Composantes isotypiques de pro-p-extensions de corps de nombres et p-rationalité - Archive ouverte HAL
Article Dans Une Revue Publicationes Mathematicae Debrecen Année : 2019

Composantes isotypiques de pro-p-extensions de corps de nombres et p-rationalité

Résumé

Let p be a prime number, and let K/k be a finite Galois extension of number fields with Galois group ∆ of order coprime to p. Let S be a finite set of non archimedean places of k including the set S_p of p-adic places, and let K_S be the maximal pro-p extension of K unramified outside S. Let G := G_S/H be a quotient of G_S :=Gal(K_S/K) on which ∆ acts trivially. Put X := H/[H, H]. In this paper, we study the ϕ-component X^ϕ of X for all Q_p-irreductible characters ϕ of ∆, and, in particular, by assuming Leopoldt conjecture we show that for all non-trivial characters ϕ, the Zp[[G]]-module X^ϕ is free if and only if the ϕ-component of the Z_p-torsion of G_S/[G_S, G_S] is trivial. We also make a numerical study of the freeness of X^ϕ in cyclic extensions K/Q of degree 3 and 4 (by using families of polynomials given by Balady, Lecacheux and more recently by Balady and Washington), but also in degree 6 dihedral extension over Q: the results we get support a recent conjecture of Gras.
Soit p un nombre premier et soit K/k une extension galoisienne finie de corps de nombres de groupe de Galois ∆ d’ordre étranger à p. Soit S un ensemble fini de places finies de k contenant l’ensemble S p des places p-adiques et soit KS la pro-p-extension maximale de K non-ramifiée en dehors de S. Soi tG:“GS{Hun quotient de GS:“Gal KS/K) sur lequel ∆ agit trivialement. Posons X:“H{rH, Hs. Dans ce travail,nous étudions la φ-composante X φ de X pour les caractères Qp-irréductibles φ de ∆ et nous montrons entre autres, sous la conjecture de Leopoldt et pour tout caractère non trivial φ, que X φ est ZpvGw-libre si et seulement si la φ-composante de la Zp-torsion de Gs /{Gs, Gs est triviale. Nous faisons également une étude numérique sur la liberté de Xφ dans des extensions cycliques K{Qde degré 3 et de degré 4 (`a partir de familles de polynômes données par Balady, Lecacheux et plus récemment par Balady et Washington),et ainsi que dans des extensions diédrales de degré 6 de Q. Les résultats de nos calculs renforcent une récente conjecture de Gras
Fichier principal
Vignette du fichier
6de9619c-71a3-4123-9e9e-15a1ee3f8f66-author.pdf (441.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02300040 , version 1 (29-09-2019)

Identifiants

  • HAL Id : hal-02300040 , version 1

Citer

Christian Maire, Marine Rougnant. Composantes isotypiques de pro-p-extensions de corps de nombres et p-rationalité. Publicationes Mathematicae Debrecen, 2019, 94 (1/2), pp.123-155. ⟨hal-02300040⟩
31 Consultations
65 Téléchargements

Partager

More