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Active vibration isolation of electronic components
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The sensitive electronic components used in military and aerospace applications endure

some intense vibrations. These vibrations have some disturbing effects on the stability

and on the service life of these devices. So, protecting these elements becomes a major

economic and strategic stake. Vibration isolation can be applied to different levels of the

on-board systems. Indeed, it is advisable to isolate electronic components either at the

rack level or at the board level or at the component level. In this paper, the last solution

is chosen because of low moving masses which imply low control energies.

An active suspension system is located between the host board and the sensitive

element to be isolated. This designed control system uses a simple Integral Force

Feedback strategy. This vibration isolation control is stable for its collocated version and

does not need a numerical model of the system to be controlled. Robustness of the

system is asymptotically guaranteed. The proposed isolation device, made of alumina

for passive structure and made of PZT and PVDF for transducing layers, is experimen-

tally tested. Experimental performances are compared with theoretical performances.

1. Introduction

Vibration isolation is necessary in two broad classes of problems:

� A vibrating element is fixed on a structure. Mechanical waves propagate through this whole structure. Thus, they can
damage the different sensitive elements of the structure or reduce their service life.
� A sensitive element is fixed on a vibrating structure. So, vibrations can modify operating points of this element but also

strongly damage it.

The passive solution is the simplest way to achieve vibration isolation. Several passive techniques are studied in the
literature by using elastomer materials [1], by using shape memory alloys [2,3] or by modifying mechanical impedances [4].

The passive suspension, sketched in Fig. 1, is considered.
The transmissibility of the system, i.e. the relationship between the acceleration of the mass ( €W s) and the acceleration

imposed to the support ( €W u) is written in Laplace’s variables:

T €W s , €W u
¼
ð €W Þs
ð €W Þu

¼
s � CþK

s2 �Mþs � CþK
ð1Þ
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where K is the stiffness of the suspension (N m�1), M the mass of the structure (Kg), C the damping coefficient induced by
the suspension (Kg s�1) and s the Laplace’s variable.

The objective of any suspension is obviously to limit the acceleration of the system to be isolated in the excitation
frequency bandwidth. The behavior of the system is observed in Fig. 2, where different transfer functions are plotted for
different damping ratio values x¼ ðC=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=MKÞ

p
.

As shown in Fig. 2, this system presents a modal resonance peak that is to say an increasing of the acceleration of the
system to be isolated in a narrow frequency bandwidth. Obviously, the modal peaks decrease when the damping ratio of
the system increases. Consequently, the resonance amplification decreases and the sensitive mass stability increases in the
narrow frequency bandwidth around the considered eigenfrequencies. However, this effect also results in the reduction of
a high frequency filtering decay rate. Indeed, this high frequency decay rate evolves from �40 dB/decade, when no
structural damping is considered in the suspension, to �20 dB/decade limit for high structural damping ratios, x. Thus, it
results a bad isolation in high frequency range. Then, it becomes necessary to lower the cut-off frequency to increase
the high frequency isolation capability of the suspension. This modification is performed by limiting the stiffness of the
connection what involves a loss of stability in low frequencies. Ultimately, the traditional mechanical compromise is in the
ratio between the stiffness and the damping ratio of the connection [5].

A best mechanical compromise can be obtained by using an active control process [5]. Sky-hook control is the simplest
and the most common control strategy [6]. This isolation method can be stable and robust in its collocated version. The
idea is to actively introduce, in the mechanical connection, a viscous damper rigidly fixed to a Galilean coordinate system.
The design of this controller is based on an absolute sensing signal such as the acceleration, the transmitted force, the
absolute velocity or the absolute displacement. Studies of various sky-hook-type strategies are broadly proposed in the
literature [7].

The constant miniaturization of electronic components essential with electronic boards such as the frequency
generators, the vibrating gyroscopes and certain accelerometers generates two major difficulties. On the one hand, the
size of the soldered connection points is strongly reduced and so the yield strength of these soldered connection points is
reached. On the other hand, the dimension reduction of these elements fatally involves the reduction of their useful mass.
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Fig. 1. One-degree-of-freedom system.

40

20

0

20

40

60

M
ag

ni
tu

de
 (d

B
)

Frequency  (Hz)
10 10

Fig. 2. Transfer function evolution of a one-degree-of-freedom system for different values of x¼ ðC=2Þ
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Then, these electronic components become very sensitive to the external noise and become inefficient and inaccurate.
Consequently, the measurement accuracy is lost in signal noise level.

There are various methods to avoid these limitations. Indeed, it is possible to stabilize the sensitive components at level of
the racks containing carrying electronic cards. Generally, this solution is obtained by using passive isolation strategies. A second
solution involves stabilizing at level of the boards. It is possible to apply some active isolation strategies by using piezoelectric
patches [8–10]. The last solution is to control the electronic components themselves. This paper examines this method. The
principal idea is to create ‘‘small isolation islands’’ to individually isolate each sensitive component [11]. The control electronics
already presents onto the electronic boards is exploited. The isolation structure will be integrated into the design phase of the
electronic circuits. The used control law is founded on a classical collocated ‘‘sky-hook’’ strategy with an internal sensor.

The objective of this study is to design, manufacture and test a isolation meso-structure, so as to prove an active
vibration isolation feasibility for a vibration isolation device. The paper is organized as follows. Section 2 describes the
operation of the studied active suspension, the experimental device and the way to manufacture it. In Section 3, modeling
of the active suspension is provided and an experimental characterization is achieved. This section is a base for the
numerical development of the control architecture in Section 4. In the following section, experiments are achieved to
clearly set the validity of the control strategy and, thus, of our designed active suspension. These experimental results are
compared with the numerical ones. Finally, concluding remarks are discussed.

2. Design concept of the active suspension

2.1. Operation principle

The basis of an active isolator is the addition of an ‘‘active’’ function to a traditional suspension. The objective is to
decrease the resonance peak amplitude without degradation of the high frequency decay rate. The framework of the
isolation device constitutes the passive isolator. Sensors and actuators are added to the suspension, as shown in Fig. 3. The
sensor monitors the vibratory state of the suspended mass. This strategy is efficient for an absolute information: the
acceleration, the reaction force and, eventually, the absolute displacement or the absolute speed. Different variants, based
on the measurement type, can be performed [7]. Then, it makes it possible to create an actuator input signal via a controller.
Of course, this controller is a function of the transmitted information but also of the reaction type produced by actuators.

A one-single-degree-of-freedom system is considered again. The equation of motion of the system is given by

M � €W sþC � _W sþK �Ws ¼ Fextþucontrol ð2Þ

where Fext ¼ C � _W uþK �Wu is the external excitation (N) and ucontrol the control force (N).
The control aim is to attenuate the resonance peaks without modifying the high frequency decay rate. The signal of the

chosen sensor is proportional to the acceleration. Thus, the sensor signal is integrated to achieve the desired effect. The
control law is related to a ‘‘proportional-integral’’ method [12]. The idea is to actively introduce, in the mechanical
connection, a viscous damper rigidly fixed to a Galilean coordinate system. In our case, the central sensor is an
accelerometer. So, as presented in Eq. (3), a PI control can be sufficient with an acceleration measurement to control the
suspension resonance. If a relative measurement is used and a PI control introduced, the suspension resonance will be
damped but the high frequency decay rate will be degraded.

Within the active control loop, the strategy is called ‘‘sky-hook’’ damper [5].

ucontrol ¼�G �

Z
y � dt¼�G �

Z
a � €W s � dt¼�G � a � _W s ð3Þ

where G, y and a are the control gain (Kg s�1), the sensor signal (m s�2) and the strictly positive sensor gain.
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Fig. 3. Principle scheme of a ‘‘local’’ active isolator.
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The ‘‘sky-hook’’ strategy has two major advantages. This strategy is robust. In other words, even if the structure changes
because of ageing or natural system drift, the control remains powerful. In addition, no matter what the structure is simple
or complex or if an acceleration or force sensor is used, the ‘‘sky-hook’’ strategy can be stable under the conditions exposed
in [5]. In our case, the internal dynamics of the sensor is very high in frequency with respect to the suspension frequency.
So, the stability is guaranteed. The disadvantage of the ‘‘sky-hook’’ is the non-optimality of the control law. Thus, it becomes
imperative to optimize the location of the sensors and actuators on the structure so as to obtain good control results.

2.2. Experimental device

An alumina clamped–clamped beam, as shown in Fig. 4, is used as a basic passive structure on which the element to be
isolated is located [13]. The active function is conferred to the structure by two piezoelectric actuators and one
piezoelectric sensor located on the top face of the beam. These active parts of the system are founded on PZT layers for
the actuating parts and on PDVF layer for the sensing part. The PVDF layer constitutes the support of the component to be
isolated which is, in our example, a little mass, made of steel.

In this application, the direct and opposite piezoelectric effects are used. So as to simultaneously allow the detection
and activation, a wire system is used. The actuators are placed close to boundaries of the beam and their length is
optimized in order to obtain the maximum action force on the first bending mode [14,15]. The sensor and the element to
be isolated are located at the middle of the suspension. A sensor output signal, mainly proportional to the acceleration
endured by the component, is obtained.

Mass

Alumina structure

Piezoelectric actuators

Piezoelectric sensor

Z

Y

X

Fig. 4. Structure of the suspension.
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Fig. 5. Configuration of the studied structure.
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2.3. Manufacturing of the active suspension

As indicated in Fig. 5 and in Table 1, the suspension device is a piezocomposite clamped–clamped beam, made of
495 mm thick alumina, 125 mm thick PZT for the actuators with one electrode of 5 mm thick in gold and 110 mm thick PVDF
for the sensor. The beam dimensions are 30 mm long and 2 mm width. The actuators are 8 mm long and the sensor 2 mm
long. The transducers have the same width as the host beam. The electronic component to be protected is glued on the
central part of the meso-system. This sensitive element is mechanically replaced by a cubic steel mass of 2 mm side
weighting 62.4 mg. Let us note that this value is representative of the masses of a real electronic meso-component.

The device manufacturing is achieved in laboratory, as explained in [16]. The bottom electrode is a Ag–Pd layer. The actuators
are hard PZT layers. They are obtained by a screen-printing process [17] of PbSr (Zr0.455 Ti0.455 W0.036 Sn0.036 Mn0.028) powder. The
top electrode of the actuators is a pulverized gold layer. The sensor is a PVDF layer glued on the middle of the beam.

For a screen-printing process, a paste is prepared. It constitutes by an active material in the proportion of 80 wt% and an
organic vehicle which is constituted by a binder, a solvent, a plasticizer and a dispersing agent. The second step is the paste
printed onto alumina substrate on which the bottom electrode is already metallized. Finally, the structure is submitted to a
thermal process with two stages. The first one burns out all organic components of the film and the second one is a
sintering step in order to densify the deposited film and ensure its adhesion onto the substrate.

In Fig. 6, the one-degree-of-freedom isolation structure, used for experiments, is shown.

3. Modeling of the active suspension

An analytical method is used for the modeling. For simplicity, the piezoelectrically actuated beam and the ‘‘sensor and
mass’’ unit are separately studied. Finally, the modeling of the whole suspension device is obtained by the assembly of
these two parts.

For the modeling, Euler–Bernoulli assumptions are used. The electrodes are neglected. The polling axis is along the
Z-axis in the coordinate system described in Fig. 4. Only the first natural bending mode is considered. This bending motion
is only in the ( x

!
, z
!

) plan. The considered materials are assumed isotropic for the bending motion. The last assumption is
rather strong for the piezoelectric parts of the structure. It well knows that the shear effects act on the modeling accuracy
[18,19]. But, for a simple and quick modeling, this assumption is kept.

Table 1
Dimensions of the beam and the piezoelectric materials.

L (mm) Length of beam 30

l (mm) Width of beam 2

L1=L2 (mm) Length of PZT layers 8

Lpv (mm) Length of PVDF layer 2

hs (mm) Thickness of beam 495

hp (mm) Thickness of PZT layers 125

hpv (mm) Thickness of PVDF layer 110

Ms (mg) Mass to be isolated 62.4

Fig. 6. Close-up of the alumina structure.
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3.1. Modeling of the host piezoelectrically actuated beam

The host piezoelectrically actuated beam, shown in Fig. 7, is considered. The modeling of an Euler–Bernoulli beam with
piezoelectric patches is widely exploited in the literature [20–22]. So, relationship (4) expresses the beam equation of
motion:

rðxÞ €wðx,tÞþEIðxÞ
@4wðx,tÞ

@x2
¼ lVaðtÞ½ �dðxÞ� �dðx�L1Þþ

�dðx�L2Þ�
�dðx�LÞ�þpðx,tÞ ð4Þ

with

r ¼
ðhsrsþhprpÞ

hsþhp

EI¼
Eshslðh2

s þ3h2
pÞ

12
þ

Ephplðh2
spþ3h2

s Þ

12

 !
�
ðEp�EsÞ

2h2
s h2

pl

4ðEshsþEphpÞ
8x 2�0,L1½[�L2,L½

l¼
hs

2
�
ðEp�EsÞhshp

2ðEshsþEphpÞ

� �
le31

8>>>>>>>>><
>>>>>>>>>:

ð5Þ

and

r ¼ rs

EI¼
Esh3

s l

12
8x 2�L1,L2½

l¼
hs

2

8>>>>><
>>>>>:

ð6Þ

where r is the linear mass density (Kg m�1), w(x,t) the transverse beam displacement (m), Ep Young’s modulus of the alumina
beam (N m�2), Es Young’s modulus of the PZT layer (N m�2), hs the thickness of the alumina beam, hp the thickness of the PZT
layer, l the width of the beam, e31 the PZT electromechanical coupling coefficient, �d the spatial derivative of the Dirac delta
function, Va the control voltage (V), and p(x,t) the linear density of the external excitation (N m�1).

The associated mechanical boundary conditions are

wðx,tÞ ¼
@wðx,tÞ

@x
¼ 0 for x¼ 0

wðx,tÞ ¼
@wðx,tÞ

@x
¼ 0 for x¼ L

8>><
>>: ð7Þ

3.2. Modeling of the sensor

The PDVF layer, the mass to be isolated and the Galilean coordinate system, presented in Fig. 8, is considered.
The constitutive equation for a PDVF layer with a polling axis along the z1-axis and electrodes in the ðx1

!
,y1
!
Þ plan can be

written as [20–22]

D3 ¼ e31S1þe33S3þeS
33E3 ð8Þ

D3, S, eS, e and E3 are, respectively, the electric displacement along the z1
!

axis (C m�2), the strain vector by using the
compressed matrix notation (IEEE standard), the dielectric permittivity coefficient at constant strain (F m�1), the PVDF
electromechanical coupling coefficient (C m�2) and the electric field along the z1

!
axis (V m�1).

Z

X

L1
L2

L

PZT Layer
(Ep,hp)

Alumina Layer
(Es,hs)

Fig. 7. Host piezoelectrically actuated beam.
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Because the first natural bending mode of the host beam is considered, that is to say a pure bending motion, the strain
along the x1

!
direction, in the PDVF layer, can be expressed by

S1 ¼ az1þb ð9Þ

a and b are the values to be identified thanks to the boundary conditions.
At the top surface of the alumina beam, where the PVDF layer is assumed perfectly bonded, the strain along the x1

!
axis

is given by

S1 ¼�
hs

2

@2wðx1,tÞ

@x2
for z1 ¼ 0 ð10Þ

At the top surface of the PDVF beam, the connection with the mass is assumed perfect. As the mass is perfectly rigid in
the studied frequency bandwidth, the strain along the x1

!
axis is given by

S1 ¼ 0 for z1 ¼ hpv ð11Þ

By combining Eqs. (10) and (11), the strain along the x1
!

direction can be expressed as

S1 ¼
hs

2

@2wðx1,tÞ

@x2

z1

hpv
�1

� �
ð12Þ

To model the sensor, the strain of the PDVF layer is considered linear with respect to the z1-axis. This assumption is
correct because the first natural mode of the beam is studied and the sensor length is very low with respect to the beam
length. So, the strain along the z1

!
direction can be written as Eq. (13) with respect to the mass motions, ws, the

displacement along the z1
!

axis (m), and as, the rotation around the y1
!

axis (rad).

S3 ¼
ðwsðtÞþx1asðtÞÞ�wðx1,tÞ

hpv
ð13Þ

By substituting Eqs. (12) and (13) into Eq. (8) and by considering an electric potential linear in the thickness direction of
the PVDF layer, the following equation is obtained.

D3 ¼ e33
wsðtÞþxasðtÞ�wðx1,tÞ

hpv
�eS

33

U

hpv
ð14Þ

where U=V(z1=hpv)�V(z1=0).
The electric charge, collected on the top electrode of the sensor (z1=hpv), is expressed as

qðtÞ ¼

Z
Selectrode

D3 dS¼ l

Z Lpv=2

�Lpv=2
D3 dx1 ð15Þ

By substituting relationship (14) into (15), electric charge (16) is obtained

qðtÞ ¼ lLpv
e33

hpv
ws�

1

Lpv

Z Lpv=2

�Lpv=2
wðx1,tÞ dx

 !
�
eS

33

hpv
U

" #
ð16Þ

X1

PVDF Layer
(Epv,hpv)

Alumina Layer
(Es,hs)

Mass Lpv

Lpv

ws
αs

0

Z1

Fig. 8. Studied sensor.
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At the right-hand term of Eq. (16), the first part of the equation is related to the crushing, along the z1-axis, of the PVDF
layer due to the mass. The second part is the equivalent electric charge of the piezoelectric patch due to the voltage U

applied to the equivalent electric capacity of the piezoelectric patch, C ¼ leS
33Lpv=hpv.

The sensor, connected to a conditioning amplifier, can be electrically modeled as shown in Fig. 9. So, Eq. (17) expresses
the amplifier output voltage with respect to the output electric charge of the PDVF layer,

Vmeasured ¼
qðtÞ

Csensor
ð17Þ

Moreover, due to the conditioning amplifier properties, the patch electrodes are short-circuited, so U=0. Thus, Eq. (18)
is obtained by combining Eqs. (17) and (16).

Vmeasured ¼
lLpv

Csensor

e33

hpv
ws�

1

Lpv

Z Lpv=2

�Lpv=2
wðx1,tÞ dx1

 !" #
ð18Þ

3.3. Global modeling

The first natural bending mode of the host beam is considered. So, for simplicity, the transverse displacement, wðx,tÞ, is
expressed as a projection on the first modal shape function

wðx,tÞ ¼f1ðxÞZ1ðtÞ ð19Þ

where f1ðxÞ are the normalized modal shape function of the first natural mode and Z1ðtÞ the time-dependent modal
coordinate of the first natural mode.

When substituting Eq. (19) into Eqs. (4) and (18), the equation system can be expressed by considering boundary
conditions and by using modal decomposition

m1 €Z1 ðtÞþk1Z1ðtÞ ¼ lVaðtÞ½� �f1 ðL1Þþ
�f1 ðL2Þ�þ f ðx,tÞ() €Z1 ðtÞþo

2
1Z1ðtÞ ¼

lVaðtÞ

m1
½� �f1 ðL1Þþ

�f1 ðL2Þ�þ f ðx,tÞ ð20Þ

where

m1 ¼

Z L

0
rðxÞðf1ðxÞÞ

2 dx

k1 ¼

Z L

0
EIðxÞ

@2f1ðxÞ

@x2

� �2

dx

o2
1 ¼

k1

m1

Vmeasured ¼
lLpv

Csensor

e33

hpv
ws�

1

Lpv

Z Lpv=2

�Lpv=2
f1 x1�

L

2

� �
dx1

 !
Z1ðtÞ

 !" #
ð21Þ

The PDVF layer and the mass to be isolated can be modeled by a one-degree-of-freedom system, excited by its base. The
PVDF layer is a plate in compression. Its equation of motion can be written as

Ms €wsþ
EpvlLpv

hpv
ws�

1

Lpv

Z Lpv=2

�Lpv=2
f1 x1�

L

2

� �
dx1

 !
Z1ðtÞ

 !
¼ 0 ð22Þ

C

PDVF Sensor

Vmeasured
U

qw
Operational

Amplifier

Csensor

Fig. 9. Equivalent electric scheme of the PVDF sensor connected to a conditioning amplifier.
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Epv is PVDF Young’s modulus and Ms the mass of the element to be isolated. Consequently, by combining Eqs. (21)
and (22), Eq. (23) is obtained.

Vmeasured ¼�
Mse33

CsensorEpv

€ws ð23Þ

Consequently, the PVDF sensor measures the absolute acceleration endured by the mass to be isolated.
To model the interaction between the host beam and the structure composed of the sensor and the mass to be isolated,

Eqs. (20) and (22) have to be combined. The external forces are assumed null. By using the third Newton’s law and a base
displacement due to a shaker, modeled by a one-degree-of-freedom system, the set of Eqs. (24) is written as

Ms €wsþ
EpvlLpv

hpv
ws�

1

Lpv

R Lpv=2
�Lpv=2 f1 x1�

L

2

� �
dx1

� �
Z1ðtÞ

� �
¼ 0

€Z1 ðtÞþo2
1ðZ1ðtÞ�wdÞ�

EpvlLpv

hpvm1
ws�

1

Lpv

R Lpv=2
�Lpv=2 f1 x1�

L

2

� �
dx1

� �
Z1ðtÞ

� �

¼
l

m1
½� �f1 ðL1Þþ

�f1 ðL2Þ�VaðtÞ

md €wdþkdwdþm1o2
1ðwd�Z1ðtÞÞ ¼ fd

8>>>>>>>>>>><
>>>>>>>>>>>:

ð24Þ

where wd is the displacement of the shaker (m), md the mass of the shaker (Kg), kd the stiffness of the shaker (N m�1) and
fd the force experienced by the shaker mass (N).

The dynamic system of the suspension device is formulated by the set of Eqs. (24). Thanks to the material properties,
presented in Table 2, and the device dimensions, presented in Table 1, a numerical model can be expressed. Moreover, the
studied modal shape function of the piezocomposite beam is assumed equal to the alumina beam. Indeed, the thickness of
the PZT layer are too thin and PZT Young’s modulus is too low compared to alumina Young’s modulus, to strongly modify
the beam dynamic behavior.

So, the normalized first natural mode shape of a clamped–clamped beam is expressed as [23]

f1ðxÞ ¼ coshða1xÞ�cosða1xÞ�
coshða1LÞ�cosða1LÞ

sinhða1LÞ�sinða1LÞ
ðsinhða1xÞ�sinða1xÞÞ ð25Þ

where

a4
1 ¼

12rso2
1

Esh2
s

¼
4:73

L

� �4

ð26Þ

So, a numerical reduced state-space model of the suspension is built with the voltage applied to the actuators and the
base displacement as input signals and the sensor signals and the absolute acceleration endured by the sensitive element
as output signals. The initial damping ratio of the beam is assumed to be equal to 0.1%. The natural frequency of the shaker
is approximatively 30 Hz. The moving mass of the shaker is equal to 10 Kg.

The state-space representation can be expressed as Eq. (27), according to Eqs. (24), (25) and (23) and different
numerical parameters of the system:

_ws

_Z1

_wd

€ws

€Z1

€wd

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼ A

ws

Z1

wd

_ws

_Z1

_wd

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
þB

fd

VaðtÞ

( )
ð27Þ

Table 2
Material properties of the beam and the piezoelectric layers.

Alumina PZT PVDF

Young modulus (GPa) 305 54 2.5

Mass density (Kg m�3) 3900 7260 1780

Piezo coefficient e31 (C m2) – �6.48 0.073

Piezo coefficient e33 (C m2) – – �0.105

Permittivity eS
33 (10�11 F m�1) – – 9
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with

A¼

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

�1:46e12 1:55e13 0 0 0 0

7e10 �7:4e11 986:8e8 0 62:8 0

0 1:3e6 �1:92e6 0 0 0

2
666666664

3
777777775

ð28Þ

and

B¼

0 0

0 0

0 0

0 0

0 0:19

0:1 0

2
666666664

3
777777775

ð29Þ

The equation of observation can be written as

Vmeasured

€ws

( )
¼ C

ws

Z1

wd

_ws

_Z1

_wd

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
þD

fd

VaðtÞ

( )
ð30Þ

where

C ¼
�1:46e12 1:55e13 0 0 0 0
�3:8e�3

Csensor

4e�2
Csensor

0 0 0 0

" #
ð31Þ

and

D¼
0 0

0 0

� �
ð32Þ

The simulation, presented in Fig. 10, is performed with Matlab and its Control System Toolbox. The frequency value of
the first natural bending mode is 4070 Hz.
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Fig. 10. Theoretical Bode diagram between the force applied to the shaker mass and the sensor output signal from the PVDF sensor.
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3.4. Experimental characterization

The objective of this section is to validate the analytical model of this system with an internal measurement provided
by the sensor located under the mass to be isolated. For this, a random input voltage is applied to the actuators of the
suspension device through a power amplifier and the sensor output signal is measured with a conditioning amplifier.
A data acquisition process is used to obtain the experimental diagrams. The experimental characterization architecture is
shown in Fig. 11.

In Fig. 12, the multiphysics model curve is compared with the experimental characterization curve, for validity. Both
Bode diagrams are in good agreement and the prediction of the suspension frequency value is quite good. No tuning of the
numerical model was performed. Only the capacitance value of the conditioning amplifier was modified to obtain a
representative bode magnitude.

However, the low frequency behavior of the system is quite different. The presence of an electric zero in the physical
system can explain this difference. Let us note the knowledge of the resonance peak is sufficient for our study. Some
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Fig. 11. Experimental characterization architecture.
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natural modes of wires are also observed. The 50-Hz fluctuation components correspond to the French power supply
frequencies.

4. Active control of the structure

4.1. Control architecture and experimental setup

The control strategy is based on a piezoelectric layer directly forced by the acceleration of the sensitive system to be
isolated. The control process is described in Fig. 13. The controller input is the acceleration measurement. The control
signal is amplified and applied to the piezoelectric actuating layers, making it possible to apply a mechanical control force
to the system. Moreover, a data acquisition process is used to visualize and save the experimental results. The control
system induces an active isolation along one-single-degree-of-freedom (the Z-axis).

As shown in Fig. 14, the experimental setup is composed of several elements. A Siglab data acquisition system with four
input channels and two output channels is used for the data acquisition and signal processing. The device is shaked, along
the Z
!
�axis via a shaker with a random vibration of 10 grms amplitude (grms=9.81 m s2

rms). The reference signal is the PVDF
sensor output signal. The sensor output signal is amplified with a conditioning amplifier. The input signal of the PZT
actuators is amplified with a power amplifier. The control law is a simple proportional-integral feedback. This law is
implemented with a DSpace& platform whose the sampling frequency (fsampling=20 000 Hz) is much higher than the
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Fig. 13. Control architecture.
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Fig. 14. Experimental control architecture.
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frequency of the mode to be damped (approximatively 3955 Hz). However, the control line limits the control voltage to
200 V so as to avoid the PZT layer breakdown voltage.

4.2. Numerical control results

First, the active control is simulated so as to evaluate the theoretical suspension performances. It makes it possible to
evaluate the isolation strategy properties. As shown in Figs. 15 and 16, the resonance peak attenuation is approximatively
�13.5 dB for an external excitation with a value of 10 grms (grms=9.81 m s2

rms) at the control voltage limit (200 V).

4.3. Experimental control results

In Fig. 17, the controlled and uncontrolled transfer functions between the sensor output signal and the force applied to
the shaker mass are presented.

The controlled resonance peak is around 4250 Hz as predicted by the simulations. A 16 dB attenuation is observed for
the resonance peak of the first suspension mode for an external excitation with a value of 10 grms. Let us note that another
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Fig. 15. Magnitude attenuation of the first bending mode with respect to the control voltage for the numerical control.
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‘‘resonance’’ peak appears at 3950 Hz. This fact is due to a residual coupling between the control law and the resonance
peak. The control force, defined in Eq. (3), cannot be directly implemented in a DSP plate-form for the experiments. Indeed,
the direct integration algorithm is not physically realizable because of poles located at 0. So, a low pass filter, presented in
Eq. (33), is introduced. Moreover, so as to limit the frequency bandwidth in which the vibration control is applied and so as
to limit the control energy, a high-pass filter is introduced in the control loop.

Consequently, various transfer functions, in the Laplace’s variables, are implemented in the DSP plate-form:

� an integration-type filter at first order:

IðsÞ ¼
G

sþa
ð33Þ

� a transfer function to limit control energy:

PHðsÞ ¼
s

sþa
ð34Þ

where G and a are, respectively, the control gain and a control design frequential parameter.

For the experiments, the best control performances with the limited control voltage are obtained for a frequential
parameter very close to the resonance frequency (3950 Hz). Consequently, a little part of the resonance peak energy stays
at 3950 Hz.

Moreover, the sensor output signal is very noisy. In fact, the signal level is very low. Indeed, the control loop stabilizes
the device to be isolated. Then, the PDVF layer which constitutes the sensor, is less forced. So, the noise level is quickly
reached. In Table 3, the results obtained during the experiments are compared with the simulation for the suspension
mode and the maximal control voltage.

Let us also note that a vibration increasing is observed after the suspension frequency. The studied device is an
experimental and fatally imperfect structure. The fact that the electrical connections are not integrated induces some
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Fig. 17. Bode diagrams between the force applied to the shaker mass and the sensor output signal at the control voltage limit (200 V).

Table 3
Comparison between the numerical and experimental results for a 200 V control voltage.

Numeric results Experiment

Initial frequency (Hz) 4070 3950

Controlled frequency (Hz) 4250 4270

Attenuation (dB) �13.5 �16
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electric ‘‘parasitic’’ couplings. The authors assume that the increasing around 4850 Hz is due to an electric coupling.
Indeed, the controlled mechanical resonance peak is at 4250 Hz as expected and just after this peak the high frequency
decay is present. So, the vibration control operates onto the mechanical system. But, a limit is quickly reached and the
curve-directing coefficient is modified and increases up to 4850 Hz. This increasing is not really modified by the control.
This observation can confirm that the phenomenon is not mechanical but electrical.

A difference of attenuation performances is noted. This may be due to the difference between the initial damping ratio,
introduced in the modeling, and the experimental damping ratio. This experimental damping ratio is hard to be evaluated
for this device type. However, the experimental and numerical results, listed in Table 3, are in good agreement. Moreover,
the obtained attenuation is quite interesting for the ‘‘classical’’ military and aerospace applications.

5. Concluding remarks

In this paper, a new structural device is proposed to achieve the active vibration isolation of electronic components for
military and aerospace applications. This device is based on an alumina clamped–clamped beam with PZT and PVDF
transducing layers. The control law is based on an Integral Force Feedback control strategy.

The experimental results show an important resonance peak attenuation of the first bending mode of the system. For a
random excitation with a 10 grms amplitude and a 200 volts maximal control voltage, a 16-dB resonance peak attenuation
is reached. The correct operation of the whole piezoelectric layers is thus shown. The trend and performances of the
experimental control are in good agreement with the modeling.
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[18] A. Benjeddou, J.F. Deü, A two-dimensional closed-form solution for the free-vibrations analysis of piezoelectric sandwich plates, Int. J. Solids Struct.

39 (2002) 1463–1486.
[19] A. Fernandes, J. Pouget, Analytical and numerical approaches to piezoelectric bimorph, Int. J. Solids Struct. 40 (2003) 4331–4352.
[20] C.K. Lee, F.C. Moon, Laminated piezopolymer plates for torsion and bending sensors and actuators, J. Acoust. Soc. Am. 85 (1989) 2432–2439.
[21] C.K. Lee, Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Parts I and II, J. Acoust. Soc. Am. 87 (1990)

1144–1157.
[22] C.K. Lee, W.W. Chiang, T.C. O’Sullivan, Piezoelectric modal/actuator pairs for critical active damping vibration control, J. Acoust. Soc. Am. 90 (1991)

374–384.
[23] S. Timoshenko, Strength of Materials, third ed., Krieger Publishing Company, 1976.

15




