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We study the yield conditions of phase transformation initiation for shape memory alloys exhibiting asymmetry between tension and compression. An extension of the choice of the classical invariant parameters such as those of Lode is proposed. A necessary and sufficient condition of convexity of these surfaces representing the elastic domain of austenite in the stress space, is established. Moreover the transport of these surfaces in the space of effective transformations strains of martensite is done. Hence, the duality between these two spaces is built. Some applications involving Cu-Al-Be and NiTi shape memory alloys end the purpose.

INTRODUCTION

As is the case in classical plasticity, the determination of the yield surfaces of phase transformation initiation is a key point for modeling shape memory alloys (SMA) behavior. The SMA exhibit an asymmetric behavior between tension and compression. Namely the yield stress is different between these two different uniaxial loadings [1]. Moreover, the SMA are considered as pressure-insensitive alloys. It means that the phase transformation between austenite and martensite is accompanied with no volume change. As pointed out by Raniecki and Lexcellent [START_REF] Raniecki | Thermodynamics of isotropic pseudoelasticity in shape memory alloys[END_REF], the dependence of the yield criterion on the first invariant of stress tensor 1 (I 1 1 tr 112) is negligible. Only the second and third invariants of the deviator of 1 are involved. As for phase transformation initiation, in the tensor 13 the material is only sensitive to the stress deviator S 4 1 dev 112.

In addition to these two classical Lode variables, i.e. the invariant and the angle, a third variable which is the greatest eigenvalue of reduced stress deviator N 4 is introduced in order to simplify the calculations and to generalize the formulations. In the first part, yield criteria for isotropic materials will be stated with a special attention devoted to the convexity of the yield surface of phase transformation initiation in the stress space 1. The second part will concern the transport of these surfaces in the space of effective transformation strain [START_REF] Lode | Versuche fiber den EinluB der mittlerea Hauptspannung auf das FlieBen. der Metalle Eisen, Kupfer und Nickel[END_REF] 6 m associated to the produced martensitic phase. Some applications on NiTi and Cu-Al-Be isotropic SMA end the paper.

CONSIDERATIONS ON THE YIELD CRITERIA

General Formulations and Haigh-Westergaard Representation

As the analysis is restricted to isotropic behavior, the Haigh-Westergaard representation is used (see Figure 1).

Let us consider the second order symmetric tensor 1 (defined in 1 3 ) and the deviatoric tensor S [START_REF] Podgorski | General failure criterion for isotropic media[END_REF] The yield surface equation of phase transformation initiation reads

1 112 1 1 f 1x 4 2 3 4 c 3 (1)
where f 9 03 is a smooth function (the second derivative is continuous) defined on the interval I x (which will be defined later). In fact, f is some "correction function" which allows to take into account the asymmetry between tension and compression called SD effect (stress differential effect), see Raniecki and Mroz [START_REF] Raniecki | Yield or martensitic phase transformation conditions and dissipation functions for isotropic, pressure-insensitive alloys exhibiting SD effect[END_REF]. In Podgorski [START_REF] Podgorski | General failure criterion for isotropic media[END_REF][START_REF] Podgorski | Limit state condition and the dissipation function for isotropic materials[END_REF], f is referred to as the "shape function". The positive quantity 4 c is the yield phase transformation initiation value and is given by

4 c 1 b1T 4 M 0 S 2 (2)
where M 0 S is the martensite start temperature at stress-free state. The interval I x is defined following the choice of the argument x 4 of f7 In fact, there are at least three possibilities for x 4 :

1. The Lode invariant y 4 3 chosen for instance by Raniecki and Mroz [START_REF] Raniecki | Yield or martensitic phase transformation conditions and dissipation functions for isotropic, pressure-insensitive alloys exhibiting SD effect[END_REF], which is an homogeneous function of degree zero of stress deviator

x 4 1 y 4 1 4 det 1N 4 2 6 I y 4 1 [413 1] (3) 
and where N 4 is the reduced deviatoric part of 1 given by

N 4 1 8 2 1 S 4 3 (4)
with

N 4 : N 4 3 8 2 7 (5)
2. The Lode angle 5 4 (see [START_REF] Lode | Versuche fiber den EinluB der mittlerea Hauptspannung auf das FlieBen. der Metalle Eisen, Kupfer und Nickel[END_REF]) defined by This latter variable was chosen as variable by Bigoni and Piccolroaz [START_REF] Bigoni | Yield criteria for quasibrittle and functional materials[END_REF] together with

f 1x 4 2 1 1 f 7 15 4 2 7 (6)
as the shape function. 3. In the present paper, a third expression of x 4 is introduced in order to simplify the calculations and the formulations, notably the one associated with the convexity condition. We take the greatest eigenvalue of N 4 3 i.e.

x 4 1 4 1 cos

6 1 3 arccos y 4 7 6 I 4 1 8 1 2 3 1 9 7 (7)

Yield Condition Resolution in Terms of Admissible Stress

Let us recall the yield equation ( 1):

1 3 4 c f 1x 4 2
the solution of which can be written as

1 3 1 3 tr 112 18 4 c f 1x 4 2 8 42 N 4 7 (8) 
One can show that N 4 can be split as (see (55) in Proposition 1)

N 4 3 4 e R 4 1 4 
1 1 4 2 4 2 1 2 e R 4 2 (9) 
where 4 1 1x 4 2 3 with a bijective function which maps I x on

I 1 8 1 2 3 1 9 
3
and which is defined by In ( 9)3 e R 4 1 and e R 4 2 are two orthogonal elementary deviators associated to 1 by

e R 4 1 1 R 4 e 1 R T 4 and e R 4 2 1 R 4 e 2 R T 4 3
where R 4 is the rotation matrix transforming 1 in its diagonal form 1), can be written as

4 1 R T 4 1R 4 3 1 112 0 0 0 2 112 0 0 0 3 112 
4 3 1 3 tr 1 4 2 1 8 4 c f 1x2 8 42 e 1 4 1 1 4 2 2 1 2 e 2 6 I3 (14)
x being linked to by the relations (11). Therefore the eigenvalues k of the reduced stress tensor 1 4 c are solutions of the following system:
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for all 6 I7 Now let us examine the dual space associated to the martensite strain.

TENSOR OF EFFECTIVE TRANSFORMATION STRAIN OF MARTENSITE

The concept of "effective transformation strain of martensite" has been introduced by Sadjadpour and Bhattacharya [START_REF] Sadjadpour | A micromechanics inspired model for shape-memory alloy. Smart Material Systems and Structures[END_REF]. This strain tensor called m is the average transformation strain of the different variants of martensite averaged over a representative volume containing multiple grains, after the material has formed an allowable microstructure.

For proportional loadings the experiments show that the phase transformation strain rate is normal to the yield surface 1 112 3 4 c (see Bouvet et al. [START_REF] Bouvet | Mechanical behavior of a Cu-Al-Be shape memory alloy under multiaxial proportional and non-proportional loadings[END_REF]).

Thus one can assume that m 112 admits a potential 1 112 9 03 which means

6 6 m 1 1 1 112 7
Let us introduce the reduced strain tensor

6 6 4 1 6 6 m 3 1 1 112 7
We give two decompositions for the tensor 6 6 4 as follows.

First Decomposition

The first one is given for x 3 y 4 3 5 4 or 4 (see (59) in Proposition 2):

6 6 4 3 f 1x2 N 4 8 a 1x2 f 1 1x2 N 4 ( 16 
)
where 

N 4 1 1 1 4 2 4 2 1 2 e R

Second Decomposition

This decomposition is done in the basis e R 4 1 3 e R 4

2

. One obtains easily (see Proposition 3)

6 6 4 3 f 1 1 4 2 e R 4 1 4 f 2 1 4 2 e R 4 2 3 ( 19 
)
where

f 1 12 3 1 1 4 2 2 d f d 8 f 1x2 f 2 12 3 1 1 4 2 2 1 2 g 12 (20)
with x 3 x 12 (see (11)) and

g 12 1 4 d f d 8 f 1x2 7 (21)
Now let us examine the convexity conditions of the yield function 1.

CONVEXITY CONDITIONS

In order to establish the convexity conditions, g and d for all 6 I7 This latter condition is very useful for the numerical verifications. Now we are going to explicit the convexity conditions following the choice of the variables. [START_REF] Podgorski | General failure criterion for isotropic media[END_REF] The inequalities in (25) for x 3 4 are the simplest because 3 x. One obtains f 112 4 f 1 112 0

Conditions in Terms of

f 11 12 03 (27)
for all 6

8 1 2 3 1 9 7 

Conditions in Terms of y 4

When f is a function of x 3 y 4 with 3 cos 1 1 3 arccos 1y 4 2

2

, the expression of the sufficient and necessary conditions for the convexity of 1 is more complicated. In fact it verifies (see (67) and (68)) andC. LEXCELLENT for all y 6 [413 1] 3 or by using (25)

g 12 3 f 1y2 4 3 1 4 2 4 1 2 f 1 1y2 0 d 2 f d 2 3 24 f 1 1y2 8 9 1 4 2 4 1 2 2 f 11 1y2 03 (28) P R O O F O N L Y 10 M. R. LAYDI
g 112 3 f 112 4 9 f 1 112 0 d 2 f d 2 3 24 f 1 1y2 8 9 1 4 2 4 1 2 2 f 11 1y2 07 (29)
Note that due to the identities 4 3 4 3 3 y and

1 1 4 2 2 1 4 2 4 1 2 2 3 1 4 y 2 3 (23) becomes simply d f 1 d 3 1 9 f 4 y f 1 1y2 8 1 1 4 y 2 2 f 11 1y2 0 y 6 [413 1] 3 (30)
which is the convexity condition given by Raniecki and Mroz [START_REF] Raniecki | Yield or martensitic phase transformation conditions and dissipation functions for isotropic, pressure-insensitive alloys exhibiting SD effect[END_REF]. It is clear that this latter condition is just necessary but not sufficient as will be seen below.

Conditions in Terms of 5 4

A supplementary condition on f is required, namely the continuity of g and of d 2 f d 2 at the neighborhood of 5 3 0 (see ( 67) and ( 68)).

It results from ( 22) for x 3 5 3 arccos 12 (see ( 67) and ( 68)) that We thus recover the condition established by Bigoni and Piccolroaz, see [START_REF] Bigoni | Yield criteria for quasibrittle and functional materials[END_REF].

g

Counter-example

The necessary conditions established by Raniecki and Mroz [START_REF] Raniecki | Yield or martensitic phase transformation conditions and dissipation functions for isotropic, pressure-insensitive alloys exhibiting SD effect[END_REF], Bigoni and Piccolroaz [START_REF] Bigoni | Yield criteria for quasibrittle and functional materials[END_REF] and (30), (32) and (33) which come from (23) are not sufficient. In order to convince the reader let us give a counter-example:

f 3 2 4 cos 2 152 3 2 4 cos 2 6 1 3 arccos y 7 3 2 4 2 9 0 6 8 1 2 3 1 9 7
The condition (23)

d f 1 d 3 f 4 d f d 8 1 1 4 2 2 d 2 f d 2 3 3 2 9 03
is fulfilled but not the positivity of the second derivative of f : One finds

1 1a2 3 1 1b2 3 31 28 428 2 4 4 c and 1 1c2 3 7 2 68 2 4 4 c
and it is clear that

1 1c2 2 1 2 11 1a2 8 1 1b22 7
This case is illustrated in Figure 2. In the next section, we return to the expression of the phase transformation strain tensor 4 .
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REDUCED SHAPE OF THE PHASE TRANSFORMATION STRAIN TENSOR 4

As before one determines the reduced shape of 6 6 4 , with the reduced formulae (4): 

n 4 1 8 
with f 1x 4 2 1 5 f 1x 4 25 2 8 5a 1x 4 25 2 f 1 1x 4 2 2 1 2 3 1 5 f 1 1 4 25 2 8 5 f 2 1 4 2 1 2 3
x 4 and 4 being linked in an univocal sense by (11). n 4 can be written as

n 4 3 f 1x 4 2 f 1x 4 2 N 4 8 a 1x 4 2 f 1 1x 4 2 f 1x 4 2 N 4 3 f 1 1 4 2 f 1x 4 2 e R 4 1 4 
f 2 1 4 2 f 1x 4 2 e R 4 2
From now on, we will always suppose that the convexity conditions (22) are satisfied.

First Decomposition

The function f 2 , as defined in (20), being positive, one can write

n 4 3 e R 4 1 4 
1 1 4 2 2 1 2 e R 4 2 3 ( 36 
)
where

3 f 1 1 4 2 f 1x 4 2 and f 2 1 4 2 f 1x 4 2 3 1 1 4 2 2 1 2 7
In the above, denotes the greatest eigenvalue of n 4 characterized by (56) or in a more explicit way (see (18))

1 1 4 2 6 2 1 2 dh d 6 h 8 1 1 4 2 4 2 1 2 d f d 4 f 3 07 (48)
Particularly, for x 4 3 y 4 , one obtains

1 1 4 y 2 2 1 2 h 1 1y 2 h 1y 2 8 1 1 4 y 2 4 2 1 2 f 1 1y 4 2 f 1y 4 2 3 07
In a general way, by using (42), one deduces the inverse application: where

5 4 3
n 4 3 6 e R 4 1 4 
1 1 4 2 6 2 1 2 e R 4 2 n 4 1 1 1 4 2 6 2 1 2 e R 4 1 8 6 e R 4 2 7 
(50)

We show (see Proposition 9) that

2 1 16 6 4 2 3 1 4 c S 4 3 S 1 4 c 4 (51)
for all 1 which are solutions of the yield phase transformation surface in the stress space, see

.

In fact, it is proved that the space of yield surface of phase transformation initiation (i.e. the elastic domain in the stress space of the mother phase: the austenite) is dual to the space occupied by the domain associated to the effective transformation strain of the produced phase: the martensite. The functions f 1x 4 2 and h 1x 6 2 inherit the same properties, notably that of the convexity.

The parameter x 6 can be obtained starting from x 4 (42) and

4 3 arctan 6 a 1x 4 2 f 1 1x 4 2 f 1x 4 2 7 7
Reversely, the parameter x 4 can be obtained from x 6 (49) and

6 3 arctan 6 a 1x 2 h 1 1x 2 h 1x 2 7 7
The transport from one space to the another can be made in a very simple way by using the relation

4 8 6 3 07 (52)
The variables 6 4 and S 4 can be considered as dual with the normality rules associated to their yield surfaces respectively.

In the next section, we give a few applications of the surface determination concerning two different shape memory alloys. 

APPLICATIONS

We consider two experimental series concerning Cu-Al-Be and NiTi alloys, whose yield values are given (in MPa) in the tables below.

Concerning the Cu-Al-Be alloy, the yield points are obtained by bi-compression tests on cubes and tension (compression)-internal pressure on tubes (see Bouvet et al [START_REF] Bouvet | Mechanical behavior of a Cu-Al-Be shape memory alloy under multiaxial proportional and non-proportional loadings[END_REF]).

Cu-Al-Be: 

1 i 3 4 1 0 0 0 4 2 0 0 0 0 3 1 9 i 9 n 3 11,

Shape Function Choice

We will use the shape function f which has been introduced in [START_REF] Bouvet | Mechanical behavior of a Cu-Al-Be shape memory alloy under multiaxial proportional and non-proportional loadings[END_REF], namely They are determined by the intersection of the two curves 4 c 1a2 and the "reverse" formulae a 14 c 2 with the following definitions: In fact, the function defined in (53) behaves as f 12 3 1 4 8 q where and q are given by the formulae (86) and ( 87 

f 1y2 3 cos 6 
4 c 1a2 1 n " i31 1 i cos 6 1 3 arccos 1 1 4 

Application 1: Cu-Al-Be

The normalized solutions of (1) given by (15) are characterized by the couples 

14 1 3 4 2 2 6 $ 1 3 j 8 2 i 3 i 8 2 j 5 6 I 1 1 9 i 3 j 9 3

Application 2: NiTi

In this case, the eigenvalues of 1 are The normalized solutions of (1) given by (15) are such that where

1 1 3 3 2 3 1 3 
1 2 3 8 1 3 2 1 8 3 2 3 
i.e.

4 zz 3 4 2 4 z5 3 1 3 3 1 3 4 2 2 1 2 4 1 2 7 
As for the solutions given by (44), they are characterized by the couples 

6 zz 3 4 6 2 6 z5 3 1 3 3 1 6 3 4 6 2 2 1 6 2 4 6

CONCLUSION

We have performed the modelling of the yield curves of phase transformation initiation for isotropic SMA. materials, in the stress space, by taking into account the asymmetry between tension and compression. Many choices of the shape function f 1y2 are possible notably a linear expression, one with a "cosinus" formulation or a power law in terms of , and in every case, the fitting of experimental results are good. We give a necessary and sufficient condition for convexity of the yield curve thus completing the necessary one as stated by Raniecki and Mroz [START_REF] Raniecki | Yield or martensitic phase transformation conditions and dissipation functions for isotropic, pressure-insensitive alloys exhibiting SD effect[END_REF] and Bigoni and Piccolroaz [START_REF] Bigoni | Yield criteria for quasibrittle and functional materials[END_REF]. Special attention is paid to the transport of these yield surfaces from the stress space to the one of effective transformation strain of the produced phase (i.e. the martensite). A duality is established between these two surfaces. An extension of the investigation is possible concerning anisotropic shape memory alloys as drawn or rolled SMA bars. 

PROOFS OF THE PROPOSITIONS

Proposition 1. For any choice of x (y 4 , 5 4 or 4 2, N 4 can be written as

N 4 3 1x2 e R 4 1 4 
1 1 4 5 1x25 2 2 1 2 e R 4 2 ( 55 
)
Moreover, is equal to One can verify that y 4 1 4 det 1N 4 2 6 [413 1] and that the Cardan discriminant is equal to In the general case 03 the equation has three real distinct roots given by 18) and ( 17). The derivative of 1 is given by ( 16)

3 8 42 N 4 : e R 4
3 4 1 4 2 1 1 4 y 2
1 1 3 f 1x2 N 4 8 a 1x2 f 1 1x2 N 4 7 (59)
Moreover

1 1 112 : 1 3 1 112 17 (60)
Proof. We are going to use the following equation of the derivative of 1

1 1 3 f 1x2 1 1 8 f 1 1x2 1 x 1 ( 61 
)
and the following identity:

1 3 S 4 4 1 3 tr S 4
1. The first term in (61) is classical:

1 1 3 8 1 15S 4 52 3 8 S 4 15S 4 52 3 8 2 S 4 8 5S 4 5 3 8 2 S 4 1 3 N 4 7 (62)
The second term is based on the characterization of see (56):

3 1 41 S 4 : e R 4 1 7 
One obtains

1 3 1 41 e R 4 1 4 1 42 1 1 S 4 : e R 4 1 3 1 41 e R 4 1 4 N 4 1 1 3 e R 4 1 4 e R 4 1 4 
1 1 4 2 2 1 2 e R 4 2
i.e.

1 d dx x 1 3 1 1 4 2 2 1 2 1 1 4 2 2 1 2 e R 4 1 8 e R 4 2 3 1 1 4 2 2 1 2 N 4 7
This leads to

1 x 1 3 1 1 4 2 2 1 2 dx d 3 a 1x2 N 4 7 (63)
Finally one obtains (60) by observing that
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Proposition 3. The derivative of 1 is equal to

1 1 112 3 f 1 1 4 2 e R 4 1 4 f 2 1 4 2 e R 4 2 3 (64)
with

f 1 12 3 f 1x2 8 1 1 4 2 2 1 2 a 1x2 f 1 1x2 3 f 1x2 8 1 1 4 2 2 d f d f 2 12 3 1 1 4 2 2 1 2 f 1x2 4 a 1x2 f 1 1x2 3 1 1 4 2 2 1 2 6 4 d f d 8 f 1x2 7 7 
(65) And the inverse system reads

a 1x2 f 1 1x2 3 1 1 4 2 2 1 2 f 1 12 4 f 2 12 f 1x2 3 f 1 12 8 1 1 4 2 2 1 2 f 2 12 7 (66)
Proof. By substituting N 4 and N 4 in (59) as a function of e R 4 1 and e R 4 2 , see ( 9) and ( 17), one obtains (64) with

f 1 12 3 f 1x2 8 1 1 4 2 2 1 2 a 1x2 f 1 1x2 f 2 12 3 1 1 4 2 2 1 2 f 1x2 4 a 1x2 f 1 1x2 7
The final expression is obtained by substitution of a 1x2 

f 1x2 4 3 1 4 2 4 1 2 f 1 1x2 if x 3 y 4 f 1x2 8 1 1 4 2 2 4 1 2 f 1 1x2 if x 3 5 4 f 1x2 4 f 1 1x2 if x 3 4 3 (67)
and

d 2 f d 2 12 3 24 f 1 1x2 8 9 1 4 2 4 1 2 2 f 11 1x2 if x 3 y 4 4 1 1 4 2 2 4 3 2 f 1 1x2 8 1 1 4 2 2 41 f 11 1x2 if x 3 5 4 f 11 1x2 if x 3 4 7 (68) P R O O F O N L Y 30 M. R. LAYDI and C. LEXCELLENT
In particular, g and d 2 f d 2 are two continuous functions on I for x 3 y 4 or x 3 4 3 and just on 1 2 3 1 for x 3 5 4 7

Proof. On one hand we have

g 12 1 f 1x2 4 dx d f 1 1x2
and on the other

d 2 f d 2 3 d 2 x d 2 f 1 1x2 8 6 dx d 7 2 f 11 1x2 7
So by substituting

dx d 3 
3 1 4 2 4 1 2 if x 3 y 4 4 1 1 4 2 2 4 1 2 if x 3 5 4 1 i f x 3 4 and d 2 x d 2 3 24 if x 3 y 4 4 1 1 4 2 2 4 3 2 if x 3 5 4 0 i f x 3 4
in the above, we finally recover the two identities (67) and ( 68). The continuity of the functions g and Proof. A necessary and sufficient condition for the convexity of 1 is based on the following inequality:

1 112 1 1b2 8 1 1 1 1b2 : 11 4 b 2 23 13 b7 (70) 
With tr11 1 1b22 3 0 and 1 1 1b2 : b 3 1 1b2 (see (60)), the inequality is reduced to

1 112 1 1 1 1b2 : S 4 2 3 13 b3
or by multiplying by 8 2 1 41 ,
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The calculation of 1 1 1 1b2 : N 4 2 gives

1 1 1b2 : N 4 3 f 1 1 b 2 e 1 4 f 2 1 b 2 e 2 : e 1 4 1 1 4 2 2 1 2 e 2 3 8 2 f 1 1 b 2 8 f 2 1 b 2 1 1 4 2 2 1 2 7
The inequality (71) then becomes

f 1x2 f 1 1 b 2 8 1 1 4 2 2 1 2 f 2 1 b 2 3 b 6 I7 (72) 
To show (72) let us introduce the function u 12 as

u 12 3 f 1 1 b 2 8 1 1 4 2 2 1 2 f 2 1 b 2 4 f 1x2 3
with b fixed on I7 We must prove that u 12 9 03 6 I7 Two cases will be investigated:

Case b 3 1. For 3 b , one obtains (66):

u 1 b 2 3 b f 1 1 b 2 8 1 1 4 2 b 2 1 2 f 2 1 b 2 4 f 1x b 2 3 07
As the first derivative of u is

du d 3 f 1 1 b 2 4 1 1 4 2 2 4 1 2 f 2 1 b 2 4 d f d 3
by using (18), du d can be written as

du d 3 1 1 4 2 2 4 1 2 1 1 4 2 2 1 2 f 1 1 b 2 4 f 2 1 b 2 4 a 1x2 f 1 1x2 7
So, for 3 b 3 with b 3 1, thanks to (66), one obtains du d

1 b 2 3 07 A second derivation gives d 2 u d 2 3 4 1 1 4 2 2 4 3 2 f 2 1 b 2 4 d 2 f d 2 7
By the Taylor formula at the neighborhood of b , one has

P R O O F O N L Y 32 M. R. LAYDI and C. LEXCELLENT u 12 3 u 1 b 2 8 du d 1 b 2 1 4 b 2 8 1 2 d 2 u d 2 12 1 4 b 2 2 3 1 2 d 2 u d 2 12 1 4 b 2 2
where is between and b . So the necessary and sufficient convexity condition becomes

d 2 u d 2 9 0 in 8 1 2 3 1 8 
3
which can be written as

4 f 2 1 b 2 3 4 1 1 4 2 b 2 1 2 g 1 b 2 9 1 1 4 2 2 3 2 d 2 f d 2 3 6 8 1 2 3 1 8 3 b 6 8 1 2 3 1 8 7 ( 73 
)
The function d 2 f d 2 being continuous on I , (73) implies when tends to 1

f 2 1 b 2 03 b 6 8 1 2 3 1 8 3 (74) 
and by the boundary continuity

g 1 b 2 0 b 6 8 1 2 3 1 9 7 ( 75 
)
The function g being continuous on I , by using (73), one also have when b 1 which is always true thanks to (75). In fact the function

1 1 4 2 2 3 2 d 2 f d 2 03 6 8 1 2 3 
) f 12 3 41 f 1x2 is decreasing d ) f d 3 41 d f d 4 42 f 3 4 42 6 f 4 d f d 7 3 4 42 g 12 9 07 So ) f 12 ) f 112 41 f 1x2 f 1x 1122 7
This ends the proof of the proposition. 2 Proposition 6. Let (22) hold with g non-identically equal to zero. Then 3 as defined by (37), is a continuous bijective application from I to I , admitting a first derivative (see ( 43)) which is continuous and increasing on 1 2 3 1 .

Proof. We examine two cases.

Case 4 3 1. This case is trivial as 1 17 In fact, from (65), we have f 1 112 9 0 and f 2 112 3 03 and so

f 1 3 5 f 1 1125 2 8 5 f 2 1125 2 3 f 1 112
which gives

1 4 2 3 f 1 112 f 3 17 
Reciprocally, if 3 13 6

f 2 1 4 2 f 1x 4 2 3 1 1 4 2 2 1 2 3 0 f 2 1 4 2 3 1 1 4 2 4 2
f 1 d f 1 d 8 f 2 d f 2 d 7 3 42 f 2 1 d f 1 d 8 42 f 1 f 2 d f 2 d 3 d f 1 d 8 42 f 2 6 f 1 d f 2 d 4 f 2 d f 1 d 7 so d d 3 43 f 2 6 f 2 d f 1 d 4 f 1 d f 2 d 7 7
Then from (24) and (66) we obtain

d d 3 43 d f 1 d f 2 1 1 4 2 2 4 1 2 1 1 4 2 2 1 2 f 2 8 f 1 3 43 d f 1 d g f3
which is exactly the expression (43). So from (23) and since f et g are strictly positive when 6 1 2 3 1 , one concludes that is strictly increasing on 

d 3 3a 1 4 2 4 1 2 3 3 d f d 1 4 f 2 4 1 2 d f d 3 a 1 4 2 4 1 4 f 2 4 0 and d 2 d 2 3 24a 3 3 d 2 f d 2 1 4 f 2 4 1 2 8 8 6 d f d 7 2 f ! 7 
Hence following (25), one must verify

g 112 3 f 1y 1122 4 d f d 112 0 a 4 6 d f d 7 2 f 0 7 
The first inequality is direct because f 1y 1122 3 f 112 3 1 and d f d 112 3 a. Concerning the second one, it is equivalent to

d f d f 1 2 9 a 1 2 1 2 a 1 2 1 4 2 4 1 2 4 1 2 9 1 4 f 2 4 1 2 f 4 1 2 7 
We will show that

u 12 9 u 1 f 2 3 (78) for u 1x2 1 1 4x 2 4 1 2 x 4 1 2 3 x 6 8 1 2 3 1 9 7 
In fact, as u is an increasing function 

du dx 3 1 2 x 4 3 2 1 1 8 
An elementary calculation using (50) shows that cos

1 4 2 n 4 4 sin 1 4 2 n 4 3 Q 1 e R 4 1 4 Q 2 e R 4 2 3 
where 

Q 1 1 6 cos 1 4 2 4 1 1 4 2 6 2 1 2 sin 1 4 2 Q 2 1 1 1 4 2 6 2 1 

APPENDIX A

First we will examine the convexity conditions of a "power law" shape function f 12. Then this function is compared in the Figure 12 with the "cosinus" formulation of f 1y2, see (53).

Proposition 11. Let 1 112 3 1 f 1 4 2 where f is defined by f 12 3 1 4 8 q 3 (81)

where the parameters and q are such that 0 9 q 9 1 if q 1 q 9 0 otherwise7 The couples 13 q2 are chosen such that the two curves coincide at points y 3 413 4 Figure 13 gives the couples 13 q2 as a function of a7 Note that the convexity condition (82) is clearly verified.

APPENDIX B

We are going to give here a necessary and sufficient convexity condition for the shape function introduced by Raniecki and Mroz [START_REF] Raniecki | Yield or martensitic phase transformation conditions and dissipation functions for isotropic, pressure-insensitive alloys exhibiting SD effect[END_REF]. As is a decreasing function on 
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Figure 1 .

 1 Figure 1. Deviatoric stress section: definition of angle 5 4 , 5 6 and yield surface F112 3 4 c 7

where 1 b 1 tr 1 a T b 2 for every second order tensor a and b and 5a5 1 3 tr 1 a T a 2 . 8 5S 4 5 3 with

 1283 is the identity tensor. Two dots denote the scalar product and tr 172 denotes the trace operator, so that a : In a classical way, the Huber-Von Mises equivalent stress 1 is defined by1 1

x 4 1 5 4 1 1 3 arccos y 4 6 I 5

 65 

for the first choice 1x 3 y 4 2 cos 1x2 for the second choice 1x 3 5 4 2 x for the third choice 1x 3 4

 24 

3 1 112 9 2 112 9 3 4 i: e R 4 j 3 e i : e j 3 8 2 i j e R 4 i: 1 3 e i : 1 3 0 i3 j 3

 334403 13 27 (13) Note that the Lode 5 4 is the angle between N 4 and e R4 1 see (56) and Figure1. Moreover 4 3 the solution of equation (

d 2 f d 2 3

 3 42 07 Let us give a concrete example where the convexity condition is not fulfilled. Take a3 b3 c such that

Figure 2 .

 2 Figure 2. Non convex yield surface(counter example).
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  As for the Ni-Ti alloy, the tension (compression)-torsion tests on tubes as performed by Laverhne-Taillard et al.[START_REF] Laverhne-Taillard | Multiaxial shape memory effect and superelasticity[END_REF], give the following yield values:

Figure 3 .

 3 Figure 3. Obtention of a and 4 c parameters.

Figure 4 .

 4 Figure 4. Comparison between "cosinus" formulation and straight lines for Cu-Al-Be alloy.

more simply as the classical linear function f 1y2 3 b 1 8 b 2 3 0794 b 2 3 0706 and NiTi : b 1 3 0791 b 2 3 07097 Figures 4

 23070974 Figures4 and 5show the comparison of the "cosinus" formulation with the linear form for the above parameters which are obtained by minimizing the functional

Figure 5 .51 112 4 4 c 5 2 ! 1 2 7b 2 b 1 3 07090791 3

 521233 Figure 5. Comparison between "cosinus" formulation and straight lines for Ni-Ti alloy.

Figure 6 .I 1 1 9 i 3 j 9 3 ' 3 see

 63 Figure 6. Yield surfaces in the stress space for Cu-Al-Be alloy.

4 zz 3 1 8 3 4 z5 3 (Figure 7 .

 37 Figure 7. Yield surfaces in the phase transformation strain dual space for Cu-Al-Be alloy.

Figure 8 .

 8 Figure 8. Univocal correspondence between 4 and 6 for Cu-Al-Be alloy.

Figure 9 .

 9 Figure 9. Yield surfaces in the stress space for Ni-Ti alloy.

  The eigenvalues k of N 4 solve

Figure 10 .

 10 Figure 10. Yield surfaces in the phase transformation strain dual space for Ni-Ti alloy.

4 2 7 If 3 4 3 1 1 3 2 3 4 1 2 and 3 3 3 1 or y 4 3 41 1 3 41 and 3 2 3 3 3 1 2 7

 473417 03 the equation has three real roots: one single and one double. One has y

d 2 f d 2 is trivial. 2 Proposition 5 .

 25 Let g and d 2 f d 2 be continuous on I . Then 1 is a convex function if and only if the condition (22), i.e.

  direct. Indeed, (73) is obtained by the two inequalities (74) and (76). Case b 3 17 Then x b 3 1 and a1x b 2 3 03 and therefore one has f 1 1 b 2 3 f 112 and f 2 1 b 2 3 07 Then proving u 12 9 0 comes to show that u 12 3 f 1x 1122 4 f 1x2 9 03

Then 1 6 I7 2 Figure 12 1y2 3 cos 6 1 3 arccos 11 4 a 11 4 y22 7 7 P

 162127 Figure 12 illustrates, for values of a 3 1 10 3 2 10 3 7 7 7 3 9 10 , the comparison with the function

Proposition 12 .Figure 14 Figure 13 .Figure 14 .

 12141314 Figure14shows the evolution of b as a function of .

  We are now ready to state a result of duality type. Just as for 1, the derivative of 2 with respect to 6 6 4 3 see (16), takes the form21 16 6 4 2 3 h 1x 6 2 n 4 8 a 1x 6 2 h 1 1x 6 2 n
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	6.2. Duality			
		O N L Y 4
	O O F
	P R			
	5 8 6		
	4 3 cos	1 arccos 6 8 6	2	(49)
	y 4 3 cos	1 arccos y 6 8 3 6	2	7

  Figure 11. Univocal correspondence between 4 and 6 for Ni-Ti alloy.
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	Proposition 2. Let a 1x2 and N 4 defined by (								
																O N L Y O N L Y
				O O F O O F	
	P R k 3 cos 6 arccos 1y 4 2 8 2k 3 P R	7	, k 3 13 23 33		(58)
	i.e.																
	k 3 cos	6	1 3	arccos 1y 4 2 7	cos	6	2k 3	7	4 sin	6	1 3	arccos 1y 4 2 7	sin	6	2k 3	7	7
	So, the diagonal matrix composed of the eigenvalues of N 4 can be written as
				4 3 4 e 1 4	1 1 4 2 4	2 1 2 e 2 3	
	where 4 3 cos The expression of 4 in (56) is obtained by the orthogonality (13) between e R 4 1 1 3 arccos 1y 4 2 2 3 e 1 3 diag 1 cos 1 2k 3 22 and e 2 3 diag 1 sin 1 2k 22 . 3 1 and e R 4 2 . 2

  Let 1 112 3 1 f 1y 4 2 where f is defined by (53). Then 1 is convex if and only if the inequalities (54) are verified.

	YIELD CRITERIA FOR SHAPE MEMORY MATERIALS 35
	One has to note that
	12 1 1 4 a 11 4 y2 3 4 f 3 4 3 f3
	O N 2 because a 11 4 y2 3 1y2 3 417 2 f 9 17 Indeed f 3 1 where y 3 4 3 4 3 and 1 By deriving , one obtains L Y d
	O O F
	1 2 3 1 bijection. The smoothness of comes from the smoothness of the composition of these and thus we have a functions. 2 P R
	Proposition 7. Proof. (54) is a necessary condition because the function arccos 172 exists only if
	41 9 1 4 a 11 4 y2 9 13 y 6 [413 1] 7
	Let us show that the condition is also sufficient. In fact, the case where a 3 1 (resp. a 3 0) is trivial because it corresponds to f 1y2 3 cos 1 1 3 arccos 1y2 2 3 (resp. f 1y2 3 cos 1 1 3 arccos 112 2 3 1). We must therefore verify for
	0 a 17

  The values of 4 and 6 defined by (39) and (46) are opposite, i.e. 4 8 Let 1 be the solutions of (1). Then, the identity (51) holds.

	36 M. R. LAYDI and C. LEXCELLENT YIELD CRITERIA FOR SHAPE MEMORY MATERIALS 37
	i.e. The last term reads (see (42))						
	1y2 9 11 4 a 11 4 y22 3 y 6 [413 1] 3 d 6 d 4 3 6 1 1 4 2 4 2 4 1 2 8 d 4 d 4 7 1 1 4 2 2 1 2 3
	P R O O F O N L Y 1y2 3 cos 6 1 3 arccos 1y2 7 7 This is always true, because 1y2 is an increasing function and y 9 1 4 a 11 4 y2 7 This ends the proof of the proposition. 2 Proposition 8. 6 3 07 for Proof. The derivation w.r.t. 4 of the expression cos 4 3 f 1x 4 2 f 1x 4 2 3 8 2 f 1x 4 2 h 1x 2 3 gives 4 d 4 d 4 sin 4 3 8 2 6 d f d 4 h 8 f dh d 6 d 6 d 4 7 7 Let us then multiply by 114 2 6 2 1 2 cos 4 to obtain 4 d 4 d 4 1 1 4 2 6 2 1 2 tan 4 3 1 1 4 2 6 2 1 2 d f d 4 f 8 1 1 4 2 6 2 1 2 dh d 6 h so that we finally have 1 tan 4 8 tan 6 2 d 6 d 4 3 03 L Y i.e. tan 4 8 tan 6 3 07 N 2 O Proposition 9. Proof. Set h 1 5h 1x 6 25 2 8 5a 1x 6 25 2 h 1 1x 6 2 2 1 2 . From (47), F O h 3 h 1x 6 2 1 8 5a 1x 4 25 2 f 1 1x 4 2 f 1x 4 2 2 ! 1 2 3 h 1x 6 2 f 1x 4 2 f 1x 4 2 3 8 42 f 1x 4 2 f 1x 4 2 f 1x 4 2 3 8 42 7 f 1x 4 2 O Hence 2 1 16 6 4 2 3 h 1 cos 1 6 2 n 4 8 sin 1 6 2 n 4 2 3 8 42 f 1x 4 2 1 cos 1 6 2 n 4 8 sin 1 6 2 n 4 2 7 P R Integrating the relation (45) one has also d 6 7 d 4 But from (18) and (39), one can write 2 1 16 6 4 2 3 8 42 f 1x 4 2 1 cos 1 4 2 n 4 4 sin 1 4 2 n
	tan 4 3	a 1x 4 2 f 1 1x 4 2 f 1x 4 2	3	1 1 4 2 4 f 1x 4 2 2 1 2 d f d 4
	tan 6 3	a 1x 6 2 h 1 1x 6 2 h 1x 6 2		12x 2 2 1 9 03 1 4 2 6 3 h 1 1x 6 2 2 1 2 d f d 6
	and thus it is sufficient to verify and 6 1 1 4 2 4 2 4 1 2 8	d 4 d 4	7 1 1 4 2 6	2 1 2 tan 4 8 tan 6	d 6 d 4	3 07	(79)

4 2

  2 2 3 81 (resp. 3 2 41 3 2 4 1 2 3 1), i.e.

		q 3		2 ln 122	ln	f	1 4 f 4 2 2	2 2 4 f 1412 4	(86)
			3		f		4 2 4 q 2 4 1 2 4 1 2
	where							
	f 1412 3 cos	6	3 1	arccos 11 4 2a2 7
	f 4	2 2	!	3 cos 1 3 arccos 1 4 a 1 8	2 2	!!!	7	(87)

  Finally, following (25), it is neccesary and sufficient that (see (67)) g 112 3 f 112 4 9 f 1 112 3 1 8 11 4 exp 1422 11 8 922 0
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		d d	3 4	8 3	1 4 2 4 1 2 43 1 1 8 12 2 2	03
	so (91) is equivalent to				
	i.e.	1	9 112 3 12 1 exp 1422 11 8 92 4 17 8 27 7 O N L Y
	O 3 17 4 182 exp 1422 F 5 3 exp 1422 9 03 O thus for a parameter between 0 and 3 But for 9 8 27 d d
	P R	
					1 2 3 1	3 because

7(32)If now, instead of f one uses its inverse f 7 1 f 41 , then in this case, the condition (32) becomes

Then, from (4),

As 1 is a solution of (1), then from (8), one finally obtains