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ined with a very simple experimental procedure is proposed. It permits the 
easures to obtain the stress–strain curve for tubes very quickly and well 
lity of the results is proved by comparison with experimental measures and 
 tube is revealed by plotting the (r,a) curve where r and a stand for strain and 
1. Introduction

Tube hydroforming process consists in forming a tube inside a
closed and shaped cavity by an internal pressure. For complex
shapes and thinning limitation, a combination of an internal
pressure and a compression axial force is needed. This technology
presents a great industrial interest because it permits to obtain
complex hollow shaped parts with a reduced number of welding
spots and higher structural quality [1–4]. This process is particu-
larly developed in competitive industries where finite element
simulations are intensively used to decrease lead time for design.
For that, efficient FE models are needed and it is well known that
material data still represents a critical point. Too often, simula-
tions are based on material characteristics obtained from tensile
test done on flat sheet specimen. These material data present
several limitations: (1) for a same material grade, one cannot
compare a flat sheet with a tube; (2) engineer strains are limited
to around 20% due to necking that is very low compared to the
deformation possibilities for the loading conditions in the hydro-
forming process; (3) for advanced steels (like TRiP steels for
example), plastic behaviour strongly depends on strain path.
he, 25030 Besanc-on Cedex,

.

Boudeau),
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By analogy with bulge test for sheets, the tube bulging test is
recommended for material characterisation dedicated to tube
hydroforming. A tube clamped at its two extremities is put under
an internal pressure and freely expands along a called ‘‘free zone’’
(Fig. 1).

To get material data from these tests, it is necessary to develop
specific model and no standard is defined at the present time [5].
So several authors have proposed different approaches for the
experimental data post-processing that can be classified into
three families: (1) approaches based on ‘off-line’ measurements
[6,7], (2) approaches based on ‘on-line’ measurements [8–11] and
(3) approaches based on a mix of ‘on-line’ and ‘off-line’ measure-
ments [12,13]. The first and third families are not satisfying
because the approaches are very time and material consuming.
Some models are based on strong assumptions such as hardening
law [6,12], thickness evolution [9,10]. Other approaches need FE
simulations and iterative methods [6,9].

Moreover, the tube bulging test is quite complex and several
sources of uncertainty exist. It is then important to be able to
quantify the uncertainty on the resulting material data. For that
rapid procedure is needed if global sensitivity method is planned
to be conducted.

In the present paper, an evolution of the Velasco and Boudeau
model [11] is proposed. In [11] a semi-analytical model was
suggested. The resolution method was based on a Newton–
Raphson algorithm. Therefore, it is not well adapted for the
evaluation of errors on the resulting hardening curve. So a



complete analytical modelling combined with a very simple experi-
mental procedure is proposed in Section 2 and provide an experi-
mental method adapted to industrial context to get the strain–stress
curve. In Section 3 experimental and numerical works are presented.
Results and discussion can be found in Section 4.
2. Theory

2.1. Geometrical representation

The first step for the establishment of the analytical model is a
geometrical representation of a bulged tube. From the observation
done on FE simulations of the tube bulging test, it permits to
postulate that its longitudinal profile can be approached by an arc
of circumference. So the parameterisation described in Fig. 2 can be
proposed. The definition of the different parameters is given in
Table 1.

From Fig. 2, the following geometrical parameters can be
evaluated:

R¼
h2
þd2

2h
ð1Þ
Fig. 1. The tube bulging test: a schematic description.

Fig. 2. Parameterisation of the tube bulging test.

Table 1
List of the parameters used for the tube bulging test representation.

r Initial tube radius (given)

d Half length of free bulging (given)

t0 Initial tube thickness (given)

h Bulging height (measured)

R Radius of the arc of circumference (calculated)

y Position/coordinate of the centre of the arc of circumference (calculated)

fmax Angular sector of the arc of circumference (calculated)
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y¼ rþh�Ro0 ð2Þ

sinðfmaxÞ ¼
d

R
ð3Þ

It is also possible to calculate the coordinates for each point of
the tube profile

ZðfÞ ¼ Rsin f ð4Þ

YðfÞ ¼ yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
�ZðfÞ2

q
ð5Þ

2.2. Strains calculation

For strains evaluation a local frame ð ef
�!

,ey
!

, er
!
Þ is defined as

illustrated in Fig. 3. In this set of axis the strain tensor takes the
following form:

eðMÞ ¼
effðfÞ 0 0

0 eyyðfÞ 0

0 0 errðfÞ

!
ð ef
�!

,ey
!

, er
!
Þ

ð6Þ

where eff is the true longitudinal strain in the tube, eyy the true
circumferential strain and err the true radial strain.

They can be calculated as following:

effðfÞ ¼ ln
Rfmax

d

� �
ð7Þ

eyyðfÞ ¼ ln
YðfÞ

r

� �
ð8Þ

then eff does not depend on f and is constant along the tube
length.

The last strain tensor component can be evaluated by using the
incompressibility condition

errðfÞ ¼�effðfÞ�eyyðfÞ ð9Þ

Finally, from Eq. (9) the current thickness can be calculated

tðfÞ ¼ t0exp½errðfÞ� ð10Þ

2.3. Stress calculation

In the same set of axis, by considering thin tube, the stress
tensor can be expressed as follows:

sðMÞ ¼
sffðfÞ 0 0

0 syyðfÞ 0

0 0 0

!
ð ef
�!

,ey
!

, er
!
Þ

ð11Þ

For the evaluation of stress components, equilibriums of
elementary volumes of tube under pressure are studied. The
two infinitesimal parts of tube considered for these evaluations
are given in Fig. 4. From these mechanical equilibriums the two
following equations are obtained:

tðfÞYðfÞcosðfÞsffðfÞ�1
2p½YðfÞ�2 ¼ C ð12Þ

syyðfÞ
YðfÞ

þcosðfÞ
sffðfÞ

R
¼

p

tðfÞ
ð13Þ

where p is the internal pressure inside the tube and C a constant.
To obtain the stress tensor components, it is essential to get a

value for the constant C. For that, the mechanical equilibrium of a
half longitudinal slice of tube with no thickness is considered
(Fig. 5). It gives the following equations:

sffðfmaxÞtðfmaxÞsinðfmaxÞ ¼ pd

sffð0Þtð0Þ ¼ phþsffðfmaxÞtðfmaxÞcosðfmaxÞ

(
ð14Þ



Fig. 4. The two infinitesimal parts of tube considered for stresses evaluation.

Fig. 5. Equilibrium of a half longitudinal slice of tube in a bulging test.

Fig. 3. Definition of the local set of axis ð ef
�!

,ey
!

,er
!
Þ (left: tube profile; right: section AA).
So the longitudinal stress at the pole is

sffð0Þ ¼
p

tð0Þ
hþ

d

tanðfmaxÞ

� �
ð15Þ

Eq. (15) can lead to numerical problem when fmax is close to zero
i.e. when the deformed tube curvature is weak. In that case, the
hypothesis, already used in [11], is applied; the longitudinal stress
at the pole is approached by the longitudinal stress of a tube
(radius: R; thickness: e) under pressure closed at its two ends,
szz¼(pr/2e) where r¼rþh and e¼t(0). This corresponds to an
approximation for thin tube of relations found in the literature
[14,15]. The compression force applied to the tube to realize the
tightness does not create plastic strain in the free zone of the tube
and is then neglected for stress evaluation.

The limit between enough or not enough curvature is given by
the angle flim

max such as

tanðflim
maxÞ ¼

2d

r�h
ð16Þ
3

So, C constant can be calculated as following:

C ¼ 0, if foflim
max

C ¼ tð0ÞðrþhÞsffð0Þ�
1
2pðrþhÞ2, if fZflim

max

8<
: ð17Þ

and the stress tensor components are calculated as following:

sffðfÞ ¼
Cþ1

2p½YðfÞ�2

tðfÞYðfÞcosðfÞ
ð18Þ

syyðfÞ ¼ YðfÞ
p

tðfÞ
�cosðfÞ

sffðfÞ
R

� �
ð19Þ
2.4. Algorithm for experimental results post-processing

Eqs. (1)–(19) are used for the calculation of strain and stress
tensors components from pressure p and bulge height h measure-
ments. The algorithm presented in Fig. 6 has been carried out
with Matlab& and its run is very rapid so interesting for an
industrial use.
3. Experiments and simulations

3.1. Tube and material

Experiments are conducted on a tube made of a 316L stainless
steel whose dimensions are reported in Table 2. Tubes are
obtained by cold drawing.

Data on 316L stainless steel can be found in the literature or on
the Web for sheets; they are listed in Tables 3–5.



Fig. 6. Algorithm for strains and stresses evaluation in a tube bulging test.

Table 2
Dimensions of tube.

Length (mm) External radius (mm) Thickness (mm) d (mm)

250 17.5 1 25

Table 3
Chemical composition.

From C (%) Cr (%) Ni (%) Mn (%) P (%) Si (%) S (%) Mo (%)

[17] 0.03 17 12 2 0.045 1 0.03 2.50

[16] 0.03 18.5 11.2 1.5 0.5 2.25

Table 4
Mechanical characteristics.

From Density (kg/mm3) Rm (MPa) Rp0.2 (MPa) A (%) E (GPa)

[17] 8000 585 380 45 193

[16] 610 320 48

Table 5
Anisotropy data (from [16]).

r0 r45 r90 rmoy Dr

0.75 1.17 0.91 0.94 �0.34

Fig. 7. Schaeffler’s diagram (from [18]).
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From Schaeffler’s diagram (Fig. 7), 316L stainless steel presents
an initial austenite–ferrite structure close to the austenite–
martensite zone and then can be subject to phase transformation
during deformation. The equivalent mass percentage of Cr and Ni
are calculated with the following relations:

Creq ¼ %Crþ%Moþ1:5ð%SiÞþ0:5ð%NbÞ

Nieq ¼ %Niþ30ð%CÞþ0:5ð%MnÞ
ð20Þ

In [16], phase transformation is inexistent for tensile tests but
has been reported for sequential tensile–shear strain paths.

3.2. Experimental procedure

The tool (Fig. 8) is designed in two parts where are machined:
–
 cylindrical guides for tube positioning,

–
 conical machining for tube embedding,

–
 a cavity for tube free bulging, and

–
 lateral guides for displacement sensor positioning.
Embedding and tightness are insured by a local deformation of
the tube in the conical machining with the conical plungers. The
upper plunger is drilled to permit fluid feeding and a pressure
sensor is integrated to measure the pressure inside the tube.

During the bulge test, internal pressure and pole height of the
tube (also named the bulge height) are measured resulting in a
pressure–bulge height curve represented in Fig. 9(a). From this
curve and the model developed in Section 2 by considering an
isotropic material, the true stress–true strain curve of Fig. 9(b) can
be obtained. In that case, we have

sVM
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
yyþs

2
ff�syysff

q
ð21Þ

eVM
¼

2ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2
yyþe

2
ffþeyyeff

q
ð22Þ

In Fig. 9(b), the resulting hardening curve is compared to the
one obtained on 316L sheets with tensile and shear tests [16]. The
level of equivalent strain is higher which is in accordance with
general observations on bulging test. The level of maximum stress
is comparable to the one obtained with shear test and lower than
the one obtained with tensile test.



Fig. 9. (a) the pressure–bulge height curve obtained by measurement and (b) the

true stress–true strain curve obtained with the model from experiments compared

with data obtained on sheet (from [16]).

Fig. 8. Tool used for tube bulging test (a) CAD model and (b) photograph of the

experimental set-up.
3.3. Finite element simulations

Finite element simulations are performed with LS-Dyna&

program. The full geometry is modelled and meshed with
Belytschko-Tsay elements (Fig. 10(a)). Pressure loading is
imposed using experimental results. The material behaviour is
elastic–plastic and isotropic. For the tube, the given hardening
law corresponds to data obtained from the tube bulging experi-
ment (plastic part of the stress–strain curve of Fig. 9(b)). The main
information on the FE model are summarised in Table 6. Typical
results obtained from these FE simulations are illustrated in
Fig. 10(b). The full model has been preferred to avoid numerical
instability that can be observed sometimes for the nodes of the
symmetry plane.
Fig. 10. FE model (a) and typical FE results (b).
4. Results and discussion

4.1. Global comparisons

Global comparisons will concern the pressure–bulge height
curve (Fig. 11(a)), the tube profile (Fig. 11(b)) and the thickness
repartition along the tube (Fig. 11(c)) at the end of the test.
Experimental measures and numerical results are cross-
examined.

Fig. 11(a) compares the experimental pressure–bulge height
curve with those obtained by FE simulations. It shows that the
pressure level is well respected, that is normal as the FE simula-
tions are conducted by pressure loading. The level of bulge
heights obtained with the experiments and the implicit calcula-
tion are in good agreement. The explicit simulation conducts to a
higher bulge height that is not realistic. For explicit simulations
predefined numerical parameters have been used and the test
duration has been arbitrarily chosen to 0.001 s from authors’
5



Table 6
Summarise of the FE simulations.

Tube Type: shell element

Formulation: Belytschko-Tsay

Average size: 1.7 mm

Thickness: 1 mm

Mesh: 8582 nodes and 8404 elements

Material: *MAT_PIECEWISE_LINEAR_PLASTICITY

Die Type: shell element

Average size: 1.7 mm

Mesh: 7750 nodes and 7688 elements

Material: *MAT_RIGID

Contact

algorithm

*CONTACT_AUTOMATIC_ONE_WAY_SURFACE_TO_SURFACE

Loading Pressure law

Integration

scheme

Implicit and explicit

Fig. 11. (a) Pressure–bulge height curve, (b) tube bulge profile and (c) thickness

repartition comparisons.
experience in explicit FE simulations in process simulations.
These choices permit to converge to an acceptable solution for
process validation for which implicit codes cannot. But that is not
suitable for precise comparisons especially for material data
characterisation. For instance, in [6,9] implicit FE simulations
are also preferred for identification method or numerical
validations.

Fig. 11(b) compares the tube profile at the end of the test
measured on the specimen and obtained by FE simulations. Again,
the analytical model and the implicit FE simulation present good
correlation and the explicit FE calculation gives unrealistic results.
The difference between the analytic model and implicit FE
simulation are more important near the die radius due to a
geometrical simplification for the analytical developments. The
same conclusions can be done for Fig. 11(c) where thickness
distributions along the bulged tube are plotted.

4.2. Comparison of strain and stress tensors components

In order to validate the analytical model proposed in Section 2,
it is essential to compare the different models more precisely. In
particular, it can be interesting to explore the fields of the strain
and stress over the tube at the end of the test.

Fig. 12 presents the repartition of longitudinal and circumfer-
ential strain along the bulged tube at the end of the test. The
evolution is generally well respected but the level of the circum-
ferential strain is under estimated. Anyway, at the pole position
the level of strain is in relatively good correlation with the FE
results obtained with an implicit integration scheme. The existing
differences are of the same magnitude as those conventionally
observed on more common tests as the tensile test for instance. In
the analytical model, the longitudinal strain is being kept
constant in the whole tube which is not the case in the FE
simulations. But the difference with the implicit calculation is
not so important, and the value obtained at the maximum of
bulge height presents a very good agreement.

Fig. 13 compares the stress tensor components at the end of
the bulge test obtained with the three approaches. Again an
important difference between the explicit FE simulation and the
two other results can be noticed. The results obtained with the
analytical model and the implicit FE simulation are very similar.
At the pole, the results are quite identical. The divergence
between the two approaches is important near the die radius
where contact exists. It is difficult to accord more credit to one or
another; for the analytical model, die radius and contact notion in
this area are ignored; for the FE simulation, contact algorithm has
been activated. Contact is certainly the most difficult phenom-
enon to model in metal forming simulations. Contact energy
calculation is based on interface forces, interpenetrations that
6

are directly linked to time step and mesh size that are purely
numerical entities and do not exist in reality. Friction is modelled
with Coulomb’s law which is an empirical and macroscopic law



Fig. 12. Longitudinal and circumferential strains along the bulged tube at the end

of test.

Fig. 13. Longitudinal and circumferential stresses along the bulged tube at the end

of test.

Fig. 14. Strain path (a) at the pole (b) between the pole and the die radius (c) near

the die radius.
that cannot take into account complex physical or chemical
phenomena.

4.3. Strain and stress path

To go further, investigations on strain and stress path are done.
Comparisons will be done only with implicit FE simulations in this
section. Strain paths and stress paths at the pole, the die radius and
between these two positions are illustrated in Figs. 14 and 15
respectively.

The first observation on strain path (Fig. 14) shows a non-
linearity and tube bulging test appears as a non-proportional test.
The strain path is quite well reproduced except at the die radius.
The differences of curvature are due to the divergences observed
on the strain level in Section 4.2. They can be explained by the
fact that the theory ignores the existence of a die radius for the
analytical developments. In addition the theory is based on an
idealized geometric representation of reality while during testing
the actual geometry integrates all physical phenomena such as
contact and friction for example.

Curiously, stress paths (Fig. 15) are in better agreement except
near the contact zone. Near the die radius (Fig. 15(c)) numerical
stress path is very perturbed; this is due to the contact algorithm.
7

4.4. Anisotropy of tube

Tubes tested in this paper are obtained by drawing. So, they
present an initial anisotropy due to their manufacturing process.
In order to reveal their anisotropy, the authors propose to plot



Fig. 15. Stress path (a) at the pole (b) between the pole and the die radius (c) near

the die radius.

Fig. 16. Revelation of anisotropy of tube by plotting the (r,a) curve. Von Mises’

results correspond to calculated strain path vs. experimental stress path with the

method explained in Appendices A and B.
strain path r¼deff/deyy vs. stress path a¼sff/syy. In previous
works on the prediction of necking [19], it was usual to write the
relation between stress and strain paths using the plasticity
criterion [20]. The resulting expression obtained for the von Mises
criterion is shown in Appendix B. The (rexp,aexp) and (rVM,aVM)
curves are compared in Fig. 16. The method to calculate the
(rexp,aexp) couple is described in Appendix A. It is evident that the
8

von Mises’ assumption is not suitable for the tested material
shaped as tube.

So other plasticity criteria are investigated: Hill 1948 and Hill
1993. Hill 1948 has been chosen because it is classically used for
metal forming modelling and is widely implemented in commercial
codes. It provides an approximate description of the real yield
locus [21]. Hill 1993 criterion is an improvement of plastic
behaviour of textured sheet metals submitted to complex load
applied along the planar orthotropic axes. It allows describing
both the ‘‘first order anomalous behaviour’’ and the ‘‘second order
anomalous behaviour’’. It is particularly suitable for biaxial loading
conditions but limited to the case where directions of the principal
stresses are coincident with the orthotropic axes [21]. That is the
case in the tube bulging test.

The following results named ‘‘experiment’’ have been obtained
by processing experimental measures.
4.4.1. Hill 1948 criterion

From [22], Hill 1948’s criterion applied to tubes is

s¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
ff� 1þ

1

S2
y

�
1

S2
r

 !
syysffþ

1

S2
y

s2
yyþ

1

S2
fy

s2
fy

vuut ð23Þ

with Sy ¼ ðs0
y=s

0
fÞ, Sr ¼ ðs0

r =s0
fÞ, Sfy ¼ ðs0

fy=s
0
fÞ:

In our case, the stress tensor has the expression of Eq. (11).
Then the criterion takes the simplified expression

s¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
ff� 1þ

1

S2
y

�
1

S2
r

 !
syysffþ

1

S2
y

s2
yy

vuut ð24Þ

Hill 1948’s criterion is written as following:

s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
ff�csyysffþas2

yy

q
ð25Þ

where a¼(1/Sy)
2, b¼(1/Sr)

2, and c¼1þa�b.
The plastic flow relation is

deij ¼ dl
@s
@eij

ð26Þ



Fig. 17. (r,a) curves obtained at the pole for different plastic criteria compared to

experimental result. a corresponds to the experimental stress path. Strain path r is

calculated with relations (28) and (35) for Hill 1948 and Hill 1993 plastic criteria.
which gives the relations below

deff ¼ dl
2s 2sff�csyy
� 	

deyy ¼ dl
2s 2asyy�csff
� 	

8<
: ð27Þ

So the relation between the strain path r and the stress path
a is

r¼ 2a�c

2a�ca
ð28Þ

Anisotropy parameters a and c are searched such as, for the set
of data (ri,ai), we must satisfy the following equation:

2riaþð1�riaiÞc¼ 2ai ð29Þ

4.4.2. Hill 1993 criterion

Hill 1993’s criterion is expressed (from [21])

s1

s0

� �2

�c
s1

s0

� �
s2

s90

� �
þ ðpþqÞ�p

s1

sb
�q

s2

sb

� �
s1

s0

s2

s90
¼ 1 ð30Þ

s1 and s2 represent the principal stresses. s0 and s90 represent
the elastic yield stresses in a tensile test in 01 and 901 directions
relatively to the rolling direction, respectively; sb represent the
yield stress in a biaxial tensile test.

Criteria are generally built such as s ¼ s0 in a tensile test in
direction 01. So the criteria can be rewritten as following:

s2
¼ s2

1�cAs1s2þ½ðpþqÞ�Bs1�Cs2�As1s2 ð31Þ

with A¼(s0/s90), B¼(p/sb), and C¼(q/sb).
In spherical coordinates in reference to the parameterisation of

the tube bulging test proposed in Section 2 the Hill 1993 criterion
takes the form

s2
¼ s2

y�cAsysfþ½ðpþqÞ�Bsy�Csf�Asysf ð32Þ

The criterion is rewritten as following:

s2
¼ s2

yþUsysf�Vs2
ysf�Ws2

fsy ð33Þ

with U¼(pþq�c)A, V¼AB and W¼AC.
The plastic flow relation deij ¼ dlð@s=@eijÞ gives the relations

below

deff ¼ dl
2s 2syþUsf�2Vsysf�Ws2

f

h i
deyy ¼ dl

2s Usy�Vs2
y�2Wsysf

� 	
8<
: ð34Þ

from which is obtained the relation between r and a

r¼
U�Vsy�2Wsf

2þUa�2Vsf�Wsfa
ð35Þ

The anisotropy parameters U, V and W are searched such as,
for the set of data (ri,ai), the following equation is verified:

ð1�riaiÞUþð2risf�syÞVþðairi�2ÞsfW ¼ 2ri ð36Þ

4.4.3. Resolution

Then the problem to be solved can be expressed

Mijxj ¼ vi ð37Þ
Table 7
Identified parameters for Hill 1948 and Hill 1993’s criteria.

HILL 1948 a c b

0.8699 0.9574 0.9125

HILL 1993 U V W

�0.1665 4.3�10�4
�9.5587�10�

9

with iA[1,N] and jA[1,k] where N corresponds to the number of
couples (ri,ai) and k the number of parameters defining the
plastic criterion.

It takes the matrix form below

½M�x¼ v ð38Þ

and the resolution of the matrix problem is

x¼ ð½M�T ½M�Þ�1
½M�T v ð39Þ

4.4.4. Results and discussion

The anisotropy parameters have been identified by the method
presented in previous section. Their values are reported in Table 7
and the resulting (r,a) curves are plotted in Fig. 17. The Hill 1993
plastic criterion fits very well the experimental results. From these
observations it can be conclude that anisotropy in tube is better
represented by Hill 1993’s criterion. The resulting hardening curves
are compared in Fig. 18 where Hill 1993’s criterion leads to higher
level of equivalent stress and lower equivalent strain. The maximal
strain level reaches quite 0.5 which is higher to 0.3 found on tensile
test on sheets in [16]. This is in agreement with classical observa-
tions when uniaxial and biaxial tests are compared (see results in
[23] for instance). Nevertheless data obtained in Table 7 for Hill
1993 plastic criterion are valid only for the strain path correspond-
ing to the tube bulging test. To obtain intrinsic material character-
istics other tests would be needed.
5. Conclusions

A complete analytical model combined with a very simple
experimental procedure has been proposed. It permits the post-
processing of experimental measures to get the stress–strain
s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
ff�0:9574:syy :sffþ0:8699:s2

yy

q

s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Fig. 18. Comparison of the resulting hardening curves.
curve for tube materials very quickly and well adapted for
industrial use.

The quality of the results has been proved by comparing with
experimental measures (tube profile, thickness repartition over
the bulged tube) or finite element results for strain and stress
fields in the tube. Except in the area near the die radius, results
obtained with the analytical model, by measures on experimental
specimens and by numerical implicit simulations are in good
correlation.

This full analytical model will be suitable for studying uncer-
tainties propagation. Thus it will be possible to evaluate uncer-
tainties on the hardening curve due to the ones of the
experimental procedure more efficiently than in [24]. In addition
it will be adapted for performing global sensitivity analysis
(Sobol’s type for example) in order to determine advices for
experimental works.

Moreover anisotropy in tube has been revealed by plotting
the (r,a) curve where r and a stand for strain and stress path
respectively. Two quadratic criteria (Hill 1948 and Hill 1993) have
been studied and it is the Hill 1993 plastic criterion that fits better
the (r,a) curve obtained during experiments. But other tests
would be necessary to get intrinsic anisotropic parameters.
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Appendix A. (qexp, aexp) plot

Time of experiment is discretized into N intervals.
Current time ti is defined by

ti ¼
T

N
i ðA:1Þ

where T corresponds to the total duration of the experiment and
iA[1N].

The experimental strain and stress paths are evaluated as
following:

rexpðtiÞ ¼
deff
deyy
ðtiÞ �

DeffðtiÞ

DeyyðtiÞ
¼
effðtiþ1Þ�effðtiÞ

eyyðtiþ1Þ�eyyðtiÞ
ðA:2Þ
10
aexpðtiÞ ¼
sffðtiÞ

syyðtiÞ
ðA:3Þ
Appendix B. (qVM, aVM) plot

With von Mises assumption, the equivalent strain and stress
are defined by

deVM
¼

2ffiffiffi
3
p U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
de2

yyþde2
ffþdeyydeff

q
ðB:1Þ

sVM
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
yyþs

2
ff�syysff

q
ðB:2Þ

There are linked to the components of the strain and stress
tensor by the relation

sVMdeVM
¼ s : de ðB:3Þ

It gives

rVM ¼
2a2�5aþ2

4a�a2�4
where a¼ aexp

ðrVM ;aVM ¼ aexpÞ curve is obtained with relation: ðB:4Þ

References

[1] Ahmetoglu M, Altan T. Tube hydroforming: state-of-the-art and future
trends. J Mater Process Technol 2000;98:25–33.

[2] Koc- M, Altan T. An overall review of the tube hydroforming (THF) technology.
J Mater Process Technol 2001;108:384–93.

[3] Mac Donald BJ, Hashmi MSJ. Near-net-shape manufacture of engineering
components using bulge-forming processes: a review. J Mater Process
Technol 2002;120:341–7.

[4] Lang LH, Wang ZR, Kang DC, Yuan SJ, Zhang SH, Danckert J, et al. Hydro-
forming highlights: sheet hydroforming and tube hydroforming. J Mater
Process Technol 2004;151:165–77.

[5] Koc- M, Billur E, Cora ON. An experimental study on the comparative
assessment of hydraulic bulge test analysis methods. Mater Des 2011;32:
272–81.

[6] Sokolowski T, Gerke K, Ahmetoglu M, Altan T. Evaluation of tube formability
and material characteristics: hydraulic bulge testing of tubes. J Mater Process
Technol 2000;98:34–40.

[7] Lianfa Y, Cheng G. Determination of stress–strain relationship of tubular
materials with hydraulic bulge test. Thin Wall Struct 2008;46:147–54.

[8] Strano M, Altan T. An inverse energy approach to determine the flow stress of
tubular materials for hydroforming applications. J Mater Process Technol
2004;146:92–6.

[9] Huang Y-M, Lin Y-K. Analysis and finite element simulation of the bulge
hydroforming process. J Mater Process Technol 2002;125–126:821–5.

[10] Huang Y-M, Lin Y-K. Analysis of the tube bulge forming in an open-die
considering anisotropic effects of the tubular material. Int J Mach Tools
Manuf 2006;46:1921–8.

[11] Velasco R, Boudeau N. Tube bulging test: theoretical analysis and numerical
validation. J Mater Process Technol 2008;205:51–9.

[12] Koc- M, Aue-u-lan Y, Altan T. On the characteristics of tubular materials for
hydroforming—experimentation and analysis. Int J Mach Tools Manuf
2001;41:761–72.

[13] Bortot P, Ceretti E, Giardini C. The determination of flow stress of tubular
material for hydroforming applications. J Mater Process Technol 2008;203:
381–8.

[14] Fuchizawa S, Narazaki M , Yuki H. Bulge test for determining stress–strain
characteristics of thin tubes. In: Proceedings of the fourth international
conference on technology of plasticity. Advanced technology of plasticity Vol.
1, 1993. p. 488–93.

[15] Kuwabara T, Yoshida K, Narihara K, Takahashi S. Anisotropic deformation of
extruded aluminium alloy tube under axial forces and internal pressure. Int J
Plasticity 2005;21:101–17.
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