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Abstract: In order to improve the accuracy of numerical simulation for injection molding process, a 
modified method for outlet condition was introduced. As the feedstock is regarded as incompressible 
fluid, the filling ratio should be a linear one with respect to time. But there remains a persistent trouble 
in previous researches that the linearity is not respected when the filling front approaches near the 
outlet boundary. The problem is caused by lack of adequate treatment on the outlet boundary. To 
remedy this defect, the present paper deals with the modeling and realization of suitable condition on 
outlet boundary for solution of the whole filling process. A simple straight channel mold was taken as 
an example to prove the proposed simulation method. The result shows that this modified method can 
suppress the distortion phenomenon and can be valid to realize the correct simulation for the filling of 
incompressible viscous flow at the ending stage. This long-term filling problem was finally solved. 

Introduction 
Metal Injection Molding (MIM) is a near net shape technology for the manufacture of small 

intricate parts in 3D shapes [1]. It represents a strong importance in the field of automotive, aerospace 
and microelectronics industries [2]. The MIM technology includes four main stages [3]: 1) Mixture of 
feedstock. 2) Injection molding to get the green parts. 3) Debinding stage to remove the binder. 4) 
Final sintering stage to get the condensed part in pure metallic material. 

As a new manufacturing technology, numerical simulation plays an important role in its efficient 
applications. The analysis of injection molding was started by Spencer and Gilmore [4] in the early 
1950s. Ballman et al [5] investigated one-dimensional rectangular flow in 1959. Analytical solutions 
for two-dimensional flow in a rectangular cavity were presented since the late 1970s [6-9]. Then large 
amounts of research works were done in detail on fountain flow [10-12]. The implicit finite element 
method for simulation of the filling process was firstly tried by some authors [13-15]. It was found that 
the main barrier for filling flow model [16] is the tremendous computational time due to the application 
of 3D finite element or finite difference method. Therefore, the explicit algorithms for improving the 
efficiency of simulation for injection flow model were studied and realized by Lewis and Gao, using 
MINI elements in 2D casting problems [17-19]. The explicit algorithms with MINI element are much 
faster than the implicit ones and their validity was proven by the experiments [20, 21]. For the sake of 
further reduced computational cost, a new explicit algorithm with fully vectorial operations was 
proposed by Liu [22]. The full development is carried out by the research work of Cheng [23, 24]. By 
eliminating global solution in the previous explicit algorithm, it made successfully the computational 
cost to be about linearly proportional to the degree of freedom number. 

However, there remains a persistent trouble in simulation of the filling states at the end of injection 
molding. It happens in the simulations of filling process with imposed constant velocity on inlet. As 
the feedstock is regarded as incompressible fluid, the filling ratio should be a linear one with respect 
to time. But the linearity is not respected when the filling front approaches near the outlet boundary. 
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The cause is indicated in the Ph.D. thesis of T. Barriere [25] in 2000, but none of the references is 
involved to its solution in the retrieving of available sources. In fact, there is a lack of the integration 
on the outlet boundary. This integration is negligible when the filling front is far way the outlet, but it 
becomes significant when the front of feedstock approaches. To remedy this defect, the modeling is 
formulated again. An integration term on the outlet boundary is realized in solution of the advection 
equation for filling state. The problem in solution of the filling process at the ending stage is finally 
solved. The examples prove well validity of the proposed method. Stability of the in-house solvers for 
solution of the volume fractions is improved. 

1. Mechanical modeling 
1.1 General Definition 

As usual, Eulerian description is used for simulation of the mold filling problems, which avoids 
the remeshing procedures in high expense with Lagrangian description. So general definition of the 
mold filling problems is expressed as followings: 

Let ]t0[t 1,∈  be an instant in the injection course, in which 1t  is the last moment for the fully 
filled state. The sum of space position X in the whole model is defined as set Ω . The model of 
injection molding consists of two different portions at each instant, the portion filled by feedstock FΩ  
and the remained void portion VΩ . A field variable )( tx,F  is defined to represent filling state of the 
model at different instants. This field variable takes value 1 to indicate the portion filled by feedstock 
and value 0 for the remained void portion, which contains in fact the atmosphere. Their physical and 
geometrical meanings are shown in Fig. 1 In which IΓ  indicates inlet of the mold, OΓ  represents the 
outlet through that the air originally in the mold may get escaped during the injection. SΓ  stands for 
intersection of subsets FΩ  and VΩ , which is in fact the filling front of the injection flow. IV  is the 
injected velocity on inlet boundary. OP  is the pressure on outlet boundary, which is set to be 0 in 
present work. 

 
Fig. 1 Filling model based on Eulerian description 

 
1.2 Governing equation for filling state  

To keep uniqueness of the solution strategy and simplicity of the software structure, incorporating 
with the Eulerian description, the governing equation for filling state is the same for filled and void 
portion of the injection model, except that the parameters are chosen differently for these two 
domains. 

The front position of filled domain is represented by the predefined filling state variable )( tx,F . 
Some authors call it as the variable of pseudo concentration or fictive concentration [26, 27]. This 
variable is dominated by an advection equation, driven by the velocity field. 
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The filling flow is intrinsically incompressible, according to mass conservation, the flow should 
satisfy incompressible condition 0 =•∇ V , so Eq. 1 can be written as: 
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The boundary condition is 1=F  on inlet of the mold. Its initial condition is 0=F  everywhere in 
the mold except for the inlet surface. 
 
1.3 Determination of the filling states 

The filling state variable )( tx,F  is determined by the advection Eq. 2. To ensure its stability, the 
solution is performed by a Taylor-Galerkin method [28]. The time differential of variable )( tx,F  in 
discretised form can be expressed by a Taylor series development: 
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where nF  and 1+nF  represent the filling state at time step 1+nt  and nt , t∆  stands for the time 
increment. The same notation is used for velocity variable V. The governing Eq. 3 can lead to the 
follow relationship by an approximation tt ∆−=∂∂ + /)(/ 1 nn VVV : 
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The weak form of Eq. 3 can be then written as 
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where 2/)( 12/1 nnn VVV += ++ , *f  is a kinematically admissible field associated to variable F. As the 
velocity nV  is an incompressible field, known that abbaba ∇•+•∇=•∇ )( , the second term in 
right side of above equation can be written as 
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By virtue of the divergence theorem, the first term can be transformed to a surface integration: 
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2. The inexact result at the end of filling process 
Because of incompressibility of the injection flow, the filling ratio should behave linearly versus 

time when constant velocity is imposed on inlet. But it did not at the ending stage of filling process, 
when the modeling and simulation in laboratory is applied. There remains a persistent trouble for 
simulation of the final stage of injection process, when the filling front approaches to the outlet 
boundary, as shown in Fig. 2.  

The results reproduced accurately the real nature until the filling ratio reached to 90%, when the 
filling front gets near to the outlet boundary. Then the filling of remained void portion becomes 
slower than the true fact. The cause of such a trouble was indicated in the Ph.D. thesis of T. Barriere 
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[25]. For Eq. 7, the integration was supposed to take value zero all around the boundary, while it is not 
true when the filling front approaches to the outlet boundary OΓ∈X . It takes indeed value zero when 
the filling front represents the distance to outlet boundary, when the filling ratio is smaller than 90%. 
But for the last moment in injection course, this term must be taken into account to simulate correctly 
the filling pass through the outlet. 

 

 
Fig. 2 Persistent troubles in simulation for the ending of filling process 

3. Modification of the outlet boundary condition  
To remedy the problem mentioned in section 3, an additional integration term should be taken into 

account on outlet boundary for the last stage in injection course. The following procedure is proposed 
to realize the adequate integration on outlet boundary. 

The discretized form of Eq. 5 by finite element method should be written as: 
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where M is a lumped pseudo matrix constructed in a specific manner, )(VadK  is a stiffness matrix 
represents the advection effect while )(VdfK  is a stiffness matrix stands for diffusion effect. )( nV

OK  
is the operator for outlet surface integration term.  
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where A  represents the assembling operation in finite element method. N  is the matrix of 
interpolation functions in each element for filling state variables F, G is a gradient operator 
constructed by derivatives of these interpolation functions. 2/1+nV  and nV  are the values obtained at 
each Gauss points.  

Note outN  the nodes associated to outlet surface. e
outΩ  represents the elements associated to node 

outN , defined as: 

{ }e
out

ee
out N Ω⊂Ω=Ω .                   (10) 
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Let e
outΓ  represent the edge or side of element e

outΩ  on outlet boundary. A unit vector outn  is 
defined for each element e

outΩ . This vector is normal to its edge or side e
outΓ .  

The term )( nV
OK in Eq. 8 takes the following forms: 
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where e
nV  represents the velocity vector in the element associated to e

outΓ .  
By investigation of the flow pattern at outlet of the mold cavity, it is realized that the velocity 

vector V and outer normal n  take the same direction, whereas the gradient of variable F should 
exhibit the direction opposite to V and n . So on the integration of Eq. 7 can be simplified. 

Taking into account the above mentioned features, the integration of Eq. 7 can be written as 
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in which nV  is the norm of velocity vector, it represents the value nnn VVV •= . 
Then the term )( nV

OK  in Eq. 8 takes the following forms: 
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where e
nV  represents the velocity vector in the element associated to e

outΓ .  
This solution scheme consists of only the local and explicit operations, so the prediction is very 

efficient. 

4. Validation of the modified algorithm 
The modified integration term on outlet boundary in section 4 was realized on a platform of the 

Matlab to focus the effort on its development and validation. As this work is based on the previous 
work on explicit algorithm in laboratory [23, 25], some technical issues were taken directly from the 
previous work. A simplest filling mold in shape of straight channel was chosen to do the simulation, 
which was often used as the validation evidence of a newly developed algorithm. It was meshed with 
triangle elements as shown in Fig. 3 The density of feedstock is 7000 kg/m3, the viscosity takes a 
value 100 Pa ⋅ s, and the velocity value imposed on inlet along the axial direction is 4 m/s，6 m/s and 
10 m/s respectively. These material properties and boundary conditions are assigned just for the 
purpose to validate the software. They do not mean the real values calibrated by experiments.  

 
Fig. 3 Meshes of straight channel model 

 
Comparison on evolution of the filling ratio versus time, obtained by previous and modified 

algorithm, is shown in Fig. 4 It shows that the results obtained by two methods are globally the same 
until the filling ratio reaches to 90%. Then the results issued of previous algorithm show the filling 
rates slower than the true ones. While the filling ratio of modified algorithm keeps nearly proportional 
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all over whole time, including the ending stage. Although it presents a little deviation to the real fact 
when it fills up to 98%, the fully filled pattern is soon achieved. For the approach and simulation by 
computation, it represents no more a significant problem.  

 
Fig. 4 Comparison on evolution of the filling ratio versus time 

5. Conclusion 
The modeling of injection molding is modified to simulate correctly the ending stage of filling 

process. The incorporated implementation is realized in the developed solver. The examples with 
constant injection velocity on inlet are provided to validate the proposed method. Based on the 
validations, one can conclude that: 
(1) The modified boundary condition represents a true effect that should be taken into account. 

Incompressibility of the filling flow can hence be well respected at the last stage of filling 
process.  

(2) The filing problems in simulation happened in the work of Dutilly [13] and Barriere [25] can be 
solved by modification of the boundary condition on outlet. The opinion of Barriere [25] was 
correct. Lack of the integration term on outlet boundary was the true cause for such a problem. 

(3) The persistent problem is solved successfully. The simulation of filling process is made more 
reliable. Furthermore, the stability for solution of the volume fractions was improved. The 
in-house solver for simulation of the injection molding was optimized. 
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