
HAL Id: hal-02300138
https://hal.science/hal-02300138

Submitted on 7 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Structural multi-modal damping by optimizing shunted
piezoelectric transducers

Stéphanie Livet, Manuel Collet, Marc Berthillier, Pierrick Jean, Jean Cote

To cite this version:
Stéphanie Livet, Manuel Collet, Marc Berthillier, Pierrick Jean, Jean Cote. Structural multi-
modal damping by optimizing shunted piezoelectric transducers. Revue Européenne de Mé-
canique Numérique/European Journal of Computational Mechanics, 2011, 20 (1-4), pp.73-102.
�10.3166/ejcm.20.73-102�. �hal-02300138�

https://hal.science/hal-02300138
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1



1. Introduction

Research activities in smart materials and structures are very important today and

represent a significant potential for technological innovation in mechanics and elec-

tronics. The growing interest of our society in the problem of sustainable development

compels a broad research effort for optimizing mechanical structures in order to obtain

new functional properties such as noise reduction, comfort enhancement, durability,

performances, decreased ecologic impact, etc. (Becker, Fein, Maess et Gaul 2006).

Over the past 30 years, a great deal of attention has focused on the active control of

noise, vibration and structural response (Nelson et Elliott 1992, Preumont 1997). Ac-

tive control of mechanical structures commonly involves feedback strategies based on

the use of a small number of transducers. We can find in the literature many stud-

ies concerning the adaptation of standard automation tools for structural stabilization

and isolation. One of the key points of interest has been the optimization of the loca-

tion and shape of semi-distributed transducers such as piezoelectric patches or stacks.

Collocated and non-collocated strategies have also been widely studied and compared

in order to deal with the specific problem encountered when controlling continuous

structures with an infinite number of degrees of freedom. The book of A. Preumont

(Preumont 1997) presents a comprehensive overview of this arena, emphasizing the

implementation efficiency but also the limiting problems such as spill-over, robust-

ness, localized efficiency, etc.

Some particular structures such as rotors or gas-turbine blades are particularly sen-

sitive to aero-elastic coupling phenomena. The induced aerodynamic limits can be

pushed away by adding extra damping to the structure in order to reach even better

performances. The main design constraint is also to improve stability while limiting

additional weight. In order to realize such a multi-objective design, new methods are

now available which allow active transducers and their driving electronics to be di-

rectly integrated into otherwise passive structures. The number of potential specific

applications for these approaches is growing significantly in many industrial fields

such as civil engineering, aerospace, aeronautics, ground transportation, etc. The

main research challenge today deals with the development of new multi-functional

structures integrating electro-mechanical systems in order to optimize their intrinsic

static or load-bearing mechanical behavior while also achieving goals specific to their

dynamic response. In this new technological environment, another very promising

way to optimize the vibroacoustic behavior of complex continuous systems is to use

distributed approaches. This strategy is based on using a semi-distributed set of trans-

ducers able to impose upon a part of the mechanical system, an implementation of a

controlling operator. The technological revolution of these past few years in the field

of integrated Micro Electro Mechanical Systems give us a real potential to realize this

next generation of smart structures. We know today that the mechanical integration

of active smart materials, electronics, chip sets and power supply systems is possible

for these smart "composite" structures. By using such an integrated active or hybrid

distributed set of electromechanical transducers, we could also attain the desired new

functionalities. In this sense, we can speak of "integrated distributed smart struc-
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tures." Some works in this regard can be found in (Tanaka et Kikushima 1999, Tanaka

et Sakano 2007).

To deal with this new scientific and technological challenge, shunted piezoelectric

systems offer a very attractive path for electro-mechanical integration and distribution.

Numerous works have been published (Park et Palumbo 2004, Becker et al. 2006, Ha-

good et von Flotow 1991, Agnes 1994, dell’Isola, Maurini et Porfiri 2004, Moheimani

et Fleming 2006, Cross et Fleeter 2002, Beck, Cunefare et Ruzzene 2008) that present

analysis of the capability and efficiency of a single shunted piezoelectrical patch for

structural stabilization and wave cancellation. With this approach, the sensing element

is not needed and the use of a passive network guarantees the stability of the coupled

system. Hagood and VonFlotow (Hagood et al. 1991) provided the first analytical

formulation for passive shunt networks. They demonstrated how a piezoelectric patch

shunted through a single resistive-inductive (RL) circuit acts as a vibration absorber

tuned at the resonance frequency of the circuit. Since then, more complex shunting cir-

cuits have been investigated to extend the effectiveness over broader frequency bands.

For example, multi-mode techniques have been proposed by (Wu et Bicos 1997) who

employed a series of blocking, inductive-capacitive (LC) circuits in parallel with an

RL shunt circuit designed to attenuate a specific resonance frequency. Other meth-

ods of broadband suppression include state switching (Corr et Clark 2002), synthetic

impedance (Fleming, Belirens et Moheimani 2000), and negative impedance circuits

(Behrens, Fleming et Moheimani 2001, Park et al. 2004, Park et Baz 2005, Fukada,

Date et Kimura 2002). The selection of negative impedance shunt parameters have

been chosen by a few different tuning theories. Behrens selected the shunt param-

eters through investigation of the active control element of the negative capacitance

(Behrens et al. 2001). Park and Palumbo decomposed the wave field on a beam to

find a minimization of the reflected wave component (Park et al. 2004). By noticing

the link between the wave based approach of Park and Palumbo and the power input

to the system, Cunefare developed a parameter selection technique based on the re-

active input power (Cunefare 2006). Negative capacitance shunts can be designed to

work in conjunction with piezoelectric patches arrayed in a periodic fashion. Periodic

structures have been shown to improve the broadband performance of control systems

on structures (Casadei, Beck et Ruzzene 2009, Thorp, Ruzzene et Baz 2001). On all

these works, piezoelectric shunt damping also appears as promising passive technique

for vibration control of flexible structures (Beck et al. 2008, Cunefare 2006). Contrary

to active control, the only external element to be used is a passive electrical network

(PEN) that is directly connected to the electrodes of the piezoelectric device.

These techniques allow to use a perfectly collocated system of transducers to con-

trol the mechanical structure. Thus, we can profit of the poles/zeros interlacing theo-

rem to guarantee robust stability of the control system (Preumont 1997). Furthermore,

the analogical electrical circuits used for shunting the piezoelectric patches, do not

introduce a large additional mass into the system nor a large time delay and also can

be implement for a large frequency band. Depending onto the used shunt circuits, the

necessary large reactive part of the electrical circuit can be obtained by using suit-
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able synthetic inductance or capacitance implying operational amplifiers (Fleming,

Behrens et Moheimani 2003, Fleming et Moheimani 2004).

Based on these works, this paper is focused on optimizing the fully electrome-

chanical parameters behavior of shunted piezoelectric transducers for structural sta-

bilization in a multi modal context. For designing the piezo-mechanical system one

can use the the modal effective electromechanical coupling coefficient, proposed in

(Chevallier, Ghorbel et Benjeddou 2008). However, no closed form tuning solution

has been found for these techniques and numerical optimization is the only way to si-

multaneously determine the values for the electrical components when several modes

are taken into configuration. Thus, for the control of a large number of modes, numeri-

cal optimization may result in a complicated procedure, and the implementation of the

circuit may become a difficult task due to the high order of the system. For designing

the piezo-mechanical system one can use the the modal effective electromechanical

coupling coefficient, proposed in (Chevallier et al. 2008).

This paper first presents a study of the induced phenomena and explain the in-

fluence of the piezoelectric component in the energy transfer between the schemat-

ically modeled structure and different electronic circuits. Based on the work of

(Preumont 1997, Monnier, Collet et Piranda 2004, Chevallier et al. 2008), optimiza-

tion guidelines is highlighted to maximize the induced structural damping for multi-

modal stabilization. In a second part, experimental tests has been settled to verify

theoretical results on damping with semi-passive shunts as resistance and negative

capacitance. The sensitivities of the induced modal damping ratios on shunt circuit,

piezoelectric materials and the parameters of the patch geometry are studied. We also

quantify the capability of the introduced semi-passive shunted piezoelectric system to

stabilize the vibrating structure and check how much the studied integrated piezoelec-

tric system can likely damp complex mechanical system without a need of external

power supply. Finally, an optimization procedure is proposed for shaping and locat-

ing the piezoelectric patches glued onto a plate and designing the electronic circuit

components in view of stabilizing a plate supporting structure on its first modes. Ex-

perimental validation is also carried out to validate the proposed methodology.

2. Piezoelectric modeling and shunt circuit design

Let us consider a very simple system constituted of a single piezoelectric patch

glued onto a supporting beam as described in Figure 1. The piezoelectric material is

assumed to be polarized along positive (Oz) direction. The bottom electrode (inter-

face between piezoelectric domain and the support) is grounded.

2.1. Modeling aspects

Different modeling approaches can be used for describing such systems. The sur-

vey paper of (Benjeddou 2000), and the papers (Noor 1991) and (Mackerle 1997)
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Figure 1. Schematic of a used piezo composite beam. a/ shunted with a resistive (R)

circuit; b/ shunt with R and negative capacitance (RCneg) circuit

analyze a wide variety of different works in this area. A numerous of piezoelectric fi-

nite elements methods for sandwich beams (Collet, Walter et Delobelle 2003, Maurini,

dell’Isola et Pouget 2004), plates (Ha 1990, Wang 2004, Kogl et Bucalem 2005, Fer-

nadez et Pouget 2004, Tzou et Fu 1994a, Tzou 1997, Lee 1990, Lee et Moon 1989,

Lee, Chiang et O’Sullivan 1991, Banks, Smith et Wang 1996, Saravanos, Heyliger

et Hopkins 1997), layered composite shells (Yang, Saigal et Liaw 1996, Kogl et

al. 2005, Bernadou et Haenel 2003, Banks et al. 1996) or volume elements, as those

used in many finite element codes (Varadan, Lim et Varadan 1996, Lin, Abatan et

Rogers 1994, Tzou 1997) can be found in literature.

As noted in (Benjeddou 2000, Collet et Cunefare 2008), the most theoretically

advanced finite elements has not been widely used for practical modeling of adap-

tive structural elements for "intelligent" or smart materials and structure applications.

Because of the difficulty of building accurate and reduced models for multiphysics

analysis, many authors use simplified modeling approaches in order to limit numeri-

cal complexity while focusing on physical design, computation and optimization (Rao

et Sunar 1994, Crawley 1994, Preumont 1997, Monnier et Collet 2005, Hagood et

al. 1991, Collet 2001).

Modeling of standard piezoelectric problem is based on writing two sets of partial

derivative equations and their associated boundary conditions for introducing the elas-

todynamic equilibrium and in the other one the electrostatic one. A synthetic form of

the 3D electromechanical dynamical equilibriums can be written as

{
ρẅ −∇σ = f ∀x ∈ Ω ∪ Ωp

−∇D = 0 ∀x ∈ Ωp
[1]
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with a linear piezoelectric constitutive equations so as:

σ = cE(x)ε− e
T (x)E [2]

D = e(x)ε+ εS(x)E [3]

where σ represents the Cauchy stress tensor, ε = ∇symw the Green strain tensor,

E = −∇V the electric field vector (V the voltage), D the charge displacement, ρ the

mass density, w the displacement vector, CE the elasticity tensor at constant electrical

field, eT the piezoelectric coupling tensor and εS the dielectric permittivity at constant

strain. Combining Equations [2], [3] and [1] leads to the standard general form of

the set of partial differential equations describing the dynamic equilibrium of such

coupled problem.

To obtain a simple weak formulation limiting the numerical cost to treat the cou-

pled problem, the classically used assumption, applied in most of the finite elements

codes, is to consider through-thickness linear variation of the electrical potential

(Collet et al. 2003, Preumont 1997, Hagood et al. 1991, Hac et Liu 1993, Tzou et

Fu 1994b). This hypothesis leads to neglect the induced potential, while the elec-

tromechanical coupling will be only partially captured as described in (Benjeddou

2000, Collet et al. 2008, Chevallier et al. 2008). This approach can yield up to 30%
error in evaluating the equivalent piezoelectric capacity for small patches. In fact, it is

known that the asymptotic electric potential for a short-circuited thin plate is quadratic

in the thickness (Bernadou et al. 2003).

In this paper, we use two different modeling approaches: one using this standard

assumption, which is a 1D composite beam modeling as described in (Collet et al.

2003, Hac et al. 1993, Tzou et al. 1994b), and a second one using a full 3D approach

based on the methodology proposed in (Collet et al. 2008).

2.2. Electric shunt design parameter

Whatever the modeling approach is, we always obtain a discretized system of the

form:

Mẅ(t) + Cẇ(t) +Kw + ewvV (t) = F (t) [4]

−e
T
wv

w(t) + CS
p V (t) = Q(t) [5]

where M , K, C stand respectively for mass, damping and open circuit stiffness ma-

trices, ewv is the piezoelectric coupling matrix depending on piezoelectric material

coefficients e but also on geometric and support characteristics, CS
p is the diagonal

matrix of each equivalent piezoelectric capacitances for zero strain. w represents the

vector of mechanical degrees of freedom and V , the vector of the applied upper elec-

trode voltage, whereas Q is the dual measured current. The main difference between
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the full (or well condensed) 3D and the simplified beam or plate approaches is located

in evaluation of CS
p and ewv matrices.

When optimizing shunt circuit for stabilizing that dynamical system, you have

to design the suitable electrical relationship (i.e the circuit) by generically finding

optimal parameters of ordinary differential equations linking applied voltage V and

the produced current Q so that:
∑N

i=0 ai
diV (t)
dti

=
∑P

j=0 bj
djQ(t)
dtj

. Let us consider

only two simple electronic circuits:

– A resistive circuit for which

V (t) = −R
dQ(t)

dt
[6]

that is represented in Figure 1.a;

– a serial resistance/capacitance circuit for which

V (t) = −(
Q(t)

Cneg

+R
dQ(t)

dt
) [7]

represented on Figure 1.b.

We do not consider resonant RL shunts circuit but the feedback’s expression can

also be written as an ordinary differential equation as in Equations [6]and [7]. For

more precisions on this approach, reader would refer to (Hagood et al. 1991, Mo-

heimani et al. 2006, Fleming et al. 2003, Moheimani, Fleming et Behrens 2001).

2.2.1. Resistive shunt circuit

Let us consider a simple resistive circuit. Equations [4] [5] and the feedback term

can also be rewritten as:

Mẅ(t) + Cẇ(t) + (K + e
T
wv

(CS
p )

−1
ewv)w(t) = −ewv(C

S
p )

−1Q(t)

+F (t) [8]

(CS
p )

−1Q(t) + (CS
p )

−1
e
T
wv

w(t) = V (t) [9]

−
1

R

∫
V (t)dt = Q(t) [10]

In that case, we obtain a typical system of ordinary differential equation correspond-

ing to the implementation of an Integral Force Feedback strategy. This active damping

control is well described in (Monnier et al. 2004, Preumont 1997). Thus all design pa-

rameters and optimization criteria are well known since the nineties. When 1
R

take all

values in R
+, each complex eigen values of the obtained dynamical system follows a

well known root locus depicted on Figure 2. For lightly coupled system (see (Monnier

et al. 2004) for definition), the maximum induced damping ratio for a given mode i is

given by :

ξmax
i =

ωoci − ωsci

2ωsci

[11]
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2.2.2. Negative capacitance circuit

If we now consider a serial RCneg shunt circuit, based on the system equilibrium

Equations [4] [5] and the electronic introduced feedback, the controlled equations are:

Mẅ(t) + Cẇ(t) + · · ·

(K + eTwv(C
S
p + Cneg)

−1ewv)w(t) = −ewv

Cneg

Cneg + CS
p

V (t)

+F (t) [13]

−eTwv

Cneg

Cneg + CS
p

w(t) + CS
p

Cneg

Cneg + CS
p

V (t) = Q(t) [14]

V (t) = −RQ̇(t) [15]

By comparing with Equations [8],[9] and [10], we can show that this last system corre-

sponds to a piezomechanical system in which we would have modified the initial short

circuit stiffness K to K+eTwv(C
S
p +Cneg)

−1ewv. Thus if eTwv(C
S
p +Cneg)

−1ewv is a

negative matrix, we can easily demonstrate that we could decrease the corresponding

short circuit eigen frequencies and also increase the corresponding resistive feedback

efficiency as previously demonstrated. To decrease the short circuit stiffness, we also

need to use a negative capacitance circuit built by using suitable synthetic circuit. This

result corresponds to those obtained by Hagood Von Flotow with a very simple model

in (Hagood et al. 1991). In Hagood-Von Flotow work, they introduce an effective stiff-

ness for the shunted piezoelectric laminated composite that can be plotted as in Figure

3. The induced root loci by the resistive part of the shunt with various initial negative

capacitance are plotted in Figure 4. One can also materialize a real improvement for

stabilizing the considered mode when negative capacitance tends toward −CT
p (the

piezoelectric capacitance at zero stress) from lower values. For Cneg between −CT
p

and −CS
p the system is unstable as the effective stiffness becomes negative (see Figure

3). For values superior to −CS
p , the negative capacitance part does not introduce any

improvement on the resistive induced modal damping.

To optimize such RCneg circuit one can also use an optimization criterion maxi-

mizing the effective piezoelectric coupling coefficient as proposed in Equation [12].

3. Experimental validation

3.1. Experimental protocol

A steel beam has been used to compare different modeling methodologies (1D

Euler-Bernoulli beam and 3D piezelectric model) and to validate the proposed opti-

mization strategy based on the criterion of Equation [12]. The experimental system is

described on Figure 5. It stands for a clamped free beam equipped with a glued piezo-
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tance part in the connected shunt

electric patch. For each experimental test, we keep constant the size of the piezo-

electric (Lp = 20mm lp = 10mm and ep = 0.5mm c.f. Figure 1) to be able to

compare and evaluate the extra damping as a function of different relative lengths
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(L = 55/70/90mm l = 10mm and e = 1mm Figure 1) of the host structure. The

piezoelectric element is bonded close to the cantilever beam root (xp = 2mm) to

retrieve good damping results for the first bending mode as the strain is then maxi-

mum, and also the coupling coefficient. The beam is excited by a contact less electro-

Figure 5. Picture of the experimental assembly

magnetic generator. The damping on the first mode from a white noise is measured

by a laser velocimeter and acquired by a PC with Siglab software. Modal analysis

technique and Modan®software is used to postprocess eigen frequencies and modal

damping ratio by using fitting curve techniques.

3.2. Resistive shunt

3.2.1. Damping influence from the length ratio of piezoelectric patches

In this part, we consider a simple resistive shunt circuit connected to the embedded

piezoelectric patch (Figure 5). The used piezoelectric material is a PZT P1-94 from

Saint Gobain Quartz bonded by curing at (80oC) on the supporting steel beam thanks

to a conductive glue (H20E of Epotek). The aim of the experimental tests was to quan-

tify the capability of such a system to damp (or to stabilize) the host beam structure

thanks to a resistive shunt varying from 0 (short circuit) to +∞ (open circuit). By

this way, we can evaluate the maximum of coupling between the piezoelectric and the

beam as a function of different design parameters as explained in Section 2.2.1. So

increase the resistance implies an increase of the damping ratio at the beginning and a

decrease after passing by an optimum point, while the frequency keeps increasing as

described in Figure 2. The measured damping ratio depends on the used resistance as

indicated in Figure 2 but also on design parameters. To study sensitivity of maximum

induced damping ratio on the relative length between the supporting plate and the used

piezoelectric patch and its connexion with our proposed criterion in Equation [12], we

have experimentally evaluated for different beam length the short and open-circuit

first eigen frequencies of the system, the free structural damping and the maximum of

induced resistive damping as well as the obtained peak magnitude attenuations. These

results are summarized in Table 1.
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We also note the direct relation between the difference of the short and open-circuit

eigen frequencies and the obtained maximum stabilization on the obtained resistive

damping or on the peak attenuation. That confirms the possibility to use the proposed

criterion (Equation [12]) for optimizing such passive system. Considering our experi-

mental tests, the more efficient system is shown to be the first one with a beam length

of 55mm.

Table 1. Passive Damping Results From Experiments

55mm beam 70mm beam 90mm beam

Short-circuit frequency (Hz) 360.3 210.0 121.4

Open-circuit frequency (Hz) 366.5 212.7 122.7

Structural damping (%) −0.1768 −0.1295 −0.1376

Maximal R damping (%) −0.9764 −0.744 −0.654

δ R damping (%) −0.80 −0.61 −0.52

δ Magnitude damping −18 dB −13 dB −12 dB

3.2.2. Damping impact due to piezoelectric material type

In this second part, let us compare relative piezoelectric material efficiency for sta-

bilizing the supporting beam when a simple resistive shunt circuit is connected. Two

different types of piezoelectric material have also been tested during the experimen-

tal studies. Keeping the same size of material, we have use PMN-33PT material from

TRS Technology in comparison with the previously used PZT P1-94 from Saint Gobin

Quartz (Cao, Schmidt, Cao, Rui et Luo 2004). The capabilities of PMN-33PT material

for absorbing vibration were already proved in (Rusovici, Dosch et Lesieutre 2002).

The PMN-33PT is a single crystal material and is a softer piezoelectric element than

PZT that explains the lower eigen frequencies observed on the PMN-33PT equipped

beam. It has also less impact on the host behavior and deflection of the beam. More-

over it has also better coupling coefficients. For a 55mm beam with embedded PMN-

33PT connected to resistive shunt, we experimentally measure twice the maximum

damping ratio obtained by using a PZT P1-94 transducer. The extra damping ξ on the

structure equipped with PMN-33PT reaches about 2%, which corresponds to a peak

attenuation of 25dB compared with uncontrolled response (Figure 6).

3.3. Correlation with theoretical modeling

The first computation made by using the nominal piezoelectric PZT material char-

acteristics was not correlated with the obtained experimental results. Indeed, the ini-

tially used PZT P1-94 had lost a part its polarization during the cure (80oC) for bond-

ing the element on the supporting steel beam thanks to a conductive glue (H20E of

Epotek). We have also updated the material characteristic of the used piezoelectric

12



(a)

(b)

Figure 6. Mechanical frequency response function (a) and Evans Diagrams (b) of a

55mm Beam with a PMN-33PT at different resistive shunt
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by curve fitting techniques and obtained closer results to the ones of Saint Gobain

Quartz PZT P1-91. This last material characteristics has been used to perform two

different numerical computations of the system’s root locus when a resistive shunt is

considered. The first computation is based on a standard 1D model as in (Collet et

al. 2003, Hac et al. 1993, Tzou et al. 1994b) and the second one on a full 3D mod-

els as in (Collet et al. 2008). The obtained results, in term of short and open circuit

first natural frequencies, maximum induced damping ratios and corresponding shunt

resistance are synthesized in Table 2.

Table 2. Passive damping results from 1D and 3D theory

Beam length 55mm 70mm 90mm

Model type 1D 3D 1D 3D 1D 3D

Short-circuit

frequency (Hz)
361.0 354.9 213.9 211.0 124.0 122.7

Experimental

relative error (%)
0.194 −1.50 1.86 0.48 2.1 1.07

Open-circuit

frequency (Hz)
367.0 361 216.9 213.9 125.4 124.1

Initial damping

ratio (%)
0.18 0.18 0.13 0.13 0.14 0.14

Maximal R

damping (%)
−0.995 −1.00 −0.832 −0.811 −0.655 −0.666

Experimental

relative error (%)
1.90 2.4 11.8 9.0 0.153 1.83

The relative error in Table 2 on the expected theoretically damping is rather small.

We pointed out that most of the frequencies are overestimated by our models. That can

be explained by the fact that the used glue is not numerically taken into account. In

consequence we observe that the glue may add some mass on the structure but seems

to have a poor impact on the damping ratio. There is not any noticeable difference

between 1D and 3D modeling approaches for evaluating the accessible resistive shunt

performances to stabilize the first mode of the beam. Nevertheless, we can point out

some larger differences in computing the first natural frequencies especially for the

short beam length (where the piezoelectric patch covers the larger relative surface of

the beam).

3.4. Negative capacitance shunt

As presented in Section 2.2.2, we can largely improve damping capability of the

resistive shunt circuit by adding a negative capacitance in the circuit. Such active

components are synthesized by an electronic circuit citeA.J.Fleming2000 such the one

presented in Figure 7. The device works as an equivalent capacity Ceq = R7+γR8

(1−γ)R8

C1
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for frequencies above 1
R3C

. It can be tuned thanks to γ through the potentiometer R8

which is variable from 0 to 20kΩ. The observed breaks on the root locus lines on

diagram (Figure 8) correspond to the upper limit of available resistance range. The

considered system is the steel beam of dimension L = 55 mm l = 10 mm and

e = 1 mm figure equipped with a previously used P1-94 PZT patch (Lp = 20 mm
lp = 10 mm and ep = 0.5 mm )as depicted on Figure 1. Different measurements

Figure 7. Electronic negative capacity diagram

have been done for a set of negative capacitance and resistance values. For each used

equivalent negative capacity, the resistive depending Evans diagrams are plotted on

Figure 8. The amplitude of the mechanical Frequency Response Functions between

the applied force and the collocated acceleration measurement are also presented for

different values of the shunt resistance and a implemented negative capacitance of

−16 nF . Thanks to this system, we can observe on root loci in Figure 8 a very high

induced damping effect. With the same PZT patch shunted by the best resistance (see

Table 1), we gain more than 4% of damping ratio and 30dB attenuation in magnitude

on the first mode, just before that the system instability occurs. Indeed the system

remains stable for negative capacities below the capacity at contant stress −CT
p as

show in (Hagood et al. 1991, Collet, Cunefare et Ichchou 2009). This instability is

visible on the theroetical bode diagram in red on Figure 4 obtained for a capacity just

above −CT
p . We have also validated by experimental measurements the theoretical

behavior pointed out in Section 2.2.2.

4. Optimization of the location of R shunted piezoelectric patches on a plate

4.1. Numerical validation of the proposed criterion to optimize the induced modal

damping ration by a R shunted piezoelectric patch

Thanks to the criterion described in Equation [12], it is possible to study the ideal

localization or size of R shunted piezoelectric to damp specific modes. Indeed for
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modes is very important compared to the one to damp torsional ones. This is due

to the low coupling coefficients of the piezoelectric material on shear strain, which

induces a lack of controllability of our system on these modes.

To optimize a set of R shunted piezoelectric patches to damp several modes, our

criterion needs to allow a comparison between several induced modal damping ratios.

As shown in Figures 9 and 10, it is not the case when simply using Θi(Lp, xp, e).
To introduce the suitable normalization we propose to modify the previously used

criterion (Equation [12]) for :

Θ̄i(Lp, xp, e) =
ω2
oci

− ω2
sci

ω2
i

[16]

where ωi stands for the corresponding eigenfrequency of the mechanical system with-

out any piezoelectric patches. By assuming low piezoelectric coupling effect inducing

small differences between each set of computed modes, one can precisely associate

this mode to the corresponding pair of electromechanical ones. In other cases, one

need to associate each mode by using a dedicated Modal Assurance Criterion (MAC)

for example.

Table 3. Modal Optimum of the Length Ratio between the Piezoelectric and the Beam

Flexural Mode to optimize 1st 2nd 3rd

Piezo/Beam Length Ratio ≈ 1/2 ≈ 1/6 ≈ 1/10

The second numerical tests aims at showing the sensibility of the used criterion for

determining the optimal location of a R shunted piezoelectric patch to obtain the maxi-

mum modal damping. Moving a constant sized piezoelectric (20mm in length) on the

whole length of the structure (70 mm long cantilever beam), it is possible to observe

in Figure 11 that the localization impacts on the reachable maximal modal damping

ratios. In the case of the first bending mode, the best position for the piezoelectric

element remains to be the closest to the clamped side of the beam. For the second

bending mode, the ideal position gets closer to the middle of the beam. Regarding the

third bending mode, two positions seem damping efficient. Those are located at each

end of the beam. As in the previous study, the efficiency of the piezoelectric for the

torsion and edgewise modes, which is not working in its privileged directions, remains

very poor.

All those results are verified by the computation of the proposed criterion

Θi(Lp, xp, e = eo) as shown in Figure 12. It is possible to conclude on the pos-

sibility to build an efficient numerical design procedure for optimizing a R shunted

piezoelectric system to induce large modal damping ratios thanks to this criterion.
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layers. The main aims are also to validate the criteria for optimizing induced damping

ratios on several modes and the proposed numerical methodology. For doing such an

optimization, we add additional constraints on our problem :

– the number of piezoelectric elements are limited.

– all piezoelectrics possess the same size and are made from the same material.

Only the localization will be optimized.

– the piezoelectrics are not electrically linked all together.

– the electrical circuit are constituted by only resistive elements.

Several modes can be damped thanks to resistive shunt circuits connected to dif-

ferent piezoelectric patches. The control device has also to be ruled for focusing effi-

ciency on specified modes. It is not only the electrical circuit but also the localizations

of the piezoelectric patches which has to be optimized. The piezoelectric material

characteristics are also fundamental. Indeed their coupling coefficients play an im-

portant role as previously mentioned. Playing with the material, size and localization

of the transducers, it is possible to focus the system efficiency for damping specific

modes.

The considered system is a clamped free aluminum plate of dimension La × la ×
ea = 140 × 50 × 1 mm3, in which to control the first three modes: the first bending

mode, F1, (around 50Hz) and its second (first torsion T1) and third (second bending

F2) modes around 300Hz.

In order to control these three first modes, seven piezoelectrical transducers are

placed on the plate. Each of them are 2 × 1 × 0.5 mm3 sized. The used material is

PMN-PT because of its high inherent coupling coefficient inducing a high capability

to passively damp vibration through a simple resistive shunt circuit.

4.3. Multi-modal optimization of R-shunted piezoelectric patches on a plate

4.3.1. Modeling

The plate model is obtained from the Mindlin theory and each piezelectric patches

are modelled by using 3D piezoelectric bricks element connected to the plate by im-

posing continuity between the 3D displacements and interface movements coming

from Mindlin cinematic. The piezoelectric boundary conditions are to impose zero

charge displacement normal to the lateral faces, a bottom ground electrod and a top

electrode (having a constant potential) connected to open and close circuit for com-

puting short circuit and open circuit eigen frequencies.

4.3.2. Parametrization

The piezoelectrics can be localized on the plate on the xy plane and oriented from

(Ox) axis with an angle θ as depicted on Figure 13. The optimization algorithm

is constrained by conditions on the free space between piezoelectric layers. These
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elements must not obviously exit the plate and stay away from the clamped zone with

a distance of δa = 1mm but they cannot also have a non null intersection.

To stay inside the plate, the center coordinates of one piezoelectric (xp, yp, θp)
can operate in the rectangular domain of the plate centered on points of coordinates

(xa, ya) following the constrains expressions given in Equation [19] (Figure 13) :

xa + δa −
La

2
+

Lp

2
≤ xp ≤ xa +

La

2
−

Lp

2
[17]

ya −
la

2
+

lp

2
≤ yp ≤ ya +

la

2
−

lp

2
[18]

−
π

2
≤ θp <

π

2
[19]

Figure 13. Parameters of piezoelectrics disposed on the plate

4.3.3. Multi-modal criteria in the case of several piezoelectrics

For optimizing damping effect on a specific mode i, we use the criterion given

in Equation [20]. To take into account constrains of null intersection between each

piezoelectric covered domains, we introduce, for each piezoelectric, its minimal dis-

tance with its neighbors ones called dp . The unimodal used criterion is also given in

Equation [20]. It is based on the computation of the difference between open and short

circuit eigenvalues Θi weighted by an hyperbolic tangent function of the minimal dis-

tance constrain. This distance is chosen to 1 mm that induce a rapid penalization of

the criterion when the piezoelectric distance goes below 1 mm. The new function to

optimize is also noted Γ and expressed as in Equation [20].

Γi(xp, yp, θp) = −Θ̄i(xp, yp, θp).tanh

(
min(dp(xp, yp, θp))

10−3

)
[20]
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The use of several piezoelectrics can lead to damp several modes. For an optimiza-

tion on [m] distinct modes, the relationship in Equation [20] becomes Equation [21].

Γ[m](xp, yp, θp) = −(
∑
i=[m]

Θ̄i(xp, yp, θp)).tanh

(
min(dp(xp, yp, θp))

10−3

)
[21]

The used optimization algorithm is a standard ’Simplex’ procedure (Lagarias,

Reeds, Wright et Wright 1998).

4.3.4. Piezoelectric location optimization

Based on the multi-modal criteria given in Equation [21], we have optimized the

location of seven rectangular piezoelectric patches for stabilizing the first three modes

of the system (m = 3). The used numerical method is the simplex algorithm of

Matlab® based on computations with Comsol Multiphisic® of the first three pairs of

short and open circuit eigenfrequencies of the coupled system. The initial conditions

has been carefully chosen to avoid to obtain one of the numerous local optima. For this

end, each initial patch has been localized near one of maximum modal strain energy

of the first three modes. The obtained location is depicted on Figure 14.

Figure 14. Optimal locations of the seven piezoelectric onto the plate

As shown on Figure 14, one can underline the symmetry of the obtained optimal

system. The optimization procedure leads also to locate numerous patches near the

clamped edge where the first flexural and torsional modes induce a maximum stress.

The other patches are located in order to increase modal efficiency the higher order

modes.

4.4. Experimental results

After determining the ideal position of the piezoelectric patches onto the plate,

the optimal configuration was tested experimentally. The cantilever plate is placed

between jaws as in Figure 15. The tightening has to be realized properly to prevent

the risk of complex modes appearing. To do so, some thin copper plates had been
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added in between to lead to a better cohesion. The whole assembly is composed

by a contact-less magnetic excitation source placed below the plate and by a laser

vibrometer pointing on the left free end point collocated with the force source.

Figure 15. Plate equipped with piezoelectric transducers

Each piezoelectric patch p is linked to a potentiometer Rp. The tuning of the resis-

tive components is made depending the associated mode to damp. The optimization

of each applied resistance on each patch is made by dedicating each patch to damp

only one mode depending on its best effective coupling coefficient given by the op-

timization algorithm. From Figure 14, the piezoelectric patches P1 and P4, placed

against the clamping and toward the edges of the plate are used to control the first tor-

sion mode T1, while the piezoelectric patches P2 et P3 situated in between the first

two are chosen to damp the first bending mode F1. The pieoelectric patches P5, P6
and P7 located at the center of the plate are tuned for the second bending mode F2.

Each resistance is firstly tuned to obtain individually the best effect on each dedicated

modes. The optimization is made by imposing Rp = 1
Cpωj

, where p denote the piezo-

electric patch number and j the targeted mode number. This value corresponds to the

best impedance matching at the resonance frequency. The resistive circuit is made by

a serial of two potentiometers with a different sensibility. The smaller one is used to

refine the tuned resistance value. The total accessible range correspond to a resistive

control from 0 to 2MΩ. A three position switch, in each circuit, allows the possibility

to connect each piezoelectric in open or short-circuit or to the shunt resistance.

The theoretical unconstrained capacity of the piezoelectric is evaluated to 6 nF for

a the used PMN-PT material and dimensions (Cp =
Apε33
ep

, with Ap the area and ep the

thickness of the piezoelectric). Each of them has been measured by a programmable
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RLC-meter while these are already stuck on the structure. The optimized values of the

resistance are also ruled as function of this experimental values as mentioned in Table

4.

To complete this first multi modal implementation, a second resistance tuning is

made to focus the system to specifically damp the second and the third modes (F2 and

T1). In this case, the piezoelectric resistive shunts of patches P2 and P3 are ruled by

using resistance values given in Table 4 to damp mode F2 in spite of initially targeted

mode F1.

Table 4. Optimal Values of the Resistance Depending on their Effective Electrical

Capacity and the Mode to Damp

Piezoelectric # 1 2 3 4 5 6 7

Capacity Cp (nF) 6.48 6.06 5.82 6.29 6.41 6.75 6.26
Optimal Resistance for

Mode F1 (kΩ)
∗ 536 558 ∗ ∗ ∗ ∗

Optimal Resistance for

Mode F2 (kΩ)
∗ 90 94 ∗ 85 80 87

Optimal Resistance for

Mode T1 (kΩ)
85 ∗ ∗ 87 ∗ ∗ ∗

Table 5. Experimental Results From the FRFs

Damping (%) Short-circuit
Optimized

Circuit

Optimized

Circuit
Open Circuit

for Modes F1,

F2 and T1

for Modes F2

and T1

Mode F1 0.59 1.60 1.08 0.59
Mode F2 0.13 0.27 0.29 0.12
Mode T1 0.17 1.09 1.34 0.17
Mode T2 0.09 0.18 0.24 0.09
Mode F3 0.06 0.18 0.19 0.06

The obtained damping ratios in Table 5 show up a large efficiency of the proposed

two passive systems for damping the first three modes of the plate. The damping

brought to the first mode is 0.5% at minimum but can reach 1% at maximum (which

corresponds to 6dB with two piezeoelectrics). The system reduces the second mode by

7dB (+0.14% of damping) and the third mode by 15dB (+0.92%). The corresponding

Frequency Response Fonctions are plotted in Figure 16 As expected, the specialization

of each piezoelectric patch to damp a specific mode plays an important role on the

damping efficiency. The first type of tuning damps a lot better the first bending mode
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system’s stiffness and so, of its eigenvalues. It means that the tuning is not anymore

appropriate as the optimal resistance depends on the frequencies. A further numerical

study would be necessary to correct these optimal values but the resistive shunts show

here their best asset: their low sensitivity. Even if the electrical circuits are not fully

optimal, but tuned with a simple methodology, the system’s efficiency is proved, when

the piezoelectric effective coupling coefficients have been optimized.

5. Conclusion

With the necessity of designing new highly performing structures able access se-

vere requirements, technical innovations to control vibrations have to be considered

and studied. Some critical vibrating modes can put forward in many applications.

For rotor design, these modes are linked to the blade aspect ratios and of course to the

energy efficiency of the considered system. By developing a suitable design methodol-

ogy for damping low order modes by only using simple shunted piezoelectric patches,

we relax dynamical constraints and develop new designs for increasing systems effi-

ciency.

The potential of such shunted piezoelectric systems to damp mechanical system

is very interesting. Indeed the experimentally obtained damping ratios are as good as

expected from the used multiphysics models. The purely passive method seems so to

conclude experimentally to a very large damping addition (almost 2% of first mode

damping ratio and about 25dB attenuation with a PMN-33PT only shunted through a

resistance), which is actually globaly efficient enough to prevent instability from aero-

dynamics coupling for example. The negative capacity circuit presents better results,

however it can present some difficulties to be adjusted correctly. The passive control

remains also always stable and can be adapted more easily to a muti-modal damp-

ing with several piezoelectric element correctly adjusted and wisely localised on the

structure. For a complex geometry, the theoretical model is certainly to crude to rep-

resent fairly enough a complex system and will be soon enriched if the experimental

perspectives being to be able to implement a passive control on fan blades or disk-

assemblies (Agnes 1999)for example. The aim of our futur studies will be to prevent

fluttering phenomena from appearing and to push as far as possible the aerodynam-

ics limits within the material resistance frontiers thanks to the optimisation premiss

guidelines.
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