the potential energy defined as the sum of the strain energy U strain and the
potential energy due to the applied load Upot :

Upot = −
∫

Ωs

fv(t)udΩ −
∫

Γs

fs(t)udΓ, [3]

Ustrain =
1
2

∫
Ωs

τT DτdΩ. [4]

D is the material stiffness matrix and τ is the 2nd order Green Lagrange strain
tensor related to the displacement field. Large displacement theory with small strain
is considered. This leads to a strain tensor written as follow :

τ(u) =
1
2
(∇u + ∇ut)︸ ︷︷ ︸

τ l

+
1
2
∇ut∇u︸ ︷︷ ︸

τnl

[5]

where τ l and τnl respectively represent the linear and non-linear parts of the tensor.

Linear-elastic material leads to a constitutive equation written as :

S = Dτ, [6]

where S is the 2nd Piola-Kirchhoff stress tensor.

The equation of motion becomes (Morand et al., 1992; Pérignon, 2004) :

∫
Ωs

ST τ l(δu)dΩ +
∫

Ωs

ST τnl(u, δu)dΩ +
∫

Ωs

ρs
∂2u

∂t2
δudΩ =

∫
Ωs

fvδudΩ +
∫

Γs

fsδudΓ +
∫

Γfs

pnδudΓ.

[7]

The term
∫
Γfs

pnδudΓ represents the action of the fluid on the structure.
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2.2. Fluid problem formulation

This section recalls the formulation associated to the fluid domain Ωf .

The equilibrium state in term of pressure formulation is expressed by equation :

Δp =
1
c2

∂2p

∂t2
. [8]

The boundary condition applied on the coupling area Γ fs is expressed by the sliding
condition :

− ∂p

∂n
= ρf

∂2u

∂t2
. [9]

By applying the Green formula, the variational formulation of the fluid is written as
(Morand et al., 1992) :

1
ρf

∫
Ωf

∇p∇δpdΩ +
1

ρfc2

∫
Ωf

∂2p

∂t2
δpdΩ +

∫
Γfs

∂2u

∂t2
nδpdΓ = 0 [10]

2.3. Coupled formulation

Coupling both problem leads to :⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
Ωs

ST τ l(δu)dΩ +
∫

Ωs

ST τnl(u, δu)dΩ +
∫

Ωs

ρs
∂2u

∂t2
δudΩ−

∫
Γfs

pnδudΓ =
∫

Γs

fsδudΓ
∫
Ωf

∇p∇δpdΩ + 1
c2

∫
Ωf

∂2p
∂t2 δpdΩ + ρf

∫
Γfs

∂2u
∂t2 nδpdΓ = 0

[11]

Using the finite element method, the problem can be written in a matrix form as :[
Ms 0

ρfCT Mf

] [
Ü

P̈

]
+

[
Ks(U) −C

0 Kf

] [
U
P

]
=

[
F
0

]
, [12]

– Ms and Ks are the mass and stiffness matrices of the structure. Ks is a function
of U ; in geometrical non-linearities it is the sum of a linear term arising from the
linear problem K l

s and a non-linear term. In localized non-linearity case, K s can be
written as :

Ks(U) = K l
s + Knl

s diag(U)n−1, [13]

where Knl
s is the hardening coefficient of the non-linearity and n is the degree of

non-linearity.

– Mf and Kf are respectively the matrices corresponding to the discretization of
kinematic energy and compressibility matrix of fluid.

4
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– C is the coupling matrix corresponding to the action of the structure on the fluid
or vice versa.

– F is the structure excitation function of the time t.

The matrix system can be expressed as a differential equation written as :

MẌ + K (X)X = f (t) . [14]

Solving this kind of equation depends on the nature of f(t). Using the modal de-
composition method to bring the problem diagonal is not possible. This is due to the
non-linear character of the problem.

If f(t) is harmonic, one of the efficient techniques to solve the problem is the
harmonic balance method (Nayfeh et al., 1995).

Using an arbitrary excitation requires the implementation of time integration me-
thod (Géradin et al., 1997; Bathe, 1982).

In both cases, solving the problem is time consuming. A reduced order method
dedicated to this kind of problem is required. The model basis should take into ac-
count both non-linear and coupling effects. The reduced order method in this paper is
presented in the following paragraph.

3. Reduced order method

3.1. Uncoupled modal basis

As it was mentioned in the previous paragraph, a reduced order method is required
for modeling non-linear vibroacoustic problem. The proposed basis should be robust
and easy to implement. A first approximation model is to use the uncoupled modal
basis issued from the in vacuo linear structural problem (K nl

s = 0) and the rigid wall
cavity problem. This leads to a finite element approximation written as follow :[

U
P

]
≈

[
Tsmb 0

0 Tfmb

] [
qs

qf

]
, [15]

where Tsmb and Tfmb respectively represent the truncated structure and fluid modal
bases.

3.2. Non-linear enriching

Localized non-linear behaviour is considered as a perturbation modifying the li-
near response. This perturbation is assimilated to an excitation force. To take into
account this force in the non-linear reduced model, a linear static response of the in
vacuo structure due to a unit load on each non-linear degree of freedom is considered :

ΔT i
snl = (K l

s)
−1f i, [16]

5
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where i is the ith non-linear degree of freedom and

f i = [0...1...0]T . [17]

Orthogonalization is necessary to ensure good conditioning of the problem. This is
realized with a singular value decomposition (SV D).

Ts = [Tsmb|ΔTsnl]SV D . [18]

This leads to a new finite element approximation written as follows :
[
U
P

]
≈

[
Ts 0
0 Tfmb

] [
qs

qf

]
. [19]

3.3. Coupling enriching

The main goal of this section is to propose a modal synthesis method that can take
into account coupling effects. The homogeneous matrix formulation associated to the
equation [12] in the frequency domain is written as :

([
Ks(U) −C

0 Kf

]
− ω2

[
Ms 0

ρfCT Mf

]) [
U
P

]
=

[
0
0

]
. [20]

The term ρfCT U can be interpreted as an excitation of the fluid due to the structure
that modifies the fluid behaviour. For the fluid part, we have :

(
Kf − ω2Mf

)
P = ω2ρfCT U, [21]

This excitation is not known but it is approximated by projecting the displacement on
the structural basis figured out in the previous section [18]. Updating the fluid basis by
including this response leads to a new reduced basis. This new residual basis is written
as (Tran, 2009; Tran et al., 2010) :

ΔTfs =
(
Kf − ω2

cMf

)−1
CT Ts, [22]

it should be decomposed in singular value to ensure orthogonality :
[
U
P

]
≈

[
Ts 0
0 Tf

] [
qs

qf

]
, [23]

where,

Tf = [Tfmb|ΔTfs]SV D . [24]

6



6 European Journal of Computational Mechanics. Volume 0 – n˚0/2010

3.4. Coupling with heavy fluid

The reduced order method presented above is dedicated to the non-linear vibroa-
coustic problem with light coupling. In the case where the fluid density is not neglec-
ted compared to the structure, the coupling is considered heavy. The fluid behaviour
impacts the structure and should be considered in the modal synthesis. Linear static
response of the structure due to the fluid effect is written as :

U = K l−1
s CP. [25]

This excitation is not known but it is approximated by projecting the pressure P on
the fluid basis figured out in the section bellow [24]. Enriching the structural basis by
the static residual response due to the heavy fluid impact leads to a new basis written
as follows (Tran, 2009; Tran et al., 2010) :[

U
P

]
≈

[
Tshf 0

0 Tf

] [
qs

qf

]
, [26]

where

Tshf = [Ts|ΔTsf ]SV D . [27]

and

ΔTsf = K l−1
s CTf . [28]

Once the reduced basis has been established, the model reduction is performed as
follows :

X =
[
U
P

]
= T

[
qs

qf

]
= Tq [29]

T is the reduced basis defined in the sections above. Dynamics equilibrium defined in
equation [14] becomes :

Mr q̈ + Kr (q) q = fr (t) , [30]

where :

– Mr is the reduced mass matrix ; Mr = T T MT

– Kr is the reduced stiffness matrix ; Kr = T T KT

– fr is the reduced force vector ; fr = T T f

4. Non-linear temporal response

As it was mentioned before, the strategy to solve the dynamic equations depends
on the excitation. Equilibrium equation in presence of dissipative energy modeled by
a damping matrix D is written as :

r(X) = MẌ(t) + DẊ(t) + K(X)X(t)− f(t) = 0, [31]

7
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In the case of an arbitrary excitation, numerical integration in the time domain is requi-
red. It consists in calculating the iterative state of the system -displacement, velocity,
acceleration- as a function of time progress. A widely used technique is the New-
mark algorithm ; compared to other numerical integration, the Newmark algorithm is
relatively stable. It uses the following state description :

An =

⎡
⎣Xn

Ẋn

Ẍn

⎤
⎦ =

⎡
⎣X(tn)
Ẋ(tn)
Ẍ(tn)

⎤
⎦ , [32]

where An represents the system state calculated at time tn. An+1 represents the sys-
tem state at one time step later, it is written as (Géradin et al., 1997; Bathe, 1982) :

⎧⎪⎨
⎪⎩

Xn+1 = Xn + hẊn + h2(1
2 − β)Ẍn + h2βẌn+1

Ẋn+1 = Ẋn + (1 − γ)hẌn + γhẌn+1

Ẍn+1

[33]

where h is the chosen time step, γ and β are the parameters of the Newmark algorithm.
Ẍn+1 is calculated through the dynamic equation [31].

Non-linear behaviour can lead to bad predictions. A residue evaluation is consi-
dered to ensure dynamic equilibrium. The residual equation is evaluated at each time
step through the linearized first order equation :

rn+1 + Si
n+1ΔX = 0, [34]

where Si
n+1 =

[
∂r
∂X

]
Xi

n+1
= Kt+ γ

βhDt+ 1
βh2 M is the Jacobian matrix of r ; K t and

Dt are the Jacobian matrices of K and D respectively and ΔX = −(S i
n+1)−1rn+1

the displacement correction. i is the ith iteration of the residue evaluation (correction).
Experience shows that for null acceleration at the beginning of every iteration, and
by correcting the approximation during iterations, this can provide stable and fast
process. For the same reason, a constant Jacobian matrix can be used in the correction
algorithm. The advantage compared to the evaluation of the Jacobian matrix at each
step is the inversion procedure. Otherwise, convergence to the equilibrium state will
be longer. Choosing one of these techniques will depend on the application.

The same algorithm is used for the integration of the reduced model [ 30]. Matrices
M K and D and vectors X and f are replaced by their corresponding reduction (M r,
Kr, Dr, q and fr respectively). Once a reduced state is evaluated, physical response
is performed using the equation [29].

8
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The numerical integration algorithm is resumed as follows :

Prediction
Xn+1 = Xn + hẊn + h2(1

2 − β)Ẍn

Ẋn+1 = Ẋn + (1 − γ)hẌn

Ẍn+1 = 0
↓

Residues evaluation
ε, rn+1

while |rn+1| > ε

rn+1 = MẌn+1 + DẊn+1 + K(Xn+1)Xn+1 − fn+1

↓
Correction

ΔX = −(Si
n+1)−1rn+1

X i+1
n+1 = X i

n+1 + ΔX

Ẋ i+1
n+1 = Ẋ i

n+1 + γ
βhΔX

Ẍ i+1
n+1 = Ẍ i

n+1 + 1
βh2 ΔX

end while

5. Prediction indicators

Results comparison tools are based on statistic indicators associated to the struc-
ture and fluid responses in addition to the energetic indicators that result from acoustic
and kinetic energies.

5.1. Temporal moments

Temporal moments are used in transient responses in order to quantify the compa-
rison between different models. It is used to qualify the model response. The i th order
of the temporal moment of a response y(t) is defined as (Masson et al., 2006) :

Mi =
∫ +∞

−∞
(t − ts)

i (y (t))2 dt, [35]

where ts represents the temporal shift and i the moment index order.
In this case, the temporal moment Mi is defined for ts = 0 and normalized as follows :

⎧⎪⎪⎨
⎪⎪⎩

E = M0, Energy (m2s)
T = M1

M0
, Central time (centroid) (s)

D2 = M2
M0

−
(

M1
M0

)2

, Root mean square duration (s2)

[36]
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5.2. Energetic indicators

The indicators that are used are the acoustic energy and the mean square velocity.
The acoustic energy is defined by the sum of the kinetic and potential energies in the
fluid domain. The discretized form is expressed as follow :

Ea =
1

2ρf
PKfP +

1
2ρf

ṖMf Ṗ . [37]

The discretized form of the mean square normal velocity is defined as :

V̄n
2 =

1
|Ss|V MvnV, [38]

where Mvn comes from the discretization of
∫

v2
ndS.

6. Application

In order to illustrate the proposed idea, two applications are presented in this para-
graph. A parallelepipedic acoustic cavity fixed with a thin plate presenting non-linear
localized behaviour and an exhaust filled of air with non-linear links. Two types of
excitation are studied. For the acoustic cavity, the response of the system due to an
impact of 500N is considered. For the exhaust, a sweep sine in the frequency band of
the model is exciting the system. The full model response is compared to the results
obtained changing the reduction basis. The reduced order methods presented in this
application are the following :

– reduced model using the uncoupled modal basis of the system (Modal basis) ;

– enrichment of the uncoupled structural modal basis by the static response of the
structure due to the unit forces on the non-linear degrees of freedom (NL residues) ;

– enrichment of the uncoupled fluid basis only by the static response of the fluid
due to the presence of the structure (Coupling residues) ;

– enrichment of the uncoupled structural modal basis by the static response of the
structure due to the unit forces on the non-linear degrees of freedom and enrichment
of the uncoupled fluid basis by the static response of the fluid due to the presence of
the structure and by taking into account the non-linear behaviour (Coupling + NL
residues).

6.1. Acoustic cavity

The first example is an academic application to illustrate the non-linear coupling
effects. Let us consider a thin plate (0.654 × 0.527 × 0.003m3) with localized non-
linearities (17 at all) fixed on an acoustic cavity (0.654×0.527×0.6m3) filled with air.
Figure 2 shows the finite element model of the system. The model size is about 11000

10
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dofs (3000 structural 8000 fluid dofs). The model frequency band is [0 − 300Hz] ;
reduced model size is about 150 dofs against 11000 for the full model. Dissipation
energy is introduced by modeling a proportional damping deduced from the first four
structural mode with a damping ratio of 0.1%. Structure is excited using an impact
excitation of 500N in a period of 10ms ; figure 3 shows the temporal and spectral
representation of the impact.

Figure 2. Acoustic cavity
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Figure 3. Impact spectrum

The temporal moments for a period of 0.1s of the structural displacement and
the acoustic pressure for the considered model reduction strategies are presented in
tables 1 and 2. Structural displacement at non-linear dofs and prediction indicators are
presented in figures 4 and 5. The linear model response is also presented in the same
figures to have an idea of the impact of the non-linear effects.

T E D
Full model 0.0439 6.3637e-06 8.48869e-04
Modal basis 0.0438 6.1156e-06 8.4772e-04
Error / Full model (%) -0.2 -3.9 -0.1
Coupling residues 0.0438 6.0208e-06 8.4647e-04
Error / Full model (%) -0.2 -5.4 -0.3
NL residues 0.0439 6.3331e-06 8.4906e-04
Error / Full model (%) 0 -0.5 0.02
Coupling + NL residues 0.0439 6.3633e-06 8.4882e-04
Error / Full model (%) 0 -0.00 -0.00

Tableau 1. Temporel moments for structural displacements

In this application, results show the need to enrich the bases. In fact, temporal
moments for structural displacements show the need to take into account non-linear
effects and temporal moments for acoustic pressure show the need to take into account

11
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T E D
Full model 0.0529 2.7754e+06 8.1539e-04
Modal basis 0.0538 2.8350e+06 8.0777e-04
Error / Full model (%) 1.7 2.1 -0.9
Coupling residues 0.0532 2.7550e+06 8.0692e-04
Error / Full model (%) 0.6 -0.7 -1.03
NL residues 0.0540 2.8928e+06 8.1152e-04
Error / Full model (%) 2.1 4.2 -0.5
Coupling + NL residues 0.0529 2.7745e+06 8.1512e-04
Error / Full model (%) 0 -0.03 -0.03

Tableau 2. Temporel moments for acoustic pressure

the coupling effects. In both cases modal bases seems to be insufficient as a model
reducing tool.

Let us consider the same application as above. Replacing the air by a heavy fluid as
water, leads to a new model. As it was mentioned before, reduced order method should
take into account heavy fluid behaviour. Figure 6 presents the predictive indicators of
the full model compared to the reduced model taking account and not the heavy fluid.
Results show the need to take into account heavy fluid effects. Figures show the non-
convergence of the model that do not consider the heavy fluid effect compared to the
full model.

6.2. Exhaust

Let us consider an air cavity in a fold exhaust suspended with 18 non-linear
springs. The exhaust dimensions are L1 + L2 + L3 = 0.2 + 0.25 + 0.2m, R1 =
R3 = 0.05m and R2 = 0.125m (figure 7). The finite element model contains 8500
dofs (5000 for the structure and 3500 for the fluid). The model is valid in the frequency
band [0 − 450Hz]. A sweep sine in the frequency band of interest is used to excite
the structure with a 1N amplitude. Figure 8 shows the temporal and spectral repre-
sentations of the excitation. Proportional damping is used to introduce dissipation in
the model. It is deducted from the first four structural damped modes with a damping
ratio of 0.1%. Reduced order methods presented previously are compared to the full
model. The reduced model size is 200 dofs. The temporal moments of structural dis-
placements and acoustic pressure are presented in tables 3 and 4. The acoustic energy
and the mean square velocity are presented in the figures 9 and 10.

In this application, results are not the same as the application before. It shows the
need of enriching ; but it shows also that enriching can diverge the response compared
to the full model. It is the case with the reduced model using the coupling effects.

12
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Figure 4. Displacement as a function of time. (up) in a period of 0.1s with the linear
model, (down) in the period [0.09-0.1]s

In the same time, enriching using only non-linear effects seems to be insufficient. It
predict the same behaviour as the reduced model using the modal basis.

Both applications show the need for the reduced model tool. It shows also the
necessity of enriching to ensure the good converging. Using the reduced model tool
provides a benefit in time consuming. In these applications the calculating time was di-
vided by 10 compared to the full model. Concerning the result precision, the temporal
moments show the necessity on enriching the basis. In fact, according to the response,
enriching should take into account non-linear and coupling effects to converge to the
solution of the full model. In the case of heavy fluid, numerical results shows the limit
of the proposed method and the needs to consider the heavy fluid in the reduced basis
to ensure good predicting.
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Figure 5. Prediction indicators - light coupling

14



14 European Journal of Computational Mechanics. Volume 0 – n˚0/2010

0.09 0.092 0.094 0.096 0.098 0.1
3.5

4

4.5

5

5.5

6

6.5

7
x 10

4

Time (s)

A
co

us
tic

 e
ne

rg
y 

(J
)

 

 
Full model
Coupling + NL residues
Heavy fluid residues

0.09 0.092 0.094 0.096 0.098 0.1
0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0.044

0.046

0.048

Time (s)

M
ea

n 
sq

ua
re

 v
el

oc
ity

 (
m

/s
)²

 

 
Full model
Coupling + NL residues
Heavy fluid residues

Figure 6. Prediction indicators - heavy coupling

Figure 7. Exhaust
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Figure 8. Excitation sine sweep

D E T
Full model 4.1211E-04 1.1772E-04 0.0650
Modal basis 4.1025E-04 1.1633E-04 0.0646
Error / Full model (%) -0.5 -1.2 -0.6
Coupling residues 4.1026E-04 1.2074E-04 0.0651
Error / Full model (%) -0.4 2.6 0.2
NL residues 4.1018E-04 1.1627E-04 0.0646
Error / Full model (%) -0.5 -1.2 -0.6
Coupling + NL residues 4.1197E-04 1.1739E-04 0.0649
Error / Full model (%) -0.03 -0.3 -0.2

Tableau 3. Temporal moments for structural displacements

7. Conclusion

A reduced order method adapted to non-linear coupling problems has been presen-
ted. It is required for localized geometrical non-linear problems and is in the process of
being extended to other types of non-linearities. It consists in enriching the uncoupled
modal basis by residues taking into account non-linearity and coupling conditions. An
example in the temporal space has been studied. An application of the approach in
the frequency domain is conceivable using the harmonic balance method adapted for
geometric non-linearities.
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D E T
Full model 4.3529E-04 1.2554E+05 0.0670
Modal basis 4.2964E-04 1.2277E+05 0.0663
Error / Full model (%) -1.3 -2.2 -1.0
Coupling residues 4.2312E-04 1.4276E+05 0.0676
Error / Full model (%) -2.8 13.8 0.9
NL residues 4.2961E-04 1.2276E+05 0.0663
Error / Full model (%) -1.3 -2.2 -1.0
Coupling + NL residues 4.3179E-04 1.2583E+05 0.0669
Error / Full model (%) -0.8 0.2 -0.1

Tableau 4. Temporal moments for acoustic pressure
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Figure 9. Mean square velocity - (up) t = [0 − 0.1s], (down) t = [0.085 − 0.1s]
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Figure 10. Acoustic energy - (up) t = [0 − 0.1s], (down) t = [0.085− 0.1s]
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