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Spatial properties of Wohlhart symmetric mechanism

Laurentiu Racila - Marc Dahan

Abstract The aim of this paper is to present a new
analytical resolution to find closure equations of
Wohlhart symmetric mechanism and to give some in-
teresting spatial properties of this mechanism. These
properties are used to put in evidence possible indus-
trial applications for this type of mechanism. First, it
concerns the analytic resolution of the twelve equa-
tions system obtained from the closure equation, sys-
tem particularized for the case of Wohlhart symmetric
mechanism. The matrix form of closure equations is
written for a single loop overconstrained mechanism
composed by six revolute joints, mechanisms called
6R. A kinematical analysis is made, putting in evi-
dence some interesting kinematical and geometrical
properties. These properties allow us to consider a new
spatial disposition for this mechanism, by imposing
three non-successive joints to remain in a determined
plan. Thus, we obtain a translator, a possible future
industrial application for this type of overconstrained
mechanism.
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1 Introduction

Single loop overconstrained mechanisms are com-
posed of four, five or six revolute joints. In this pa-
per, we study only six-bars overconstrained mecha-
nisms with revolute joints. These types of overcon-
strained mechanisms are known from over 150 years,
since Sarrus [16] presents in 1853 his 6R mechanism.
This mechanism, considered as the first spatial over-
constrained mechanism, transforms the circular move-
ment in linear movement and vice versa. Some years
later, in 1897 and 1927, Raoul Bricard [5, 6] presents
the “paradoxical” mechanisms with revolute joints.
Since then, several authors have presented overcon-
strained mechanisms: Bennett [4], Myard [13], Gold-
berg [11], Altmann [1], Schatz [17], Waldron [18, 19],
Mavroidis and Roth [12], Wohlhart [20, 21], Dietmaier
[8]... Today several of these mechanisms are consid-
ered as particular cases of the other overconstrained
mechanisms.

Among these mechanisms, the mechanisms pre-
sented by Bricard are the only ones that are indepen-
dent, the other 6R overconstrained mechanisms be-
ing combinations of the other mechanisms with four
or five revolute joints. In his paper, Bricard describes



three types of deformable octahedrons: with axial
symmetry, plane symmetry and double collapsible and
three six-bar mechanisms: with axial symmetry, plane
symmetry and the rectangular mechanism. Later, in
1987, Karl Wohlhart [20] presents a new 6R overcon-
strained mechanism. This mechanism is considered
as a generalization of Bricard rectangular mechanism.
We will call this mechanism the “Wohlhart mecha-
nism”. It’s a mechanism that presents three partial
symmetry planes. In the case when the six elements
are the same length, the mechanism is called Wohlhart
symmetric mechanism.

A first deep analyze of Bricard mechanisms made
by J.E. Baker [2], gives the closure equations of these
mechanisms. Baker gives also a list of all independent
overconstrained mechanisms [3]. To analyze these
mechanisms Baker uses trigonometric relationships
observed on the mechanisms. Wohlhart also, to make
the analysis of Bricard rectangular mechanism, uses
spherical trigonometry relationships, finally obtaining
implicit relationships for closure equations [21].

In the present paper, we give a complete analytical
solution for finding the closure equations of Wohlhart
symmetric mechanism. Making a kinematical analy-
sis of this mechanism, some interesting properties
are put in evidence and a new spatial disposition is
proposed, for a possible industrial applications based
on overconstrained mechanisms. In the industry area,
the industrial applications based on these mechanisms
are only a few. Excepting the Schatz 6R mechanism,
called “Turbula” [17] and some deployable structures
of Gan [10] and Chen [7], we have no knowledge of
existence of other industrial applications of 6R over-
constrained mechanisms.

2 Closure equations

We consider the Denavit-Hartenberg formalization for
a mechanism with revolute joints [9]. The twist angle
between two successive joints (i) and (i 4+ 1) is noted
«;, the bar lengths is noted @; and the offset distance
between two elements (i — 1) and (i) is noted d;. The
fourth parameter is the angle between two successive
elements (i — 1) and (i), noted 6;.

Figure 1 shows the schematic representation of the
revolute joints with the Denavit and Hartenberg nota-
tions, in which a;, «; and d; are geometrics parameters
and 6; is the kinematical variable.
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Fig. 1 Denavit—Hartenberg parameters

The homogeneous form for the transfer matrix is:

i—1
Qii
cos; —cosq; -sinb; sing; -sinf;  a; - cosb;
__ | sin6; cosw;-costy —sinw;-cosd; a;-sinb;
- 0 sin; cos «; d;
0 0 0 1
(H

The closure condition for a 6R single loop mechanism
expresses that the six transfer matrix product is equal
with the unity matrix. This condition can also be writ-
ten:

304705706 ="0,-201 -1 06

Developing this equation we obtain a twelve equations
system. This system is identical with the system ob-
tained by Waldron and cited by Baker [2].

We consider now Wohlhart symmetric mechanism
(Fig. 2) with the next geometrical conditions:

di=dy=dy=dy=ds=deg=0
gl =a3=a5=0u
) =4 =0 =27 —

@)
al=ay=a3=as=as=d¢=a
With these conditions (2), the twelve equations sys-
tem is apparently simplified (Appendix 1).
From (A.11) and (A.12) relations we obtain the two
first closure equations:
6 = 06 3)
3 =05 “



Fig. 2 Wohlhart symmetric mechanism

These two relations, introduced in (A.9) and (A.10),
prove that these relations are dependent, so:

. 0 . 03 6 . 01+63
4 .sin — -sin — - cos« - | cos — - sin
2 2 2 2

e T T -
— SiIn— -S1In— -S1In — - COS &
2 2 2

01 . .0
= Ccos > cos 6 - sinf3 + sin 5 cos 63 (®)]

Introducing the relations (3) and (4) in (A.7) and (A.8)
we find:

0 0
452 .52 . ca
2 2
03 6464 6, 03 04
xlc= - s—— —5s—-5—-5— -ca
2 2 2 2 2
04 64
:s92-c93-05 —|—c92-s? 6)
0 0
4 c—2~s—3 ca
2 2
03 0+ 04 0, 03 04
xlc—="-s —§— 5= -5S— -ca
2 2 2 2 2
0 0. 0. 6
=2~c2§~c54+002~093~c34—s02~s?4 @)

These two relations (6) and (7) can be divided, and
making some elementary calculus we find the third
closure equation:

0 =64 (¥

Introducing the first three closure equations in (A.1),
(A.2), (A.5) and (A.6) relations, we obtain that these
four relations are dependent to each other.
More precisely, between (A.1), (A.2) and (A.5) re-
lations, the next relation is verified:
(A1) - (cosB1 + cosBy) = (A2) -sinf; — (AS) - sinbH,
©))

and between (A.1), (A.2) and (A.6) we have the rela-
tion:

(A1) =(A2) - (cosO; — cosbr) + (A6) - sinbHr (10)

Introducing the relations (3), (4) and (8) in (A.3) and
(A.9) we can write:
cos’a - (I —cosbr) - (1 —cosBs3)
=2-sinb, - sinf3 - cosa — cos b,
—cosf3 —cosBy - cosOs (11)
cos B - cosBy - sinf3 + cosH; - sinf3 + sinby - cos b3
=sinf; - cosa - (sinf; - sinf3 + 1 + cos O
— cosf3 — cosb; - cosb)
— sinf cos’a - (1 —cosby) - (1 —cosB3) (12)

After some simplifications in these two relations we
obtain the fourth closure equation:

01 = 05 13)

We have now four closure equations, and for clarity
we note 6 the odd angles (input angle) and ¢ the even
angles (output angle):

{91=03=95=9 (14)

0r=601=0c=¢

The fifth (and the last) closure equation (input-output
equation) is obtaining by introducing the first four clo-
sure equations in (A.1) relation:

cosf -cosg - (1 +cos2a) + (cosf + cos ) - sin®

—2-sin9~singo~cosoe+cos2a=0 (15)

These closure equations are identical with the equa-
tions obtained by Cheng [7] using a method based on
the mechanism’s symmetry.



phi = f(theta)
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Fig. 3 Input-output curves for « = 90°, &« = 120° and o = 150°
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An interesting observation is that the input-output
equation is symmetrical in € and ¢, so we can con-
sider the output as input and vice-versa, the input-
output equation remaining the same. A detailed calcu-
lus for finding all these closure equations is available
in Racila [14].

Figure 3 shows the curves of input-output equation
¢ = f(0) for three twist angle: « = 90°, o = 120° and
o =150°.

The variation curve for a twist angle o« = 90° is
shown only in the z < 0 half space, for the other half
space z > 0 this variation is the same if we impose a
identical back way, or horizontal axis symmetrically if
the mechanism follows its movement under the hor-
izontal plane z = 0, the movement plane of the first
element.

VERTICAL PLANE 't

'REFERENCE PLANE

VERTICAL PLANE

REFERENCE PLANE

¢)

Fig. 4 Wohlhart symmetric mechanisms when: (a) « = 90°; (b) @ = 120°; (¢) o = 150°

We must precise that this particular twist angle
(Bricard symmetric rectangular mechanism) is the
only angle that allows a continuous movement of the
mechanism, for the other twist angles the mechanism’s
elements being in collision for some particular input

angles.
One observes that for a twist angle of 120° (Fig. 4b)
the input angles can vary between 6 = —180° and 6 =

+180°, but the mechanism cannot follow the move-
ment beyond of 6 = 180° because of the collision of
mechanism’s elements.

For a twist angle of 150° (Fig. 4c) the input angle
cannot take smaller values to about —70°, more pre-
cisely 6 = —70.53°. This limitation is due to the fact
that, for an input angle 6 < —70.53°, the mechanism’s
elements are in collision.



zo3 = f(theta)
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Fig. 5 Variation curves of zp, for 90°, 120° and 150° twist angles

The most interesting properties highlight that two
planes are always parallel during the deformation of
the mechanism.

These two planes are the plane defined by odd
joints and the plane defined by even joints (Fig. 6).

To prove this important property, we use an analyt-
ical method. We know the input-output equation and
the coordinates of joints centers (Appendix 2).

The (02040¢) and (O10305) planes equations
are obtained with the help of Oz, O4 and Og¢ coordi-
nates, respectively O, O3, and Os coordinates.

The (O3 04 0¢) plane equation is:

A3 x+B3-y+Cz-z+ D3=0 (16)
with:
Fig. 6 The two parallels planes Az = a?. sing - sina - (sinf - cos ¢
+ cosf - sing - coso
With the help of the input-output equation we can - szm(p -cosa +sinb)
also find the coordinates for some particular points of B3 = —a” -sing - sina - (Cos0 + cos ¢
the mechanism. Figure 5 shows the variation of z co- + C(?S@ Cose
ordinate for point O3. — sinf -sing - cosa + 1) a7
C3=a’-sing-cosa - (cosf - cosg
—sinf - sing - cosa + cosH)
3 Spatial properties of 6R Wohlhart symmetric +a®-(cos§ + 1) - (sinf - cos ¢
mechanism +cos6 -sing - cosa 4 sinb)
D3;=0
During this analytical resolution of the Wohlhart sym- And the (01 030s) plane equation is:
metric mechanism, we have observed some interesting
properties of this mechanism. Ag x+By-y+Cs-24+Ds=0 (18)



with:
A4 =a?-sinf - sina - (cos@ - sing
+ sin6 - cos g - cosw
— sin@ - cosa + sin @)
B4=—a2~(cos0+1)'sina-(cost9~sin<p
+ sin6 - cos g - cosw
— sinf - cosa + sin @)
Cy4=a?-sinf - (cosb - cos ¢ (19)
—sinf - sing - cosa + cos @)
+ az-(cose—i—l)-(COSH-Simp-cosa
+5inf - cos g - cosZa
+ sin6 - sin® & + sing - cosa)
Dy=a’-sinf -sina - (cos - sing
+sinf - cos¢ - cos
— sin@ - cosa + sing)

Introducing half-angles 6/2 and ¢ /2, the (02 040¢)
and (O 03 Os) planes equations are written:

9 ) n 0 . ¢ .
-sin = - sin« |x —Cos — - sin — - sin«
g 2 M2 Y
0 @
+ s1n— cos—+cos§ s1n5 cosa [z=0 (20)
.0 ® 0 17
sin — - smE sin |x + | —cos = smE sino |y
0 0
+|:sin§-cos§+cos§ sm% cosoz]z

0
+a~sin§~sin§-sina=0 @1

The two planes (O 04 Og) and (O O3 Os) have equa-
tions which are only different in the independent term.
They are therefore parallel.

A second important property of this mechanism is
that the intersecting point of even joints axes O’ and
odd joints axes O” formed a line 0’0" which is al-
ways perpendicular on the planes (02, O4, Og) and
(01, 03, 0s).

In order to demonstrate this property we must know
the coordinates of the points O’ and O”. These coor-
dinates will be dependent on the input angle 8 and the
twist angle .

For this, we consider four points A, B, C and D
necessary to define the rotation axes equations.

In Fig. 7 the A, B, C and D coordinates are written
in the mobile reference frame linked to the own joint,
x=0,y=0and z =—1.

Fig. 7 Unity vectors of OgO’, 010", 040’ and Os0" lines

The coordinates of the points A, B, C and D in the
fixed reference frame Rg(Oex6Y626) are given in the
Appendix 3.

With these coordinates, we write the equations of
the lines OO’ and 040, respectively 010" and
050" . The coordinates of the points O’ and O sat-
isfied the two first equations, respectively the two last
ones.

We finally obtain the coordinates for these two
points in the fixed reference frame Rg:

For the point O’:

X0 = 0

yor=0 (22)
__a-(cosp+1)

00 = sing-sino

For the point O”:

Xor = —a

p— -sinf
YO = T=cosd (23)
Zo" = —ai(cs(;;%+l) - cota

By taking account of (22) and (23) relations, the O’ 0"
equation can be written:

__a-(cosp+1)
X y . 2 sing-sina (24)
a  _.asind T a-(cosf+1) cota + a-(cos p+1)
1—cosé sin6 sing-sina



The unity vector 7 of this line has the next compo-

nents:
ny=1
o = — sinf
Y™ l—cosé (25)
(cosf+1) (cosp+1)
Nz = "o cotar + sing-sino

The unity vector N orthogonal on the plane (02 O4 O¢)
has the components given by the relation (20).

In order that the O’O"” line to be perpendicular to
the plane (02 04 0g), it is necessary that vectors 7 and
N are parallel, so their components must satisfy the

relation:
in? . sin? . si
sin5 - sin 5 - sina
1
9 in? .
_ cosy-siny -sina
- sinf
1—cos@
sin? -cos€ +cos? -sin% - cosa
_ 2 2 2 2 (26)
(cosf+1) (cosp+1)
sinf cota + sin @-sin o

Some elementary calculations on the previous relation
show that the three fractions are equals.

The relation (26) proves that the line O’ O” is per-
pendicular to the plane (O, O4, Og), so implicit to the
plane (O1, O3, Os), in any position during the move-
ment of the mechanism.

4 New spatial disposition

The important properties from above led us to consider
a new spatial disposition.

We constrain three revolute joints, by example Oj,
03 and Os, to remain in a fixed plane, and we consider
this plane as the reference, the plane of the movement.

The three joints O, O3 and Os have displacements
on three line segments, to the center of their circum-
scribed circle.

The other three joints O, O4 and Og remain al-
ways in a parallel plane with the first one, the reference
plane.

Figure 8 shows Wohlhart symmetric mechanism in
this new spatial disposition, when the twist angle is
a=m/2.

To facilitate the analysis of this mechanism, we
consider the next notations in the horizontal plane:

— with subscript the joints number;
— with superscript the position of the joints in its dis-
placements.

We note with b the distances 011 02, 031 032 and
051 052. These distances represent the joints displace-
ments in the horizontal plane of movement (Fig. 9).

The joints O», O4 and Og grow up to a maximal
distance from the horizontal plane. By continuing the
movement, the joints O», O4 and Og come back to the
horizontal plane.

Due to the mechanism symmetry the triangles
050601, 010,03 and 030405 are congruent, and
the triangles O¢ O1 O3, 020304 and 0405 Og are also
congruent.

Fig. 8 New spatial disposition



Fig. 9 Horizontal plane of the movement

The consequence is that, when the joints Op, O3
and Os are constrained to make displacements to the
long of the heights of the triangle O 11 031 051 , the other
three joints O», O4 and Og are always in perpendicu-
lar planes to the horizontal plane.

More precisely, when b = 0, all the six joints are
in the initial position O] 0; 030,010y in the hori-
zontal plane, when the input angle 6 has zero degrees.
When b increases, which means when the three “actu-
ated” joints O, O3 and Os follow the heights of the
initial triangle 011 031 051 , the other three joints O3, O4
and Og are in perpendicular planes to the horizontal
plane, and the input angle € increases.

In Fig. 10 the mechanism is represented in an in-
termediary position. For the clarity of figure, the joint
number 3 is not represented.

The distance between the horizontal plane and the
translated plane is noted H = OT.

Continuing the movement, the mechanism reaches
its final position 013 Og’ 0; 02 Og’ Og’ , where all the six
joints are again in the fixed horizontal plane but in a
different position considering the initial one. In this
final position, the input angles has its maximal value
0 =2n/3.

Fig. 10 Intermediary position of the mechanism

In the triangles 0120ng and 0120M1 we can
write the next expression:
0 2a—bv3
012M1=a~cos—:a7\/_ (27)
2 2
We obtain the dependence of the variable distance b
according to the input angle 6:

b—z—a-(l—cos€> (28)
_\/§ 5

We can obtain the variation between the two planes,
the fixed one and the translated plane [15].

la - sin% -sin % - sine|

H=

\/Sil’lz X sin « + (sin % -cos & +cos % -sin % - cosa)?
(29)
The previous relation permits to draw the variation of
this distance according to the input angle 6 (Fig. 11a)
or to the distance b (Fig. 11b), knowing the varia-
tion of this distance (18) according to the input angle.
These curves are drawn for three link lengths a = 40,
a = 80 and a = 120, and for a twist angle o = 150°.

We can also draw the variation of the distance H
according to the input distance b for different twist
angles. Figure 12 shown this variation for three twist
angles o = 90°, @ = 120° and o = 150°.

A prototype model (Fig. 13) was developed at the
Applied Mechanical Laboratory in Besancon (France),
for a twist angle « = 7/2, and a second prototype with
a twist angle o = 150° is under realization.

5 Conclusions

In this paper we have presented a new and com-
plete method for the calculation of closure equations
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Fig. 12 Variation H = f(b) for a links length a = 120

for Wohlhart symmetric mechanism. This analytic
method permits an accurate analysis of the mecha-
nism’s kinematics and gives a viable alternative to
geometrical methods used by the other authors. All
these calculus have allowed to observe and to demon-
strate new geometrical and kinematical properties of
these mechanisms.

An important property specific to these mecha-
nisms: parallelism between even joints plane and odd
joints plane, has permitted to use the Wohlhart sym-
metric mechanism in a new spatial disposition and to
obtain a translator.

The biggest advantage of this translator is to present
an important surface in translation, a plane surface de-
fined with a good precision by three points.

The second prototype of the translator, built for a
twist angle o = 150°, will assure a better precision,
as we can clearly observe on Fig. 12. Of course, the
working domain of this translator is on the second part
of the curves, on the lighter (smaller) slope. This sec-
ond prototype is currently developed in Applied Me-
chanical Laboratory.

Another important property of this translator con-
cerns the line 0’0", the line formed by the intersec-
tion points of even and odd axes joints. During the
movement this line remains fixed in space and it is or-
thogonal to the horizontal and translated planes.

This property can be used in the future for other
possible applications based on these mechanisms,
knowing the lack of industrial applications for over-
constrained mechanisms.



Appendix 1

Fig. 13 The prototype of the translator for a twist angle o« = 90°
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+cos 04 - cosbs - cosbg - sina .cos’ o

+cos 04 - cosbg - sin® &

+sinfy - sinfs - sinw - cos o
— 0SBy - cosbs - sina .cos?a
+cosfy4 -sinw - cos?a

= —sinb, - sinfj - sinx - cos

+cosfy - cosbs - sina - cos’

+cos6, - sin® o — cosfs - sina - cos® o

+sina - cos’a

sinfy - cos s - cos g
+cos 4 - sinfs - cosbg - cosa
—sinfy - sinfs - sinfg - cosa

+cos 04 - cosOs - sin b - cos? o

+ cos by - sinbg - sin? & + sin 64 - cosbs

+cos 04 - sinfs - cos o + sinby
=cosb -sinb3 - cosa
+sin6d; - cos O3 .cos?a
+sin6, - sina + sinfs - cos &
—sinfs - cosbg - sina
—cosbs - sinbg - sina - cosa
+sinfg - sina - COs &
=cosf; -cosbs - sinbs - sina
+cos B -sinb, - cosf3 - sina - cos o
—cosf] -sinfs - sinw - cos o

—sin#; - sin6, - sinf3 - sina - cosa
2

+sinfy - cosBy - cosfs - sinw - oS~ &

—sin6; - cosb; - sinw - cos?a

+sinfdq - cos s - sin’

+sinf; - sino - cos®a

sinfs - sinfg - sina - cos «

—cosBs5 - cosbg - sina .cos?a

+cosfg - sinw - cos?a — cosBs - sin
. 2
—sing - cos”

=sin#; - cosb, - sinb; - sina

(A7)

(A.8)

(A.9)



+sinf; - sin6, - cos B3 - sinw - cos & +c0s63 - sin®« - cosa + cos

(A.11)
—sin#; - sin6 - sino - cosa —sinfs - cosbg - sina
+cosf -sinb, - sinf3 - sinw - cos & —cosbs - sinbg - sino - cosa
— 086y - cosBy - cos s - sina - cOS> o ~+sinfg - sina - cos o — sinfs - sina
+ cos 6y -cos@z-sina~cosza = —cosby -sinf3 - sinw
—cos 0 - cosB - sin’ « —sin#, - cosfs - sina - cos
—cosf; -sina - cos® a (A.10) +sin6» - sine - coso — sin63 - sinw (A12)
sin6s - sinfg - sin”
— 0805 - cosfg - cosa - sin® o Appendix 2
)
+cosf - cosa - sin” o — The coordinates for the point O1:
s 2 3
+cosfs - sin“ o - cosa + cos” o %o, - cosd
T ) Ca
=sinb, - sinf3 - sin“ o Yo, _|@ sin @ B.1)
-2 ZO] 0
—c0sHy - cosf3 - sin“ o - cosa
1 dg 1
+cos 6 - sin« - cosa
— The coordinates for the point O:
X0, a-cosf - (cosg+1)—a-sinf -sing - cosa
Yo, | _ | a-sinf-(cosg+1)+a-cosf-sing-cosa (B.2)
zo0, | a-sing -sino ’
1 dg 1
— The coordinates for the point O3:
X0, —a - (—sinf -sing - cosa +cosf - cosg +cosg + 1)
yo; | _ a-(cos@ -sing - cosa + sinf - cos ¢ - cos « + sinf - sin® o + sing - cos ) (B.3)
zo; | a-sina - (cosf -sing +sind - cos @ - cosa — sinf - cos o + sin @) '
1 dg 1
— The coordinates for the point O4: — The coordinates for the point Og:
X0y —a-(cosp +1) X0g 0
0 a-sing -coso
Y0s |- = - e (B.4) Yos | _ |0 (B.6)
20, a-sing -sino 206 0
I Jg 1 1 ¢ L1
— The coordinates for the point Os:
X0s _O“ Appendix 3
Yos | = (B.5)
205 0
1 dg 1 The coordinates for the point A:

12



x4=0

ya=0 (C.1)
z4a=—1
The coordinates for the point B:
xg = —sinf -sinx +a - cosb
yp =cosf -sino +a - sin@ (C2)
ZBp = —COS
The coordinates for the point C:
Xc=—sing-sine —a-cosg —a
yc=cos<p-lsina~cosa+sina-cosa C3)
+a-sing-cosa

zc =cosg-sin®a —cos’a +a -sing - sina

The coordinates for the point D:
Xp =—a
yp =sin«a (C4)
Zp = —cosa
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