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Position Control of a Sensorless Stepper Motor
Moussa Bendjedia, Youcef Ait-Amirat, Member, IEEE, Bernard Walther, and Alain Berthon, Member, IEEE

Abstract—In this paper, the experimental results of position con-
trol of the hybrid stepper motor without a mechanical sensor are
exhibited. Use of the steady-state extended Kalman filter to esti-
mate the mechanical variables of the motor is shown. With this
method the computing time is reduced. The initial rotor position is
estimated by the impulse voltage technique. For position control, a
simple state feedback control that can compensate the load torque
variations was designed. The robustness against the motor param-
eters variation was also studied. A field-oriented control strategy is
chosen. It is known that the mechanical position is crucially impor-
tant to achieve this strategy. Finally, favorable experimental results
are shared.

Index Terms—DSP, extended Kalman filter (EKF), feedback
control, field-oriented control, hybrid stepper motor (HSM),
position control, sensorless.

I. INTRODUCTION

T
HE HYBRID stepper motor [1] is used in several indus-

trial applications where torque at low speed, positioning

accuracy, and high-speed dynamic are determining factors. It
can, thus, be found in numerous applications. For example in
medical applications for, accurate dosage with peristaltic pumps

or pipettes and motion control in dialysis equipment. Also, in
automotive applications, combustion engines contain several

systems to control emissions and reduce NOx level. These sys-

tems always combine a stepper motor that drives efficiently

integrated valves. In telecommunications, the stepper motor is
used to actuate antennas and combiners. All these applications

require a robust actuator that can withstand vibrations and must

respond quickly and precisely to a signal position, while at the

same time guaranteeing that it can overcome a dynamic torque

load.

The stepper motor has the advantage over other kinds of

motors because it works well in open loop since it carries out

motion step by step when voltage impulses are applied to its
phases. But, due to its inertia, the rotor oscillates around the

final position before stabilizing. In addition, the motor can lose

steps if the variation of the load torque is fast. The use of new
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programmable architecture like field-programmable gate arrays

(FPGA) circuit [2] allows the creation of microstep movements.

That smoothes the movement but leaves the open-loop control

problem unsolved. To solve it, it is necessary to introduce a

closed loop to improve the performance and the robustness of

the control. A first solution was the introduction of mechan-

ical sensors. This solution increases the size and the cost of

the system. Furthermore, analysis of past experience from auto-

motive applications, for example, shows that mechanical mea-

sures such as position or speed suffer in high-temperature- and

high-vibration environment. Due to these limitations, sensorless

control emerges, with today’s low cost and high-performance

DSP’s, as an alternative and a very interesting solution since it

saves the expensive and bulky mechanical sensor.

Several sensorless methods including standstill were pro-

posed for various motors and can be applied to the stepper

motor. The knowledge of the initial rotor position guarantees a

starting of the motor in the desired direction [3]. The standstill

methods [4], [5] are based on the inductance variation according

to the rotor position. Voltage signals are injected to the wind-

ings and the initial rotor position is obtained by monitoring the

phase currents. For low speed, this principle is used in [6] to

estimate the rotor position without voltage injection. The phase

incremental inductance is estimated in real time and compared

to an analytical model to estimate the rotor position. The high-

frequency signal injection method [7]–[10] can detect the initial

rotor position and extend the estimation to low speeds. The

back electromotive force method is widely used because of its

easy implementation [11]–[16]. For middle and high speeds, the

observers are more suitable. The sliding mode observer is char-

acterized by its robustness against the disturbance and motor

parameters variation as shown in [17] and [18]. A new nonlin-

ear observer has been recently proposed in [19] to estimate the

rotor position without information about the motor speed. The

extended Kalman filter (EKF) [20] is often used in the speed sen-

sorless control because it has low-pass filter characteristics. To

reduce the computing time of the EKF algorithm, [21] assumed

an infinite inertia of the motor. Unscented Kalman filter [22] can

improve the estimate and reduce the computing time. In [23],

use of the Kalman filter in steady-state case for hybrid stepper

motor with a speed control is proposed, but only simulation

results were shown. The position control of the stepper motor

is the subject of many pieces of research [24] that integrates a

mechanical sensor.

This study proposes to investigate a simplified version of

the EKF algorithm to estimate the mechanical state variables

of the stepper motor by only measuring the line voltages and

currents. Then, the feedback control is achieved from these es-

timated variables instead of the measured ones. Furthermore,

by applying the principle of field orientation, the dynamic

performance of the stepper motor is considerably improved
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and it becomes a high-dynamic ac drive. We also discuss the 
robustness of the approach. The stepper motor has a low power, 
quite small electrical parameter, and high pair number of pole 
pairs compared to other sensorless research. Thus, great care was 
taken in the design of the electronic card made for this paper. 
For example, the phase voltages and currents are well filtered 
by this card before being acquired by the dSPACE DS1103.

II. MOTOR MODEL AND EKF BASICS

The hybrid stepper motor (HSM) is a synchronous motor with 
two phases A and B in quadrature; therefore, mutual inductances 
are null. So the motor can be represented by the following 
electric equations

ua = Ria + L
dia
dt

− Km ω sin(Nθ)

ub = Rib + L
dib
dt

− Km ω cos(Nθ) (1)

where ia and ib are the currents of phases A and B (A), ua and ub

are the phase voltages (V), R is the phase resistance (Ω), L is the

phase inductance (H), Km is the torque constant (V·s/rad), ω is

the angular velocity (rad/s), θ is the mechanical rotor position

(rad), and N is the rotor number teeth.

The mechanical equations of the HSM can be written in the

following form

Km (−ia sin(Nθ) + ib cos(Nθ) − TL = J
dω

dt
+ Kvω

ω =
dθ

dt
(2)

where Kv is the coefficient of viscous friction (N·m·s/rad), J is

the system inertia (kg·m2), and TL is the load torque (N·m).

Applying the Park transformation to (1) and (2), the model of

the HSM in the rotating frame (d,q) becomes

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ud = Rid + L
did
dt

− LNωiq

uq = Riq + L
diq
dt

+ LNωid + Km ω

Km iq − TL = J
dω

dt
+ Kvω

dθ

dt
= ω.

(3)

We carried out practical tests to properly identify the model

parameters which are: R = 0.37 (Ω), L = 0.9 (mH), Km =
0.157 (V·s/rad), Kv = 0.000307 (N·m·s/rad), J = 15.62 × 10−5

(Kg·m2), and N = 50.

The field-oriented control method is used to control the flux

and the torque of the motor independently. The d-axis is cho-

sen on the flux axis, so all the flux is aligned along this axis.

The torque is managed by controlling the current in the q-axis.

However, there are coupling items in current equations (3). In

order to have linear and decoupling terms, the d–q axis stator

voltage (3) can be expressed in two components

ud = ulin
d + udec

d =

(

Rid + L
did
dt

)

− LNωiq

uq = ulin
q + udec

q =

(

Riq + L
diq
dt

)

+ LNωid + Km ω (4)

where the d–q axis linear voltage components are

ulin
d = Rid + L

did
dt

and ulin
q = Riq + L

diq
dt

. (5)

And the d–q axis decoupling voltage components are

udec
d = −LNωiq and udec

q = LNωid + Km ω. (6)

The linear voltage components V lin
d , V lin

q are the outputs of the

current controllers and are added to the decoupling voltage com-

ponents udec
d and udec

q .

The EKF was proposed for the nonlinear systems as in (3). It

uses the discrete system model in the following state space form
{

xk+1 = xk + T · f(xk , uk ) + wk

y
k

= h(xk ) + vk

(7)

with xk = [idk iqk ωdk θdk TLk ]t being the state vector,

uk = [udk uqk ]t being the input vector, and y
k

= [idk iqk ]t

being the output vector.

A suitable choice of the sampling period (T = 100 μs) is

done with regard to system electric constant. The load torque

is estimated by introducing it as a state variable. It is assumed

that it is a perturbation and does not vary since the sampling

period T is very small. The vector wk represents the noise due

to the errors of system modeling. The vector vk represents the

measurement noise. wk and vk are presumed to be zero-mean

white Gaussian noises with covariance matrices Qk and Rk,

respectively.

The EKF algorithm contains five equations and two phases.

1) The Prediction phase is

x̂k+1/k = x̂k/k + Tf(x̂k/k , uk ) (8)

P k+1/k = FdkP k/kFdt
k + Qk (9)

Kk+1 = P k+1/kH t
k

(

HkP k+1/kH t
k + Rk

)−1
(10)

2) The Correction phase is

x̂k+1/k+1 = x̂k+1/k + Kk+1(yk+1
− Hk x̂k+1/k ) (11)

P k+1/k+1 = P k+1/k − Kk+1HkP k+1/k (12)

where K is the Kalman gain matrix, P is the covariance matrix,

Fd is the Jacobian matrix of the system, and H is the Jacobian

matrix of the output.

In the case of the steady-state EKF, the gain matrix K is

computed offline. To do that, a simulation of the whole system

was carried out with the complete EKF (8)–(12) while trying to

use the same conditions of the real system which are the same

sampling period, a good identification of the motor parameters,

modeling the power converter, and adding some noises to the

inputs of the EKF algorithm.
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Fig. 1. Estimated load torque with P0 (5, 5) = 50.

Fig. 2. Estimated load torque with P0 (5, 5) = 0.02.

Fig. 3. Estimated load torque with R = 100.

A good estimation of the state variables is dependent upon

the initial covariance matrices (P0 , R, and Q) that are chosen. A

recent work [25] tries to exhibit an algorithm called evolution-

ary algorithm to optimize the choice of these matrices. It is an

iterative algorithm inspired by genetic algorithms and is based

on numerous simulations. In this paper, these matrices are ob-

tained after several simulation tests. A slight change is made on

the value of a matrix and then its influence on the corresponding

state variable is examined. For example, the value P0(5,5) acts

on the estimation of the load torque TL . A large value of P0(5,5)

leads to faster transient response (see Fig. 1). We can observe in

(10) that the Kalman gain matrix K is proportional to the matrix

P, so a large value in P leads to a large value of K and then

the correction on the estimation variable becomes faster with

possible apparition of overshoot. Otherwise, a large transient

response is obtained (see Fig. 2). But, in both cases, the steady

state of the estimated load torque is not affected.

The covariance matrix R represents the noises on the mea-

sure due to imperfections of the current and/or voltage sensors.

If large values of matrix R are used, the transient response in-

creases but the load torque is well estimated in steady state (see

Fig. 4. Estimated load torque with R = 0.001.

Fig. 5. Estimated load torque with Q(5, 5) = 0.001.

Fig. 6. Estimated load torque with Q(5, 5) = 10−9 .

Fig. 3). As shown in (10), the matrices K and R are inversely

proportional. So the values of K become weak in order to give

more accuracy to the estimation of the load torque. Otherwise,

overshoot in the transient response and noises in the steady-state

response are obtained (see Fig. 4). In both cases, R acts on the

transient response and in the steady-state response because its

value is constant in the EKE algorithm.

The covariance matrix Q represents the noises on the system

due to the modeling errors. The simulation results in Figs. 5

and 6 show the influence of this matrix on the estimation of

the load torque. From (9) and (10), we notice that the matrix K

is proportional to matrix Q. Then, it has an opposite effect of

that of R. But matrix Q has no effect in the transient response

because the covariance matrix P computed by (9) is dominated

by the initial value of P0 .

The choice of every value of these matrices is done according

to the dynamics of the associated state variable. On the other

hand, we notice that if the noises on the measure are weak and

the model of the system is better known, the EKF algorithm be-

comes more precise. Good simulation results with the following

matrices
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P 0 =

⎡

⎢

⎢

⎢

⎣

10−4 0 0 0 0
0 10−4 0 0 0
0 0 100 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥

⎥

⎥

⎦

Q =

⎡

⎢

⎢

⎢

⎣

10−4 0 0 0 0
0 10−4 0 0 0
0 0 10−3 0 0
0 0 0 10−6 0
0 0 0 0 10−6

⎤

⎥

⎥

⎥

⎦

R =

[

1 0
0 1

]

.

For the implementation in real time, we used only two equations

(8) and (11) with a matrix gain K constant obtained by simula-

tion. As a result, the computing time is drastically reduced.

III. POSITION CONTROL

The stepper motor is generally used in position control where

good precision is required. In this paper, a simple feedback

control was used. The rotor position is not measured by a me-

chanical sensor but estimated by the steady-state EKF presented

in Section II.

A. Discrete Model in State Space

The discrete model in state space is needed to determine the

control laws of the feedback control. The mechanical equations

of the model (3) can be written as

[

ω̇

θ̇

]

=

⎡

⎣

−
Kv

J
0

1 0

⎤

⎦

[

ω

θ

]

+

⎡

⎣

Km

J

0

⎤

⎦ Iq +

⎡

⎣

−
1

J

0

⎤

⎦ TL .

(13)

We can write (13) in the following form

ẋm = Amxm + Bm Iq + EmTL (14)

with

xm =

[

ω

θ

]

,Am =

⎡

⎣

−
Kv

J
0

1 0

⎤

⎦ ,Bm =

⎡

⎣

Km

J

0

⎤

⎦ ,

and Em =

⎡

⎣

−
1

J

0

⎤

⎦ .

Applying the Laplace transform to (14), we obtain

Xm (p) = Φ(p)xm (0) + Φ(p)Bm Iq (p) + Φ(p)EmTL (p)
(15)

with Φ(p) = [pI − Am]−1 , p being the Laplace operator, and

I being the identity matrix.

Applying the inverse Laplace transform and the convolution

theorem, we find the temporal response of (15) as

xm (t) = Φ(t − t0)xm (t0) +

∫ t

t0

Φ(t − τ)Bm Iq (τ)dτ

+

∫ t

t0

Φ(t − τ)Em TL (τ)dτ. (16)

To have the discrete form, it is enough to replace t0 = kT and

t = kT + T. If we assume that the system inputs Iq and TL do

not change during the sampling period T, we obtain

xm (kT + T ) = Φ(T )xm (kT )

+

∫ kT +T

kT

Φ(kT + T − τ)Bm Iq (kT )dτ

+

∫ kT +T

kT

Φ(kT + T − τ)Em TL (kT )dτ.

(17)

After the development of (17), we find the state representation

of the system

{

xm (k + 1) = Amkxm (k) + Bmk Iq (k) + EmkTL (k)

ym (k) = θ(k) = [ 0 1 ]xm (k)
(18)

with

Amk =

[

a11k 0

a21k 1

]

;Bmk =

[

b1k

b2k

]

;Emk =

[

e1k

e2k

]

;

a11k = e−
K v
J T ; a21k =

J

Kv

(

1 − e−
K v
J T

)

;

b1k =
Km

Kv

(

1 − e−
K v
J T

)

; b2k =
Km

Kv

(

T −
J

Kv
(1 − e−

K v
J T )

)

;

e1k = −
1

Kv

(

1−e−
K v
J T

)

; e2k =−
1

Kv

(

T −
J

Kv

(

1−e−
K v
J T

)

)

.

B. Feedback Controller Synthesis

In the state feedback controller, the current reference I∗q is

computed according to the estimated state variables (θ̂ and ω̂).

A direct intervention of the reference position and another one to

compensate the load torque are added. The feedback controller

is represented by the following equation

I∗q (k) = −Kω ω̂(k) − Kθ θ̂(k) + Kθ∗θ∗(k) + KL T̂L (k).
(19)

The coefficients Kω and Kθ are computed by imposing poles in

closed-loop system using a canonical form method. The char-

acteristic equation in the open loop of the model (18) is given

by

det(zI − Amk ) = z2 + α1z + α0 (20)

with α0 = e−(K v /J )T and α1 = −(e−(K v /J )T + 1).
The canonical form of the open-loop system is

xr (k + 1) = Arxr (k) + BrI
∗
q (k) (21)

with Ar =

[

0 1
−α0 −α1

]

, Br =

[

1
0

]

, and xr is the state vec-

tor of the canonical form

I∗q (k) = [Krω Krθ ] xr (k) (22)

where Krω and Krθ are the coefficients of the canonical form.
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If we replace (22) in (21), we obtain the canonical form of

the closed loop

xr (k + 1) = Afxr (k) (23)

with Af =

[

0 1
−(α0 + Krω ) − (α1 + Krθ )

]

.

To obtain the value of Krω and Krθ , the system (23) is com-

pared with the reference model. The choice of the poles of this

reference model is done according to the desired performances

for the closed loop. Since we have a second-order system (3), we

choose a double real pole, which makes it possible to avoid the

overshoot. The characteristic equation of the reference model

with a double real pole is given by

P (z) = z2 + z1z + z0 (24)

with z1 = −2e−ω0 T , z0 = e−2ω0 T , and ω0 is the pulsation.

The canonical form of (24) is

Ad =

[

0 1
−z0 −z1

]

. (25)

The identification between the two matrices Af (23) and Ad

(25) makes it possible to find the state tuning coefficients of the

canonical form
{

Krω = z0 − α0

Krθ = z1 − α1 .
(26)

The coefficients Kω and Kθ are then determined by

[

Kω

Kθ

]

=

[

Kωr

Kθr

][

[0 1].Q−1
c

[0 1].Q−1
c .Amk

]

(27)

where Qc is the controllability matrix.

The coefficients Kθ∗ and KL can be computed by imposing

a null steady-state error and assuming a good estimation of the

state variables

θ∗ = θ̂ and TL = T̂L . (28)

In steady state, the discrete model (18) becomes

[

ω̂

θ̂

]

=

[

a11k 0

a21k 1

] [

ω̂

θ̂

]

+

[

b1k

b2k

]

I∗q +

[

e1k

e2k

]

TL (29)

ym = θ̂ = [ 0 1 ]

[

ω̂

θ̂

]

. (30)

And the current reference I∗q (19) becomes

I∗q = −Kω ω̂ − Kθ θ̂ + Kθ∗θ∗ + KL T̂L . (31)

If we replace (30) and (31) in (29), we find the following

equation

θ̂ = Kc

(

Kθ∗

[

b1k

b2k

]

θ∗ + KL

[

b1k

b2k

]

T̂L +

[

b1k

b2k

]

TL

)

(32)

with Kc = [ 0 1 ]

[

1 − a11k + b1kKω b1kKθ

−a21k + b2kKω b2kKθ

]−1

.

Fig. 7. Bench of test: (1) dSPACE DS1103 interface, (2) power electronics
card, (3) HSM, and (4) dc Motor.

Fig. 8. Electromotive forces of the stepper motor under study.

By identification of the two sides of (32) and according to

(28), we obtain the coefficients of anticipation

Kθ∗ = Kθ and KL =
1

Km
. (33)

The experiment results (see Section V) are obtained with the

following values: ω0 = 200 rad/s, Kω = 0.405, Kθ = Kθ ∗ =
40.746 and KL = 6.536.

IV. SYSTEM DESCRIPTION

Fig. 7 shows the experimental bench designed to test the con-

trol developed in this paper. The various algorithms were im-

plemented using the dSPACE DS1103 controller board based

on the Motorola PowerPC 604e processor running at 933 MHz.

This card also contains a DSP TM320F240 from Texas In-

struments used as a slave DSP. For programming, we used

MATLAB/Simulink software with the real time interface. The

ControlDesk is an experimentation tool used to control, tune,

and monitor the running process. We have designed a dedicated

power electronic interface card. This is necessary to amplify and

adapt the signal controls issued from DS1103 to the MOSFET

inputs, which constitute a double H-bridge. The phase currents

are measured by shunt resistances. The terminal voltages of

these resistances are amplified and filtered before being applied
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Fig. 9. Block diagram of the sensorless position control of the HSM.

to the analog-to-digital converter (ADC) inputs of the DS1103

card. In order to acquire the phase voltage, voltage dividers fol-

lowed by low-pass filter were used. The choice of the pulsewidth

modulation (PWM) technique is very important in order to re-

duce the current ripples and switching losses [26], [27]. The

sinus PWM technique with a switching frequency of 10 kHz

was used. In order to minimize the noises due to commutation,

the ADC inputs are synchronized with the PWM signal. The

ADC inputs read at the low state of PWM where the current

derivative is smaller than during high state. The HSM is char-

acterized by a 10 W power, a supply voltage of 24–60 V and a

rated current of 3 A. Let us note that this is not the first time

that the sensorless control techniques are applied on a motor

with weak values of parameters and power. Some preceding

works [3], [15], [16], [20] deal with a motor of similar values.

A dc motor is coupled by a direct shaft to the HSM in order

to create a load torque variation. This motor is supplied by an

amplifier configured to work in a current loop control. A poten-

tiometer is used to vary the reference current of that amplifier

and then the dc motor acts as brake since the electromagnetic

torque created is opposed to the torque of the HSM. In practice,

the enable input of the amplifier was linked to the DS1103 card

in order to control the application of step variation of the load

torque by software. An incremental encoder is used only for

comparison with steady-state EKF estimation. We carried out

practical tests in order to confirm that the electromotive forces

are sinusoidal (see Fig. 8). The block diagram of the sensorless

position control is represented in Fig. 9. The steady-state EKF

cannot detect the initial rotor position. To do that, a method

based on the voltage impulses was used. Four successive im-

pulse voltages were applied by using the PWM outputs of the

DS1103 card. A positive impulse followed by a negative one for

each phase. The initial rotor position is determined as explained

in [5] by exploiting the peaks current.

V. EXPERIMENTAL RESULTS

The first test checked the motor speed and position estima-

tion by the Kalman filter. To do that, a PID position controller

associated with our steady-state EKF algorithm was used. The

result shown in Fig. 10(a) is obtained with a reference position

of 15 rad. The initial rotor position is estimated by the impulse

voltage method that we have developed and tested in [5]. When

the desired position is reached (t = 0.43 s), the steady-state EKF

cannot estimate because its inputs (current and voltage) are very

weak. To solve this problem, a current of 1.5 A was injected in

Fig. 10. Rotation of 15 rad with a PID controller. (a) Position response time.

(b) Position time error (θ − θ̂). (c) Estimated and measured speed. (d) Speed
time error (ω − ω̂).

the d-axis when the estimated position approaches its reference.

In this case, the rotor can hold the position if a load torque is

applied. Fig. 10(b) represents the estimated error position. We

can see that in steady state this error is null. This confirms the

performance of the method used for the synthesis of the steady-

state EKF. Fig. 10(c) shows the speed response during the same

movement. We can see that the estimated speed is very close to
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Fig. 11. Feedback control associated with the steady-state EKF. (a) Position

response time. (b) Position error (θ∗ − θ̂). (c) Speed response time.

the measured one [see Fig. 10(d)]. The actual speed is affected

by the pulses of the incremental encoder.

Next, the feedback controller associated with our steady-state

EKF algorithm was used. A movement with a trapezoidal refer-

ence as shown in Fig. 11(a) was carried out. The error position

between the reference and the estimated one is presented in

Fig. 11(b). It is null in steady state and closed to a little con-

stant value during the movement. The measured speed response

and the estimated one are shown in Fig. 11(c). Compared with

Fig. 10(c), the measured speed curve is filtered, here, in order

to avoid the noises due to encoder impulses.

Fig. 12(a) shows an example of rotation of 10 rad with a

load torque applied at startup and removed at t = 0.5 s. The

load torque variations are created by giving a current reference

value to the motor dc supply and enabling it via dSPACE soft-

ware. The reference value chosen gives a load torque step of

0.1 (N·m) with very little response time as shown in Fig. 12(b).

A load torque value estimated corresponds to 20% of the nom-

Fig. 12. Example of movement with an injected load torque. (a) Position

response time. (b) Estimated load torque. (c) Position error (θ∗ − θ̂).

inal torque. Notice that there is no mean to measure the load

in the experimental benchmark. Since the feedback controller

proposed here is designed with a compensation of the estimated

load torque, we can see in Fig. 12(c) that the error position is

null in steady state. So the position feedback control can be well

achieved without a position sensor.

VI. ROBUSTNESS AGAINST PARAMETERS VARIATION

Simulation tests were carried out with parameter uncertain-

ties. The parameters are the stator resistance R, the inductance

L, the motor torque constant Km , system inertia J, and the co-

efficient of viscous friction Kv . The stator resistance R is the

most significant parameter in the study of the robustness of the

Kalman filter when applied to electrical drive. Its value can vary

by ±10% at the ambient temperature but under several condi-

tions it can undergo a great variation. The following variations

7



Fig. 13. Position errors (θ∗ − θ̂) with −50%R ≤ ΔR ≤ +50%R.

Fig. 14. Position errors (θ∗ − θ̂) with −10%L ≤ ΔL ≤ +10%L.

Fig. 15. Position errors (θ∗ − θ̂) with −10%Km ≤ ΔKm ≤+10%Km .

are tested: ±50%, ±30%, and ±10%. Fig. 13 represents all the

estimated position errors for the various variation of the resis-

tance R. With the ambient temperature (±10% R), the position

error is ± 2 × 10−3rad. In general, the inductance L does not

change. Its variation is limited to ±10%. Fig. 14 shows that the

EKF is sensitive to the variation of this parameter. For example,

a weak variation of 5% on inductance leads to a position error

of −0.02 rad. The motor torque constant Km is known by the

design process. As in the case of the inductance, a variation of

±10% was chosen. Fig. 15 shows that the variation of Km influ-

ences in the same sense as the inductance L. Next, a variation of

±10% of the system inertia J is considered. In Fig. 16, we can

see that the error due to the variation of this parameter is prac-

tically null. A variation of ±10% of the coefficient of viscous

friction Kv was chosen. Fig. 17 shows that EKF is not sensitive

to the variation of this parameter.

Simulation tests to verify the robustness of the proposed feed-

back controller against parameters variation were also carried

out. The obtained results show that the variations of resistance

R and inductance L have no effect on the feedback controller.

This can be explained by the fact that these parameters do not

appear in the controller design model (13). The variations of the

motor torque constant Km and the system inertia J have an in-

fluence only on the system time response. If Km is increased (or

Fig. 16. Position errors (θ∗ − θ̂) with −10%J ≤ ΔJ ≤ +10%J.

Fig. 17. Position errors (θ∗ − θ̂) with −10%Kv ≤ ΔKv ≤+10%Kv .

Fig. 18. Step response with −10%Kv ≤ ΔKv ≤+10%Kv .

Fig. 19. Position errors (θ∗ − θ̂) with−50%R≤ΔR≤+50%R and resistance
estimation.

J decreased), the system response becomes faster; otherwise, it

becomes a little slow. Fig. 18 shows that a variation of ±10% of

the coefficient of viscous friction Kv has no effect on feedback

controller.

In regard to the all obtained simulation results shown in this

section, it can be concluded that only the resistance of the motor

can undergo a great variation. So, extension of the estimate of

this parameter by the steady-state EKF is proposed. This can be

done, as for the load torque, by including it as state variable.

Considering its variation slow in regard to the sampling period,
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the equation: Rk +1 = Rk is added to the system model. The result

obtained, shown in Fig. 19, is very significant since the position

error becomes less than 0.5 × 10−4rad when the resistance vary

between ±50% of its nominal value.

VII. CONCLUSION

In this paper, experimental results for sensorless position con-

trol of the HSM were presented. Rotor position, speed, and load

torque were not measured by mechanical sensors but estimated

by a steady-state EKF. Since these variables cannot be estimated

at standstill, a complementary method based on the currents in-

jection was used. The steady-state EKF is associated with a sim-

ple position feedback controller that can cancel the static error

and compensate the load torque variation. In addition, the com-

puting time of the entire system does not exceed 90 μs, which

enabled a sampling period of 100 μs to be chosen. Experimental

results were obtained after a good design of a dedicated elec-

tronic card was made. The good dimensioning of the current and

voltage filters makes it possible to have good entries and, then,

good estimates. The extension of the filter to the parameters of

the system, like stator resistance R, improves the robustness of

the proposed sensorless control. Since the computing time is re-

duced, implementation of the estimation of the stator resistance

in real time is possible. The test bench is based on the powerful

card DS1103 from dSPACE but the final objective of this paper

is implementation on a DSP or FPGA.
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