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Random vibro-acoustic control of internal noise through optimized Tuned Mass Dampers

The work deals with the passive control of interior sound pressure induced by randomly vibrating structure coupled to an enclosure filled with air. The control in the low frequency range is achieved using a Tuned Mass Damper (TMD) device. In order to guarantee an optimal performance of the TMD device, a stochastic acoustic optimization strategy is proposed. The effectiveness of the proposed strategy is investigated and compared with others from the open literature.

The capability of the proposed optimization strategy to deal with multimodal control of interior sound has also been addressed. To this end, multiple TMDs have been used. The optimal TMD parameters have been obtained using a multi-objective optimization approach and the results that have been gathered show significant attenuations in all target resonant modes.

a) Generally speaking, when dealing with non deterministic vibrating systems, a non deterministic (stochastic, for instance) analysis should be made to evaluate some quantities of interest. In Ref [START_REF] Leissa | Vibration of Plates[END_REF], chapter 10, the authors wrote "Real engineering systems include some levels of uncertainty that cannot be captured by the available deterministic analysis methods".

In our case, the excitation is stochastic (non deterministic excitation), therefore the system responses will be characterised in statistical way, the root mean square response, for instance. Besides, the proposed optimization strategy (based on a stochastic analysis) has been compared to other optimization strategies based on deterministic analysis (Den Hartog, APE) and the results were different. b) In the presented work, the focus has basically been on the ability of the TMD devices to efficiently control the coupled modes that are either dominated by structure mode or by cavity mode. Since the present manuscript is relatively huge, it can be extended to Thank you for your careful work. The proposed optimization strategy is appropriate when dealing with the sound control at a particular location inside an enclosure. The proposed optimization strategy can be categorized in the first group of optimization approaches as it has been defined in Refs [START_REF] Sólnes | Stochastic Processes and Random Vibrations: Theory and Practice[END_REF][START_REF] Marburg | Structural-Acoustic Optimization[END_REF][START_REF] Yuksel | Vibro-Acoustic Design Optimization Study to Improve the Sound Pressure Level Inside the Passenger Cabin[END_REF]. Indeed, the first one being the sound pressure level at one or more specified points basically utilized for closed domains. The second group, utilized in open domains, considers the emitted sound power as objective function. The third group considers the transmission loss while the fourth one considers all the other objective functions.

Optimizing the TMD parameters using an objective function based on space averaged quadratic velocity (plate) and pressure (cavity) or on the PSD averaged (over multiple points) yields to different results. Indeed, because of the large variability of the PSD responses at different locations (please see Figures R1-R3 below), the results of the optimization will not guarantee optimal control at the desired location inside the enclosure.

Nevertheless, numerical investigations have been made and good performance of the TMD devices have been observed at locations other than the one that has been used for the optimization. The obtained results show that the five TMDs perform well at location [0.25, 0.15, -0.15] but does not at location [0.1, 0.25, -0.25], especially in the vicinity of the frequency 312 Hz.

To improve the performance of the TMDs at location [0.1, 0.25, -0.25], an optimization, at this location, should be performed.

The discussions made above (performance at different locations) were not included in the manuscript to avoid the cumbersome (the manuscript is already relatively huge!).

Once again, thank you very much for your comment and suggestion. Yes you have completely reason, thank you for your valuable advice. The indicator G 1 is modified in the revised version (please, see on page 16). In addition, the indices are explicitly used in the discussion (please, see on pages: 19, 20, 23, 24, 29, and 32). b) Yes, it's possible to define the indicator G 1 in a way that values closer to 100% indicate high performance. In this case G 1 can be written as follows: Nevertheless, such performance index will be less visible on figures (Fig. 4, Fig. 5,…) where it's likely more suitable to represent the gain/loss in terms of magnitudes expressed in dB (as it's shown in these figures).

c)

The aim of the sub-section 4.3 is to analyze (by means of the indices G 1 and G 2 ) the performance of the TMD device if one of the two strategies (narrowband & broadband controls) is used. The outcome of the analysis is to decide which of the two strategies is more suitable to control a given resonant coupled mode. For example, it has been found that a broadband control is more suitable to use when a well separated coupled mode, dominated by plate mode, is to be controlled.

Consequently we think that it's not judicious to consider a frequency band averaged because the designer has to make a particular choice (narrowband or broadband control). The evaluation of the global performance of the TMD device is made using the index G 2 .

4

I agree with the majority of the conclusions and physical interpretations of the results. I suggest however that an example be presented wherein the TMD are undamped (which corresponds to the classical use and application) Thank you for your advice. An example has been added in the revised version. Please, see on page 18 (sub-section 4.3.1) and on page 22 (sub-section 4.3.2).

The example (added in the revised version), shows the optimzation results corresponding to the target frequency 1 108. [START_REF] Parashar | Self Organizing Maps (SOM) for Design Selection in Robust Multi-Objective Design of Aerofoil[END_REF] Hz  

, when an undamped TMD is optimized; thsese results have been compared with those obtained in our work (damped TMD). The results show that, for both cases (undamped and damped), the optimal frequencies and locations corresponding to 2Hz f  are roughly the same which is predictable since an optimized damped TMD with * 0.01%

T  
is, in practical front, an undamped TMD.

In The performances of the optimized TMD (undamped and damped) are also shown in Figure R8. The inspection of Figure R8 shows that the PSDs responses are roughly the same when 40Hz f  and that they are, as expected, different when 2Hz f  . From these examples, one can conclude that the performances of an optimized undamped TMD are similar to those obtained using a damped TMD for which the damping ratio is very small.

5

Finally, on the practical front, one issue with using TMD is the added mass (and thus number and location of TMD for distributed excitations for instance) and robustness of the system. These are the same issues faced when using "metamaterials" based on use of resonant systems (masssprings) added to a panel for vibration and radiation control. Any comments ? Yes you have reason, thank you for your valuable comment. Indeed, the use of TMD devices (or metamaterials based one resonant systems) to control vibrations and/or acoustic radiations belongs to the category of passive control techniques. The use of such devices is sometimes limited by technological constraints such as the low amount of space available (for the mount) or the induced structural modifications that could violate weight limitations; such modifications are required for the added masses and/or for the mount of these devices.

Although the TMD devices present such weight and robustness limitations, their use remains particularly interesting for several advantages. Indeed, compared to other control techniques such as active techniques, the TMD are low cost, easy to design and reliable 

Other minor comments 1

Add a quick justification of the selected optimisation algorithm (NSGA-II).

Thank for your valuable advice. A justification is added. Please, see on pages: 13, 27, 30 and 34.

2

Any reasons for the selected excitation and receiver locations?

The locations of the excitation and the receiver are completely arbitrary. Numerical investigations have shown similar results when different locations have been considered. Thank for your valuable comment.

3

Explain how the frequencies of the coupled modes are obtained

The frequencies of the coupled modes are obtained by means of modal analysis. The coupled mass and stiffness matrices M and K, respectively, are firstly built after truncation Ns=21 and Na=102. To obtain the matrices M and K, we can use Eq. ( 14) and remove the terms (rows and columns) corresponding to the TMDs devices. Then the eigenfrequencies are obtained using the eigen values solver of Mtalab.

4

What is the effect of any of the TMD on the frequencies of the coupled modes.

Thank for your valuable comment. In the present work, the TMD devices specifically deal with the coupled modes rather than dealing with structural (plate) modes as it's usually done in the literature. Consequently, the obtained results (reduction in PSDs responses) are the effects of the TMDs on the coupled modes. Ref [START_REF] Masopust | Dynamic absorbers of vibrations. theory and technical applications[END_REF], p.422-424), the first mode of the panel increases.

In our case, the two first modes (of plate and cavity) are also coupled to the other modes via the matrix nm C and the coupling effects have lowered the first mode of the panel.

_____________________________________________________________________

Additional comments from the authors:

A complete revision of the manuscript has been done in an attempt to clarify some statements and improve the original manuscript. The authors are grateful to the Editor in Chief and Reviewers for their valuable comments and interest in improving their manuscript, and hope that the revisions will satisfy the requirements to ensure the publication of their paper in "MSSP journal".

Highlights

 Tuned Mass Dampers are used to control random interior sound;  A stochastic acoustic optimization strategy is proposed;  Multi-objective optimization is used along with multiple TMDs;  The optimization strategy is able to handle multimodal control of interior sound.

*Highlights (for review)

Introduction

Nowadays, industrial structures have become increasingly complex and their design is subject to an important number of requirements and constraints in view of improving their performance. In this context, the control of the interior sound has been considered by several research works and as a matter of fact, several techniques have been presented in the recent years. In the automotive sector [START_REF] Harrison | Vehicle Refinement, Controlling Noise and Vibration in Road Vehicles[END_REF], the comfort of the passengers is of the utmost importance and efforts have been made to reduce the interior noise induced by several sources like the engine and the tyres, among others. In the aerospace sector [START_REF] Howard | Vibro-acoustic noise control treatments for payload bays of launch vehicles: Discrete to fuzzy solutions[END_REF][START_REF] Howard | Investigation of Passive Control Devices for Potential Application to a Launch Vehicle Structure to Reduce the Interior Noise Levels During Launch[END_REF][START_REF] Estève | Reduction of sound transmission into a circular cylindrical shell using distributed vibration absorbers and Helmholtz resonators[END_REF][START_REF] Fuller | Control of aircraft interior noise using globally detuned vibration absorbers[END_REF][START_REF] Marty | Optimization of distributed vibration absorbers for sound transmission into a composite cylinder[END_REF][START_REF] Gardonio | Review of Active Techniques for Aerospace Vibro-Acoustic Control[END_REF], C. Howard [START_REF] Howard | Vibro-acoustic noise control treatments for payload bays of launch vehicles: Discrete to fuzzy solutions[END_REF] reported that the excessive interior sound in the payload bays of launch vehicles causes 60% of the first day satellite failure; consequently an interior sound control of such a structure is of vital interest to minimize the failure probability.

Overview of the existing techniques for internal noise control

Depending on the specificities of the studied structures, the interior sound control can be achieved by different kinds of strategies [START_REF] Fuller | Control of aircraft interior noise using globally detuned vibration absorbers[END_REF][START_REF] Gardonio | Review of Active Techniques for Aerospace Vibro-Acoustic Control[END_REF][START_REF] Wright | Vibration Absorbers: A Review of Applications in Interior Noise Control of Propeller Aircraft[END_REF][START_REF] Lau | Sound fields in a slightly damped rectangular enclosure under active control[END_REF][START_REF] Lin | Active control of structural acoustic pressure in a rectangular cavity using piezoelectric actuators[END_REF][START_REF] Rosi | Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode[END_REF]: the active structural acoustic control (ASAC), the active noise control (ANC) and the passive control. Unlike the ASAC and the ANC methods, where additional sources of energy are required to achieve the sound control, the passive control techniques don't involve any external source of energy [START_REF] Liu | Passive and active interior noise control of box structures using the structural intensity method[END_REF] and they only consist in the use of buffers, absorbers, dampers, tuned vibration absorbers (TVA) [START_REF] Wright | Vibration Absorbers: A Review of Applications in Interior Noise Control of Propeller Aircraft[END_REF][START_REF] Philip | Vibration control using an adaptive tuned vibration absorber with a variable curvature stiffness element[END_REF], and so on. For instance, the TVAs are very simple devices, composed by mass, damper and spring, that have been widely used in the field of structural vibration attenuations [START_REF] Gardonio | Integrated tuned vibration absorbers: A theoretical study[END_REF][START_REF] Gardonio | Plate with decentralised velocity feedback loops: Power absorption and kinetic energy considerations[END_REF]. Depending on the application, the TVAs can be used in two ways, resulting in different optimal criteria and design requirements [START_REF] Philip | Vibration control using an adaptive tuned vibration absorber with a variable curvature stiffness element[END_REF][START_REF] Bonello | Adaptive Tuned Vibration Absorbers: Design Principles, Concepts and Physical Implementation[END_REF]: (1) they can be tuned to suppress the vibration at a specific troublesome excitation frequency and in this case the TVA referred to as a tuned vibration neutralizer (TVN); (2), they can be tuned to dampen the modal contribution from a specific troublesome natural frequency of the controlled vibrating structure, and in this case the TVA referred to as a TMD.

For an optimal performance of the TVN, its natural frequency should be tuned to the excitation frequency and its damping should be as low as possible [START_REF] Zilletti | Optimisation of dynamic vibration absorbers to minimise kinetic energy and maximise internal power dissipation[END_REF]. The optimal performance of the TMD device is reached when an appropriate optimization is performed allowing obtaining an optimal natural frequency, slightly lower than that of a targeted mode of the vibrating structure, and an optimal damping ratio [START_REF] Zilletti | Optimisation of dynamic vibration absorbers to minimise kinetic energy and maximise internal power dissipation[END_REF].

The TMDs are particularly useful when the excitation has a broad frequency spectrum and they are used to dampen a particular resonance peak of the frequency response function relating the structural response to the excitation [START_REF] Bonello | Adaptive Tuned Vibration Absorbers: Design Principles, Concepts and Physical Implementation[END_REF]. The potential of the TMD devices, in structural vibration mitigation, are recognized and well established since the pioneer work of Den Hartog [START_REF] Hartog | Mechanical Vibrations[END_REF]. Since a few years, the performance of the TMD devices, in sound control, has been investigated [START_REF] Kuik | Tuned vibration absorbers for control of noise radiated by a panel[END_REF] and satisfactory results have been established particularly for the thin-walled enclosure cavity systems [START_REF] Howard | Vibro-acoustic noise control treatments for payload bays of launch vehicles: Discrete to fuzzy solutions[END_REF][START_REF] Howard | Optimisation of Design and Location of Acoustic and Vibration Absorbers Using a Distributed Computing Network[END_REF][START_REF] Ho | Tuned Mass Damper for Rail Noise Control[END_REF][START_REF] Tiseo | A shape memory alloys based tuneable dynamic vibration absorber for vibration tonal control[END_REF][START_REF] Turco | On the use of tuneable mass dampers for broadband noise control in a cylindrical enclosure[END_REF].

Although the capability of the TMD device has been shown, in the interior sound control, the use of such device is very often associated with the use of a Helmholtz resonator [START_REF] Estève | Reduction of sound transmission into a circular cylindrical shell using distributed vibration absorbers and Helmholtz resonators[END_REF][START_REF] Howard | Optimisation of Design and Location of Acoustic and Vibration Absorbers Using a Distributed Computing Network[END_REF][START_REF] Estève | Adaptive Helmholtz resonators and passive vibration absorbers for cylinder interior noise control[END_REF][START_REF] Gorin | Size and acoustic optimization of Helmholtz resonators[END_REF][START_REF] Fahy | A note on the interaction between a Helmholtz resonator and an acoustic mode of an enclosure[END_REF], which constitutes the acoustic equivalent TMD device. Indeed, when dealing with flexible vibrating structures weakly coupled to an enclosure cavity, the obtained resonant coupled modes are either controlled (or dominated) by structure modes or by cavity modes [START_REF] Fahy | 8 -Introduction to Numerically Based Analyses of Fluid-Structure Interaction, Sound and Structural Vibration[END_REF][START_REF] Ben Smida | Investigations for a model reduction technique of fluid-structure coupled systems[END_REF]. When the acoustic coupled resonant modes are controlled by the structure, TMDs attached to the flexible structure are tuned to these modes. On the contrary, if the acoustic resonant modes are controlled by the cavity, Helmholtz resonators, placed into the cavity, are used to achieve the interior sound control. Recently, authors in Ref. [START_REF] Howard | Vibro-acoustic noise control treatments for payload bays of launch vehicles: Discrete to fuzzy solutions[END_REF] used a single device constituted by a combination of the two devices (called a passive vibro-acoustic device); the combined devices are installed on the walls of the fairing of the payload bay of a space launch vehicle and the reduction of the internal sound is achieved.

Eventhough the TMD devices present suitable solutions to structural vibration reductions, their uses in a context of interior sound control remains relatively weak due to the engineers' perception that such devices could be used only for structural vibration mitigations. Indeed, Wright and Kidner in [START_REF] Wright | Vibration Absorbers: A Review of Applications in Interior Noise Control of Propeller Aircraft[END_REF] wrote : "Surprisingly few installations of vibration absorbers for interior noise control have been realized, and we believe this is due to the pervasive belief in industry that vibration absorbers can only be applied to control resonant, not forced behavior in a structure".

The review of the literature shows that the "pervasive belief in industry", as has been reported in Ref. [START_REF] Wright | Vibration Absorbers: A Review of Applications in Interior Noise Control of Propeller Aircraft[END_REF], is actually not very surprising because of the lack of specific design criteria dedicated to the TMD's parameters optimization in a context of interior sound control. In this framework, one of the contributions of this paper is to propose a specific optimization criterion dealing with the TMDs parameters optimization in a context of interior sound control.

Optimization strategies of the TMD parameters for internal sound attenuation

Since the work of Den Hartog [START_REF] Hartog | Mechanical Vibrations[END_REF], the TMD has mainly been used for the passive control of structural vibrations. The performance of these devices deeply depends on their parameters that should be carefully assigned by performing judicious optimizations. Depending on the nature of the external excitation and the structural response parameters [START_REF] Warburton | Optimum absorber parameters for various combinations of response and excitation parameters[END_REF][START_REF] Warburton | Optimum absorber parameters for simple systems[END_REF][START_REF] D׳amico | Optimal dynamic vibration absorber design for minimizing the band-averaged input power using the residue theorem[END_REF], several optimization strategies can be found in the literature, and one can distinguish the strategies that are deterministic (where the excitation is deterministic) and those that are stochastic (i.e. random external excitation).

A classical tuning of TMD parameters is the one proposed by Den Hartog [START_REF] Hartog | Mechanical Vibrations[END_REF] and is obtained by performing deterministic optimization strategy. The optimal TMD parameters proposed by Den 
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; where  is the targeted frequency and eff  is the effective mass ratio as defined by Warburton in [START_REF] Warburton | Optimum absorber parameters for various combinations of response and excitation parameters[END_REF][START_REF] Warburton | Optimum absorber parameters for simple systems[END_REF].

Unlike Den Hartog, who considered harmonic excitation, Warburton [START_REF] Warburton | Optimum absorber parameters for various combinations of response and excitation parameters[END_REF][START_REF] Warburton | Optimum absorber parameters for simple systems[END_REF] considered random excitation applied to a vibrating structure and deduced the optimal TMD parameters given by

) 1 ( ) 2 / 1 * eff eff T         and ) 2 / 1 )( 1 ( 4 ) 4 / 3 1 ( * eff eff eff eff T         
. Similarly to Warburton, Korenev and Reznikov [START_REF] Estève | Reduction of sound transmission into a circular cylindrical shell using distributed vibration absorbers and Helmholtz resonators[END_REF][START_REF] Marty | Optimization of distributed vibration absorbers for sound transmission into a composite cylinder[END_REF][START_REF] Masopust | Dynamic absorbers of vibrations. theory and technical applications[END_REF] have considered a vibrating structure submitted to a wide band random excitation and developed an easy-to-use formula providing the optimal TMD parameters given as
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Although the aforementioned optimal tuning parameters are suitable in structural vibration mitigations, their use in a context of interior sound control [START_REF] Estève | Reduction of sound transmission into a circular cylindrical shell using distributed vibration absorbers and Helmholtz resonators[END_REF] could be inappropriate. Indeed, when dealing with interior sound control, the fluid-structure coupling effects should be taken into account. Besides, such optimal TMD parameters, based on structural responses, are basically valid for the mitigation of the resonant coupled modes that are controlled by the vibrating structure; the use of a TMD device with resonant modes that are controlled by the cavity may not be possible because it's possible that there is no corresponding structural resonant mode.

In contrast with the aforementioned optimization strategies, where only structural responses have been considered to deduce optimal TMD parameters, Fuller et al. [START_REF] Fuller | Control of aircraft interior noise using globally detuned vibration absorbers[END_REF] and Howard et al. [START_REF] Howard | Optimisation of Design and Location of Acoustic and Vibration Absorbers Using a Distributed Computing Network[END_REF] used cost functions related to the interior Acoustic Potential Energy (APE) to deduce optimal TMD parameters. Eventhough the APE based strategies used in [START_REF] Howard | Vibro-acoustic noise control treatments for payload bays of launch vehicles: Discrete to fuzzy solutions[END_REF][START_REF] Fuller | Control of aircraft interior noise using globally detuned vibration absorbers[END_REF][START_REF] Howard | Optimisation of Design and Location of Acoustic and Vibration Absorbers Using a Distributed Computing Network[END_REF] constitute acoustic criteria based optimizations, they can be categorized as deterministic optimization strategies since they consider a harmonic loading applied to the vibro-acoustic system; consequently, such criteria could be inappropriate when dealing with random mechanical loading applied to a vibro-acoustic system.

Main contributions and organization of the present work

In the work presented here, a flexible thin structure weakly coupled to an enclosure cavity is considered and the interior sound pressure is controlled, in the low frequency range, using TMDs. The considered flexible structure is submitted to stochastic mechanical excitation and a stochastic acoustic optimization criterion is proposed to obtain the optimal parameters of the TMDs devices.

In the proposed optimization strategy, the objective function is the root mean square acoustic pressure at a given location inside the cavity. The evaluation of the objective function is performed using spectral analysis by assuming linear behavior of the vibro-acoustic system; thus the modal interaction approach [START_REF] Fahy | 7 -Acoustic Coupling between Structures and Enclosed Volumes of Fluid, Sound and Structural Vibration[END_REF] can be used and the optimization is carried out.

The effectiveness of the proposed strategy is demonstrated when dealing with the control of single coupled modes by performing single-objective optimizations. The obtained results show that a TMD device, alone, can always be used to control both kinds of coupled modes (i.e. those that are controlled by the structure and those controlled by the cavity); thus there is no need to use a Helmholtz resonator as it's usually proposed in the literature. Besides, comparisons with other optimization strategies have been carried out and the superiority of the proposed strategy is highlighted.

To show the capability of the proposed optimization strategy to deal with multimodal control of interior sound, multiple TMDs devices have been used to control the interior sound pressure. Rather than performing single-objective optimization, the optimal TMDs parameters are obtained using a multiobjective optimization [START_REF] D׳amico | Optimal dynamic vibration absorber design for minimizing the band-averaged input power using the residue theorem[END_REF][START_REF] Obayashi | Multi-objective optimization for aerodynamic designs by using ARMOGAs[END_REF][START_REF] Giagkiozis | Methods for multi-objective optimization: An analysis[END_REF][START_REF] Farmani | Multi-objective collaborative multidisciplinary design optimization using particle swarm techniques and fuzzy decision making[END_REF][START_REF] Droandi | Aerodynamic blade design with multi-objective optimization for a tiltrotor aircraft[END_REF][START_REF] Chiandussi | Comparison of multi-objective optimization methodologies for engineering applications[END_REF][START_REF] Deb | Multi-Objective Optimization Using Evolutionary Algorithms[END_REF][START_REF] Marano | A comparison between different robust optimum design approaches: Application to tuned mass dampers[END_REF] and the obtained results show significant attenuations of the interior sound pressure in the vicinity of the targeted coupled modes.

The present paper is organized as follows: in section 2, the governing equations describing the dynamic of the vibro-acoustic system are presented. In section 3, the proposed stochastic acoustic optimization strategy is formulated. In section 4, a numerical example is analyzed and the performance of the proposed strategy is investigated. Eventually, some relevant conclusions are drawn in section 5.

Governing equations

Consider the acoustic-structural system shown in Fig. 1. In this system, a simply supported plate is coupled to a cavity filled with air (light fluid). The acoustic cavity has five rigid walls and the flexible plate is submitted to a point force z F modelled as a stationary zero mean Gaussian white noise. In order to control the interior noise in the low frequencies range, multiple TMD's devices are attached to the vibrating plate (Fig. 1). The force location is defined by coordinates Assuming linear behavior of the entire system, the modal coupling approach can be used. In the following sub-sections, the governing equation of the plate-cavity sub-system is first derived and then the effects of the TMDs devices are incorporated.

Plate-cavity modal coupling

The governing equations describing the dynamic of the plate-cavity system have been established in several references in the literature and readers are referred to Ref. [START_REF] Fahy | 7 -Acoustic Coupling between Structures and Enclosed Volumes of Fluid, Sound and Structural Vibration[END_REF][START_REF] Howard | Fluid-Structure Interaction, Acoustic Analyses Using Matlab and Ansys[END_REF], for further details. Let ) ( s m r  be the in-vacuo th m mode shape of the plate, calculated at vector location s r , and denote m  its corresponding natural frequency. The plate displacement (deflection) at a given time t can be written in terms of a summation over the in-vacuo normal modes as follows: 

) ( ) ( ) , ( r r  , ( 1 
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where Ns is the number of elastic modes considered in the analysis, and ) (t w m is the modal participation factor of the th m mode shape of the plate.

For the simply supported plate considered in the present work, the natural frequencies can be obtained as follows [START_REF] Leissa | Vibration of Plates[END_REF]:
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where 1 m and 2 m are the modal indices along the axes x and y ; E , s  ,  and h are the Young's modulus of the plate, the plate material mass density, the Poisson's ratio and the plate thickness, respectively.

The mode shapes of the plate calculated at vector location T ) , ( y x s  r can be expressed as follows [START_REF] Gardonio | Integrated tuned vibration absorbers: A theoretical study[END_REF][START_REF] Howard | Fluid-Structure Interaction, Acoustic Analyses Using Matlab and Ansys[END_REF][START_REF] Leissa | Vibration of Plates[END_REF]:
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Similarly to the plate, at a certain vector location 
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where Na is number of acoustic modes considered in the analysis. The natural frequencies of the rectangular cavity, with rigid-walls boundaries, is calculated as follows:
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where 1 n , 2 n and 3 n are the modal indices along the axes x , y and z ; 0 c is the speed of sound in air.

The acoustic mode shape functions are given by:
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Assuming proportional damping; for a given mode m , the equation of motion of the plate coupled with the enclosure cavity can be written in modal coordinates as follows [START_REF] Fahy | 7 -Acoustic Coupling between Structures and Enclosed Volumes of Fluid, Sound and Structural Vibration[END_REF][START_REF] Howard | Fluid-Structure Interaction, Acoustic Analyses Using Matlab and Ansys[END_REF][START_REF] Hambric | Sound-Structure Interaction Fundamentals, Engineering Vibroacoustic Analysis[END_REF]:
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where m  is the damping ratio of the th m plate mode, S is the coupling surface,

y x l l S   , m  is the modal mass of the plate, m
F is the modal force applied to the structure for the th m mode shape and nm C is the dimensionless coefficient describing the coupling between the th m plate mode and th n cavity mode. For a simply supported plate, the modal mass is given by 4 /

y x s m l hl    [41] whereas the modal force is ) , ( F F m z m y x F F   , z
F is the magnitude of the force applied at ) , (

F F y x
, as shown in Fig. 1.

The coupling coefficient nm C for the simply supported plate is given by [START_REF] Howard | Fluid-Structure Interaction, Acoustic Analyses Using Matlab and Ansys[END_REF]:
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In the absence of modal acoustic source excitation and assuming proportional damping [START_REF] Fahy | 8 -Introduction to Numerically Based Analyses of Fluid-Structure Interaction, Sound and Structural Vibration[END_REF][START_REF] Sung | Structural-Acoustic Finite-Element Analysis for Interior Acoustics[END_REF] in the air cavity, the modal response

) ( n p
, obeys to the following coupled equation:

               Ns m nm m n n n n n n n C w S c p p p 1 2 0 0 2 2          , ( 9 
)
where n  is the damping ratio of the th n cavity mode, 0  is the density of air , and the modal volume n  is expressed as follows [START_REF] Howard | Fluid-Structure Interaction, Acoustic Analyses Using Matlab and Ansys[END_REF]:

3 2 1 n n n n V       , ( 10 
)
where

z y x l l l V    and 1  n  if 0 n  , and 2 / 1  n  if 0 n  .

Multiple TMDs-plate-cavity coupling

When a TMD is attached to the flexible plate at location  

j j c c y x , , } 2 1 { ,..,N , j 
, the equation of motion of the attached mass in physical coordinate is given by [START_REF] Yang | Dynamic vibration absorbers for vibration control within a frequency band[END_REF]: The reaction force of a TMD device applied to the plate is

    0      w φ w φ j j j j j j j j c T T c T T T T z k z c z m     , ( 11 
    w φ w φ j j j j j j c T T c T T j TMD z k z c f      
, which can be expressed in modal coordinates as follows:

      w φ w φ φ φ j j j j j j j j c T T c T T c j TMD c j TMD z k z c f F        T , T , (12) 
The total reaction forces of the multiple TMD's devices, applied to the plate, can be expressed in modal coordinates and in matrix form as follows:

      w Φ z K w Φ z C Φ φ c T T c T T c N j j TMD c TMD f F j          T 1 , T , (13) 
where

  T T T ... 1 N c c c φ φ Φ  ,            N T T T c c  1 C ,            N T T T k k  1 K and T ) .... ( 1 N T T T z z  z .
Rearranging Eqs. ( 7) and ( 9) in matrix form and letting

  T T T , , T z p w q 
be the vector of modal coordinates, where p is the ) 1 (  Na vector of the acoustic modal participation factor. The insertion of the expression of the modal force TMD F into Eq. ( 7), yields the coupled equation of the TMD-plate-cavity system that can be expressed as follows [START_REF] Gardonio | Integrated tuned vibration absorbers: A theoretical study[END_REF][START_REF] Howard | Optimisation of Design and Location of Acoustic and Vibration Absorbers Using a Distributed Computing Network[END_REF]:

z F T Φ Kq q D q M       , ( 14 
)
where q  and q  are the time derivatives of q ;

 

0 0 ψ φ Φ F  , F φ is the ) 1 ( Ns  vector of the plate mode shapes computed at force location   F F y x , and 0 ψ is a ) 1 ( Na  vector of zeros;              T n nm m c S m 0 0 0 Λ C 0 0 Λ M 2 0 0 1  ,               m m Λ ,               n n Λ ;            N T T T m m  1 m ;               T c T n T c c T c m C 0 Φ C 0 D 0 C Φ 0 Φ C Φ D D T T ,               m m m m   2 D ,               n n n n c    2 1 2 0 0 D ;                T c T n T c nm c T c m S K 0 Φ K 0 K 0 K Φ C Φ K Φ K K T T T ,               m m m 2  K ,               n n n c 2 2 0 0 1   K ,
and nm C is the coupling matrix containing the coupling elements nm C .

Spectral analysis

When dealing with stochastic loading applied to a vibro-acoustic system, the random analysis theory can be used [START_REF] Sung | Interior and Exterior Sound, Engineering Vibroacoustic Analysis[END_REF], where it's usual to characterize the responses by means of the power spectral density (PSD) functions [START_REF] Gardonio | Boundary Layer Noise -Part 2: Interior Noise Radiation and Control[END_REF] and/or by means of the covariance responses. In the present work, it's assumed that the multiple TMDs-plate-cavity system behaves linearly and the plate is excited by stationary zero mean Gaussian white noise. Consequently, the acoustic pressure response, in a given location a r inside the cavity, is also a zero mean Gaussian process that can be characterized by its PSD and/or its root mean square value.

Let

) ( ~ q , ) ( ~ w , ) ( ~ p and ) ( ~ T z
be the finite Fourier transform of q , w , p and T z , respectively. Similarly to Eqs.( 1) and ( 4), the Fournier transform of . The application of the Fourier transform for both sides of Eq. ( 14) yields the following expression:

  z F j T 1 2 Φ K D M q        , ( 16 
)
and the modal acoustic pressure

) ( ~ p is deduced as follows: z F ) ( ~T YΦ p   , ( 17 
)
where Using Eq. ( 17), the PSD matrix [START_REF] Gardonio | Review of Active Techniques for Aerospace Vibro-Acoustic Control[END_REF][START_REF] Li | Stochastic Processes and Random Fields, Stochastic Dynamics of Structures[END_REF] of the modal acoustic pressure ) ( ~ p can be obtained as follows:

Y is the ) ( N Na Ns Na    sub-matrix extracted from the matrix   1 2     K D M  
    * T * * T * ~2 1 lim ) ( ) ( 21 lim ) ( ΦY YΦ ΦY YΦ p p p p FF z z T T S F F E T E T S           , ( 18 
)
where (*) denotes the complex conjugate,  .

E is the expectation operator and

  * 21 lim z z T FF F F E T S    is
the constant PSD of the Gaussian white noise excitation applied to the plate.

By making use of the expressions in Eqs. ( 15), ( 17) and ( 18), the PSD ) , , ( ~ F a p p S r r of the acoustic pressure, at a given location a r inside the cavity and for a force location F r , is given by:

  ) ( ) ( ) ( ) ( ) ( ) ( ) , , ( ) , , ( 21 lim ) , , ( T * T * ~a F FF F a F a F a T F a p p S p p E T S r ψ Y r Φ r Φ Y r ψ r r r r r r          . ( 19 
) Denote ) ( ) ( ) ( ) , , ( T F a F a H r Φ Y r ψ r r   
, the PSD of the acoustic pressure is finally given as:

FF F a F a p p S H S 2 ~) , , ( ) , , ( r r r r    . ( 20 
)
It should be noted that the scalar quantity ) in the random analysis theory [START_REF] Sung | Interior and Exterior Sound, Engineering Vibroacoustic Analysis[END_REF]. Similarly to the pressure FRF, the plate displacement FRF at force location can be obtained from at a given location a r , which can be expressed as follows [START_REF] Vanmarcke | Spectral Parameters, Level Crossings, and Extremes, Random Fields[END_REF][START_REF] Sólnes | Stochastic Processes and Random Vibrations: Theory and Practice[END_REF]:

) ( ) ( ) ( ) , , ( T F a F a H r Φ Y r ψ r
) ( ) ( ) ( ) , , ( T d F a F a H r Φ Y r ψ r r    , where ) ( ˆ Y is the ) ( N Na Ns Ns    sub-matrix extracted from the matrix   1 2     K D M  
  u l d S F a p p F a p      ) , , ( ) , ( ~r r r r , ( 21 
)
where 

The proposed optimization strategies

Generally speaking, different approaches can be used to formulate an objective function in a structuralacoustic optimization for passive noise control. These approaches can be categorized into four groups [START_REF] Marburg | Structural-Acoustic Optimization[END_REF][START_REF] Marburg | Developments in structural-acoustic optimization for passive noise control[END_REF], the first one being the sound pressure level at one or more specified points basically utilized for closed domains [START_REF] Marburg | Developments in structural-acoustic optimization for passive noise control[END_REF][START_REF] Pal | Dynamic analysis of a coupled structural-acoustic problem: Simultaneous multimodal reduction of vehicle interior noise level by combined optimization[END_REF][START_REF] Yuksel | Vibro-Acoustic Design Optimization Study to Improve the Sound Pressure Level Inside the Passenger Cabin[END_REF][START_REF] Marburg | Efficient optimization of a noise transfer function by modification of a shell structure geometry -Part II: Application to a vehicle dashboard[END_REF]. The second group, utilized in open domains, considers the emitted sound power as objective function. The third group considers the transmission loss while the fourth one considers all the other objective functions.

As mentioned previously, under external random mechanical loading, the acoustic pressure inside the cavity, shown in Fig. 1, can be characterized by its PSD measured at a given location a r . In the low frequency range, the presence of resonant modes can be observed by the presence of PSD response peaks in the very close vicinity of the natural frequencies of the coupled vibro-acoustic system.

In Fig. 2 a schematic representation of an acoustic PSD response and two peaks, corresponding to two resonant frequencies ( 1 and 2  ), are depicted. In order to mitigate these resonant responses, multiple TMDs (in this case two TMDs) can be used. The basic idea is to use one TMD device for each one of the resonant modes and the TMDs parameters will be carefully chosen based on a stochastic acoustic optimization strategy. In the present work, the proposed stochastic acoustic optimization strategy attempts to minimize the RMSAP evaluated, in the vicinity of a target frequency (i.e. 1

 or 2  ), using Eq.( 21). Since the objective function is related to a particular microphone location a r , the proposed optimization strategy belongs to the first group of optimization approaches, as described in Refs. [START_REF] Marburg | Structural-Acoustic Optimization[END_REF][START_REF] Marburg | Developments in structural-acoustic optimization for passive noise control[END_REF]. Such optimization strategy can be used to control the sound pressure at the position of the ear of a vehicle passenger/ driver [START_REF] Pal | Dynamic analysis of a coupled structural-acoustic problem: Simultaneous multimodal reduction of vehicle interior noise level by combined optimization[END_REF][START_REF] Marburg | Efficient optimization of a noise transfer function by modification of a shell structure geometry -Part II: Application to a vehicle dashboard[END_REF], for instance.

Obviously, when dealing with multiple resonant peaks the use of multiple TMDs involves simultaneous minimization of the RMSAP evaluated in the vicinity of the targeted frequencies and in this case a multiobjective optimization [START_REF] Obayashi | Multi-objective optimization for aerodynamic designs by using ARMOGAs[END_REF][START_REF] Chiandussi | Comparison of multi-objective optimization methodologies for engineering applications[END_REF][START_REF] Deb | Multi-Objective Optimization Using Evolutionary Algorithms[END_REF][START_REF] Deb | Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence[END_REF] should be carried out. Figure 2 shows two schematic objective functions (the shaded area centered at the targeted frequencies) corresponding to resonant peaks. )

1  l 1  u 1  2  l 2  u 2  Peaks
Generally, there are three parameters by which a TMD device can be characterized [START_REF] Wright | Vibration Absorbers: A Review of Applications in Interior Noise Control of Propeller Aircraft[END_REF]. The first parameter is the mass ratio . Besides, since the performance of the TMD device strongly depends on its location j c r at the vibrating plate [57], the TMD location will also be optimized.

In the work conducted here, two optimization problems will be considered: the first one is the singleobjective problem where only one resonant peak is controlled using one TMD; and the second is the multi-objective problem involving multiple TMDs devices allowing a multimodal control of interior sound.

The single-objective optimization strategy

For the single-objective optimization, one TMD device is used to control a given resonant peak. For this problem the mass ratio will be taken constant (commonly assigned as 1 to 5%) and the optimization problem is formulated as follows:

Find T ) , , ( c T T r d    to minimize   u l d S F a p p F a p      ) , , , ( ) , , ( ~d r r d r r (22) 
Obviously, when a TMD is targeted to a particular resonant frequency, the optimal natural frequency of the TMD will be bounded in the vicinity of the frequency of interest and then the optimization problem will be constrained in frequencies. In addition, the design parameter c r is bounded by physical limitations (plate dimensions) therefore the above optimization problem will also be constrained in TMD locations.

For the optimization problem defined in Eq. ( 22), it's also clear that the bandwidth parameter [ , ] lu f   defined in Eq. ( 21) plays an important role in the evaluation of the objective function.

Depending on this bandwidth parameter, to be considered in the optimization loop, two kinds of control will be defined: (1) the first one is the narrowband control and, (2) the second one is the broadband control. A narrowband control is performed when the bandwidth parameter f  is small whereas when it's large, the control is considered to be broadband.

The proposed optimization problem can be categorized as a stochastic vibro-acoustic optimization problem, since the objective functions involve covariance term related to the acoustic pressure inside the cavity.

The multi-objective optimization strategy

Unlike the single-objective optimization case, the proposed optimization strategy for the multi-objective optimization strategy consists in finding the optimal design vector Each one of the considered objective functions will be separately evaluated in the vicinity of the targeted frequency of interest.

The proposed optimization problem can be categorized as a stochastic vibro-acoustic multi-objective optimization problem, since the objective functions involve covariance terms related to the acoustic pressures inside the cavity. The multi-objective optimization strategy can be formulated as follows :

minimize T 2 1 ) ,..., , ( ) , , ( pN p p F a p     d r r σ subject to adm N i i     1 (23)
where adm  is a given mass ratio defined in a pre-design phase. Similarly to the single-objective case, the above optimization problem will also be constrained in TMD locations ( j c r ) and in frequencies ranges, since each of the TMD devices will be tuned in the vicinity of the targeted frequencies.

Rather than obtaining a single optimal solution (i.e. for the single-objective optimization problem), a set of optimal solutions, called Pareto optimal solutions [START_REF] Obayashi | Multi-objective optimization for aerodynamic designs by using ARMOGAs[END_REF][START_REF] Giagkiozis | Methods for multi-objective optimization: An analysis[END_REF][START_REF] Farmani | Multi-objective collaborative multidisciplinary design optimization using particle swarm techniques and fuzzy decision making[END_REF], is obtained in the case of a multi-objective optimization problem. Several methods can be found in the literature to solve such a problem [START_REF] Chiandussi | Comparison of multi-objective optimization methodologies for engineering applications[END_REF] and in the work presented here, a controlled elitist Genetic Algorithm (GA), which is a variant of the Nondominated Sorting Genetic Algorithm II (NSGA-II) [START_REF] Droandi | Aerodynamic blade design with multi-objective optimization for a tiltrotor aircraft[END_REF][START_REF] Deb | Multi-Objective Optimization Using Evolutionary Algorithms[END_REF][START_REF] Deb | Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence[END_REF], has been used. The algorithm is already implemented in Matlab and it has the advantage to favor individuals that can help increase the diversity of the population even if they have a lower fitness value. It should be noted that it's important to maintain the diversity of population for convergence to an optimal Pareto front.

The Pareto optimal solutions obtained using the controlled elitist GA constitutes a trade-off between the objective functions. In addition, it's well known that the determination of a particular solution among the set of solutions is a difficult task, especially when dealing with a great number of objective functions (more than three dimensions). Several techniques can be found in the literature [START_REF] Obayashi | Multi-objective optimization for aerodynamic designs by using ARMOGAs[END_REF][START_REF] Farmani | Multi-objective collaborative multidisciplinary design optimization using particle swarm techniques and fuzzy decision making[END_REF][START_REF] Blasco | A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization[END_REF][START_REF] Parashar | Self Organizing Maps (SOM) for Design Selection in Robust Multi-Objective Design of Aerofoil[END_REF][START_REF] Parashar | Self Organizing Maps (SOM) for Design Selection in Multi-Objective Optimization using modeFRONTIER[END_REF] to help the decision-maker, and among them one can find the Self-Organizing Maps (SOM) introduced by Kohonen [START_REF] Kohonen | The Basic SOM, Self-Organizing Maps[END_REF][START_REF] Kohonen | The self-organizing map[END_REF]. The SOM is an unsupervised neural network algorithm providing clusters based on similarities between the optimal solutions; these clusters are represented in two-dimensional maps allowing easier visualization of the Pareto data. The reader is referred to [START_REF] Kohonen | The Basic SOM, Self-Organizing Maps[END_REF][START_REF] Kohonen | The self-organizing map[END_REF] for further details about the SOM algorithm and its applications. In the work conducted here, the SOM toolbox available in Ref. [START_REF] Esa Alhoniemi | SOM Toolbox[END_REF] has been used.

Numerical example

The aim of this section is to investigate the efficiency of the proposed optimization strategy in the sound attenuation of a plate-cavity system when it's submitted to mechanical stochastic loading. The investigations are firstly performed when a single-objective optimization, involving the use of one TMD, is considered to separately control the resonant coupled modes; and secondly a multimodal sound control, involving multiples TMDs and multi-objective optimization, is also carried out.

The evaluations of the objective functions depend on the bandwidth parameter f  defined in Eq. ( 21).

Thus, one of the aims of the investigations, related to the single-objective optimization, is to determine what kind of control should be used. In other words, what values of f  should be assigned in order to effectively attenuate the resonant modes. If the obtained f  is large, the control is broadband, otherwise, it is narrowband. The obtained values of f  , yielding good performance in the single-objective optimization, will then be used for the multimodal sound control using multiple TMDs.

The considered vibro-acoustic system is that shown in Fig. 1 and the parameter values are taken equal to those presented by Howard and Cazzolato in Ref. [START_REF] Howard | Fluid-Structure Interaction, Acoustic Analyses Using Matlab and Ansys[END_REF]; the dimensions and the properties of the studied system are given in Table 1. In addition, it's assumed that the observation location of the acoustic pressure (i.e. microphone location) in the cavity is located at the coordinates

T ) 875 . 0 , 1 . 0 , 35 . 0 (   a r .
For the introduced proportional damping in both plate and cavity, the damping ratio for a mode

i is set to 2 / 2 / i i i       [27]
, where  and  are two coefficients to be calculated by imposing a targeted value 0

 for the two frequencies bounds of the range of interest. For the plate, the targeted damping ratio 

Table 1: Numerical values of the parameters of the vibro-acoustic system

Since the control of the acoustic pressure will be performed in the low frequency range, the frequency interval of interest is set to 0-400 Hz. Therefore only the coupled frequencies bellow 400 Hz have been considered in the analysis. The numerical investigations have shown that 21 Ns  and 102 Na  allow obtaining accurate results when evaluating the objective functions (i.e. the root mean square pressure).

Modal analysis of the uncontrolled plate-cavity system

Before performing control of sound inside the rectangular cavity, it's important to analyze the plate-cavity system without the TMD devices. The analysis allows the determination of the resonant modes on which the TMDs will be tuned, on the one hand, and the determination of the modes involved in the coupling, for both plate and cavity, on the other.

Table 2 shows the natural frequencies of the in-vacuo plate and those of the rigid-walled cavity, compared with those of the coupled system. As described by Fahy and Gardonio in Ref. [START_REF] Fahy | 8 -Introduction to Numerically Based Analyses of Fluid-Structure Interaction, Sound and Structural Vibration[END_REF], we can see that the coupled frequencies are sometimes controlled (or dominated) by the plate modes and sometimes by the cavity modes. By taking into account the numerical values obtained for the coupling matrix nm C [START_REF] Jain | Structural Acoustics of a Rectangular Panel Backed by a Cavity: An Analytical Matrix Approach[END_REF], one can also obtain the involved modes (i.e. in-vacuo and rigid-walled) for the coupled modes as shown in the last column of Table 2.

The FRF for the forcing location

  T 05 . 0 , 05 . 0  F r
are plotted in Fig. 3. In Fig. 3 (a) the acoustic pressure FRF is presented and Fig. 3 (b) shows the displacement FRF of the plate, at the forcing location. In Fig. 3, the resonant coupled modes with their corresponding modes involved in the coupling are also indicated.

The results show that only five resonant modes, corresponding to the five peaks in Fig. 3 (a), have to be considered for the acoustic pressure control using TMDs, since the other modes don't induce resonant peaks in the sound pressure at the observed location inside the cavity.

Besides, as mentioned previously, one can distinguish between two kinds of resonant modes. 

TMD performance comparisons with other optimization strategies

For the coupled modes controlled by the plate, the performance of the TMD device, when it's tuned using the proposed strategy, will be compared with its performance if it were tuned using other strategies used in the literature. In the present work, three optimization strategies will be considered: the first two strategies are those proposed by Korenev and Reznikov [START_REF] Estève | Reduction of sound transmission into a circular cylindrical shell using distributed vibration absorbers and Helmholtz resonators[END_REF][START_REF] Marty | Optimization of distributed vibration absorbers for sound transmission into a composite cylinder[END_REF], and by Den Hartog [START_REF] Hartog | Mechanical Vibrations[END_REF]; the third strategy is based on the time average APE [START_REF] Howard | Vibro-acoustic noise control treatments for payload bays of launch vehicles: Discrete to fuzzy solutions[END_REF][START_REF] Estève | Reduction of sound transmission into a circular cylindrical shell using distributed vibration absorbers and Helmholtz resonators[END_REF][START_REF] Fuller | Control of aircraft interior noise using globally detuned vibration absorbers[END_REF][START_REF] Lau | Sound fields in a rectangular enclosure under active sound transmission control[END_REF]. It should be noted that the first two strategies involve structural vibrations optimization criteria (stochastic and deterministic optimizations, respectively), whereas the last one constitutes an acoustic criterion. For the coupled resonant modes controlled by cavity modes, the performance of the proposed strategy will be compared only with the strategy based on the APE, since no resonant structural frequency can be associated to these coupled modes (i.e. controlled by cavity modes).

Let  be a given frequency, the time average APE can be expressed as follows [2, 4, 5] ) 

( ) ( 4 
    d r p Λ d r p d r F n F F p c E  .
It should be noted that the acoustic cost function, involving the APE, is used when a harmonic analysis (deterministic analysis) is conducted; therefore the optimization problem is considered as a deterministic one.

In addition, in order to evaluate the performance of the TMD device, when it's tuned using the proposed strategy, the PSDs responses of the acoustic pressure will be presented for each one of the targeted frequencies. For these PSDs responses, it has been assumed that the vibro-acoustic system has been submitted to band limited white noise covering the frequency range [0-400] Hz. The choice of the PSDs representations instead of the FRFs representations [START_REF] Rade | Optimization of dynamic vibration absorbers over a frequency band[END_REF] or the APE representation is justified by the fact that the objective function is explicitly related to the acoustic PSD therefore the interpretations of the obtained results will be easier.

The performance of the TMD device is evaluated using two indices:

(1) the first index quantifies the TMD performance in the close vicinity of the target frequency When comparing the performance of the proposed optimization strategy with the aforementioned strategies, three criteria are considered:

 The attenuation in the close vicinity of the target frequency should be important;

 When using the TMD device, two new peaks appear in the close vicinity of the target frequency;

the magnitudes of these peaks should be as low as possible;

 The increases on the PSD responses, on the off-target frequencies, should be as low as possible. 

The single-objective optimization case

In the following sub-section, resonant coupled modes are separately controlled using one TMD and thus a single-objective optimization has to be performed. The optimizations have been carried out using the sequential quadratic programming [START_REF] Fuller | Control of aircraft interior noise using globally detuned vibration absorbers[END_REF] routine available with Matlab, and considering multiple starting points.

Control of the modes dominated by plate modes

Tables 3 and4 present the optimal TMD parameters when the target frequencies 1

 and 4  are separately controlled, respectively. These tables are obtained for different bandwidth parameter

  2   f
and for different mass ratios. The optimal TMD parameters are also compared with those obtained using the tuning proposed by Korenev and Reznikov, Den Hartog and that based on the APE. It should be noted that for the Korenev's and Den Hartog's tuning, the TMD locations are taken equal to those obtained for 40Hz  f , since both tuning cannot provide optimal placements of the TMD device.

The forcing location on the plate is arbitrarily chosen as

  T 05 . 0 , 05 . 0  F r .
The comparison of the optimal damping ratios presented in Table 4 with those presented in Table 3 shows that for the target frequency 1

 the TMD acts as a reactive device (undamped TMD) [START_REF] Yang | Dynamic vibration absorbers for vibration control within a frequency band[END_REF] when a narrowband control is implemented, whereas it acts as a dissipative one when the target frequency 4  is controlled. In contrast, when a broadband control is performed, the TMD acts as a dissipative device for both controlled frequencies. To show the fact that the TMD acts as an undamped device (reactive device) if G index are obtained which means undesirable global performance of the TMD. The comparison of the global performance of the TMD, optimized using a broadband control, with the others, shows that it is similar to those obtained using the Korenev's and the Den Hartog's tuning. The APE strategy yields the worst global performance.

TMD optimal parameters

) Pa ( [START_REF] Yang | Dynamic vibration absorbers for vibration control within a frequency band[END_REF][START_REF] Abé | Tuned mass dampers for structures with closely spaced natural frequencies[END_REF] therefore more than one mode will be excited by the applied primary force at the target frequency 4  .

* p  2 (%) G (%)  ) Hz ( f  (%) * T  ) Hz ( * T f ) m ( * c x ) m ( *
This fact strongly affects the optimal frequencies of the TMD, given in Table 4, which are strongly varying when the bandwidth parameter f  is varying.

The comparison of the obtained results with the other optimization strategies (Korenev, Den Hartog and APE) for different bandwidth shows that the Den Hartog's optimal damping is always the highest, whereas its corresponding optimal frequency is always the smallest, except for 4

 when  =3 and 4% .

Besides, it is observed that the optimal tuning proposed by Korenev and Reznikov is the closest to the optimal tuning proposed in the present work, especially for the optimal frequencies. This remark holds for both targeted frequencies. The optimal TMD locations * c x and * c y are also given in Tables 3 and4. The observation of Table 3 shows that optimal tuning is obtained when the TMD is placed roughly in the center of the plate which corresponds to the anti-node point of the plate mode (1,1); this result is predictable because the coupled mode is strongly dominated by the plate mode. In addition, the slight alteration, from exactly the position x=0.25 and y=0.15, of the obtained optimal locations is due to the coupling effects with the cavity mode (0,0,0) inducing distortion in the plate mode [START_REF] Fahy | 8 -Introduction to Numerically Based Analyses of Fluid-Structure Interaction, Sound and Structural Vibration[END_REF].

TMD optimal parameters

Pa) For the frequency 4  , the optimal TMD locations given in Table 4 are close to the primary force location, especially for broadband control, and they are relatively far away when a narrowband control is performed.

( * p  2 (%) G (%)  ) Hz ( f  (%) * T  ) Hz ( * T f ) m ( * TMD x ) m ( *
The comparison of the PSD responses shown in Fig. 5 and6 shows that a broadband control, for both targeted frequencies, yields more suitable and satisfactory performances of the TMD device. Indeed, for the target frequency 1  a reduction of G 1 =27.34 dB is achieved for a broadband control and G 1 =47.51 dB when broadband control is applied to the target frequency 4

 . The appearance of new undesirable peaks shown in Fig. 5, when a narrowband control is implemented, implies that such a control is not suitable and one had to use a broadband control (i.e. Hz 40  f

) to effectively attenuate the resonant mode corresponding to the frequency 1  .

In addition, although the reduction in the PSD responses for the target frequency 4

 is more significant when a narrowband control is performed, the performance of the TMD in the vicinity of the off-target frequencies is less suitable. Therefore a broadband control is more appropriate.

The results of the global performance index 2 G stated in Table 4 show that the RMSAP has increased when the TMD is used; these results are predictable considering the PSD responses in Fig. 6 where undesirable increases of the PSD responses are observed in the vicinity of the off-target frequencies. The obtained results hold for all optimization strategies; also here the APE strategy yields the worst performance. The Korenev's and Den Hartog's tuning provide global performance similar to that of the proposed strategy.

In Fig. 7 and8, the performance of the TMD device when it's tuned using the proposed strategy is compared, with its performance if it is tuned using the tuning proposed by Korenev and Reznikov, Den Hartog and the APE strategy; for these last strategies the mass ratio is set to For the target frequency 1  (Fig. 7), a reduction of G 1 =30.96 dB in the PSD response can be achieved when the proposed strategy is applied, whereas two undesirable peaks have shown up (in the vicinity of the target frequency) when the APE strategy is used.

Besides, although the APE strategy yields good performance (for the target frequency 4  ) with a reduction of G 1 =99.70 dB in the very close vicinity of the targeted frequency, the appearance of a new peak in the vicinity of the off-target frequency 312 Hz, diminishes the global performance of the APE strategy. Using the proposed optimization strategy a reduction of G 1 =56.1 dB can be achieved (as shown in Fig. 8) and no significant effects have been observed on the off-target frequencies. 

Control of the modes dominated by cavity modes

Tables 5-7 give the optimal TMD parameters when the modes corresponding to the frequencies 2  , 3  and 5  are controlled. These results are obtained for different values of the bandwidth parameter and for different values of the mass ratio. The obtained results are also compared with those established when the strategy based on APE is applied. The examination of the obtained optimal damping ratios (presented in Tables 567) shows that the TMD acts as a reactive device for both kinds of control (narrowband and broadband). Indeed, one can see that the optimal damping ratios are very small (less than 3%) and for some values of f  , they are equal to 0.01% which means that the device acts as an undamped TMD . This result is coherent with other results found in the literature [START_REF] Howard | Investigation of Passive Control Devices for Potential Application to a Launch Vehicle Structure to Reduce the Interior Noise Levels During Launch[END_REF] where the greatest acoustic pressure reduction occurs when the TMD device acts as a highly reactive device and the effect of the dissipation process [START_REF] Yang | Dynamic vibration absorbers for vibration control within a frequency band[END_REF] is reduced to zero. For these coupled modes dominated by cavity modes, the TMD device acts like as a neutralizer [START_REF] Philip | Vibration control using an adaptive tuned vibration absorber with a variable curvature stiffness element[END_REF][START_REF] Bonello | Adaptive Tuned Vibration Absorbers: Design Principles, Concepts and Physical Implementation[END_REF]. The optimal TMD locations given in Tables 5 (control of the target frequency 2  ) show that they are roughly in the vicinity of the anti-node of the plate mode [START_REF] Harrison | Vehicle Refinement, Controlling Noise and Vibration in Road Vehicles[END_REF][START_REF] Harrison | Vehicle Refinement, Controlling Noise and Vibration in Road Vehicles[END_REF]. The fact that the TMD locations are not exactly at the anti-node (for narrowband control) is due to the coupling effects with the cavity mode (0,0,1) and with the plate mode (2,1) which has an anti-node at coordinate (0.125, 0.15). The effect of the coupling with the plate mode (2,1) is gradually increasing as the mass ratio  increases. Indeed, the TMD location is moving towards the anti-node of the mode (2,1). For the broadband control, one can see that the TMD locations are around the anti-node of the plate mode (1,1).

The optimal TMD locations, when the frequency 3  is controlled, are given in Table 6 where it has been observed that for narrowband and broadband control, the optimal locations were in the vicinity of the antinode point of the plate mode [START_REF] Howard | Investigation of Passive Control Devices for Potential Application to a Launch Vehicle Structure to Reduce the Interior Noise Levels During Launch[END_REF][START_REF] Harrison | Vehicle Refinement, Controlling Noise and Vibration in Road Vehicles[END_REF]. The optimal TMD locations corresponding to the control of the frequency 5
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 are also presented in Table 7. The results show that they are in the vicinity of the forcing location and they are relatively far away when a broadband control is performed. G index stated in Table 5 show that good global performance of the TMD device is achieved when a narrowband control is performed ( 2 Hz f 
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). Indeed, for 4%

 

, the obtained reduction in the RMSAP is G 2 =-41.1% while it is -25.4% when the APE strategy is applied.

In Tables 6 and7 the obtained values of the 2 G index are also shown for different bandwidth and for different mass ratio. The results show that the best global performances of the TMD are achieved when the APE strategy is applied.

The pressure PSD responses of the vibro-acoustic system, for different bandwidth parameters, are shown in Fig. 9-11. The inspection of the obtained curves shows that when the frequencies 2  and 5  are controlled, satisfactory performance can be achieved when a narrowband control ( Hz 2  f

) is performed for which reductions of G 1 =17.64 dB and 172.91 dB are achieved, respectively. In contrast, when the frequency 3  is controlled, a broadband control ( Hz 40  f

) performs well and a reduction of G 1 =58.41 dB is obtained; for the narrowband control, undesirable effects occur in the vicinity of the off-target frequencies (as shown in Fig. 10) and an increase of 23.86 dB (G 1 =-23.86 dB) has been recorded in the peak's magnitude of the off-target frequency 344.45 Hz. These magnitude increases in the vicinity of the off-target frequencies are the main cause of the high values of the 2 G index stated in Table 6.

Besides, although a significant reduction of G 1 =33.82 dB is obtained when a broadband control is performed ( Hz 40  f

) for the target frequency 2  , the appearance of a high magnitude peak in the vicinity of the frequency 185Hz, is an undesirable result. The appearance of a new peak with relatively high magnitude can be explained by the very small optimal damping ratio stated in Table 5. ) is shown in Fig. 12-14, considering different values of the mass ratio. The results show that in the close vicinity of the target frequencies, the proposed strategy performs better than that based on APE. For instance, Fig. 12 shows that a reduction of G 1 =31.61 dB, in the pressure PSD, can be achieved with the proposed optimization strategy when the mass ratio is set to % 4   , whereas only 16.36 dB are achieved when the strategy based on APE is applied. Nevertheless, Looking at the effects on the off-target frequencies when 3  and 5

 are controlled, the tuning based on APE strategy yields better global performance. These undesirable effects on the off-target frequencies are the main cause of the obtained values of the 2 G index (stated in Tables 6 and7) where the better global performance of the TMD is achieved when the APE strategy is applied.

Even though the APE strategy yields good performance (compared to the one proposed) above the target frequencies corresponding to some modes dominated by cavity mode (Fig. 12 and13), the proposed optimization strategy, using a suitable bandwidth f  , remains superior to the APE strategy. Indeed, considering the criteria established in sub-section 4.2, we can see that significant attenuations along with relatively low magnitudes of the new peaks (in the PSD responses) can be obtained in the close vicinity of the target frequencies. The undesirable effects on the off-target frequencies (for example, in the vicinity of the frequency 380 Hz, in Fig. 13) observed when the proposed strategy is applied are, in our opinion, acceptable. , respectively.

Control of two coupled resonant modes

To illustrate the ability of the proposed optimization strategy to deal with multimodal control, the first two resonant modes at 1 108.59 Hz   and 2 159.52 Hz   are chosen to be controlled using two TMDs.

Therefore, ten parameters need to be optimized (i.e. five parameters for each of the TMD devices). The first resonant mode is controlled by a plate mode, consequently, taking into account the results obtained in the previous section, a broadband control should be used ( Hz 40  f

) for the evaluation of the first objective function. In addition, a narrowband control corresponding to Hz 2  f is used to evaluate the objective function related to the second resonant mode, controlled by the cavity.

The TMD parameters optimization has been performed using the controlled elitist GA implemented in Matlab and the initial population size is taken equal to 400. The other algorithm parameters are taken as those set by default in Matlab.

Fig. 15 shows the Pareto front, composed by 140 solutions, obtained after 1000 generations. In order to help the decision-making, the SOM are presented in Fig. 16 where the optimized TMD parameters and both objective functions have been used for the training of the SOM. The results in Fig. 15 show the conflicting aspect of the obtained optimal solutions, where for very small values of the objective function one (mode 1 108.59 Hz  

), the objective function two has high values and vice versa. In addition, one can see that the obtained solutions are evenly distributed except for the region where the objective function one has values between roughly 0.2 and 0.24, and the region near to 0.17 where a slight gap can be observed.

The observations made in Fig. 15 can also be seen in Fig. 16 (a) depicting the Unified distance matrix, (Umatrix) [START_REF] Parashar | Self Organizing Maps (SOM) for Design Selection in Multi-Objective Optimization using modeFRONTIER[END_REF][START_REF] Kohonen | The Basic SOM, Self-Organizing Maps[END_REF] where the gaps are represented by red hexagonal lattices. The conflicting aspect of the obtained optimal solutions is also highlighted in Fig. 16 (b) and (c). Indeed, one can see that for small values of the objective function one (lower left corner in Fig. 16 (b)), the values of the objective function two are, on the contrary, at their highest values (lower left corner in Fig. 16 (c)). Also, the examination of Fig. 16 (b) and (c) demonstrate that one can define four clusters of optimal solutions represented by the four solutions S8, S60, S79 and S99. The optimal TMD parameters corresponding to these solutions are stated in Table 8.

The results given in Table 8 demonstrate that the optimal mass ratios of the second TMD (TMD 2) are always greater than those of the first TMD, for all the four solutions. Besides, one can also see that the optimal natural frequencies of the first TMD is roughly constant for all four solutions, whereas they are different for the second TMD. The values of the 2 G index stated in Table 8 are obtained when both TMD devices are mounted at the plate. The values of the global performance index 2 G show that the best performance is obtained when the solution S8 is used.

When a designer has to make a particular choice of TMD parameters, he has to make it among the solutions belonging to one of these clusters and in order to help the decision-making, the performances of the selected set of solutions (S8, S60, S79 and S99) are investigated using the PSD responses plotted in Fig. 17. The results in Fig. 17 show that the "best" performance is obtained for the solutions belonging to the first cluster containing the representative solution S8. This result is coherent with the obtained 2 G index corresponding to the solution S8 for which a reduction of 62.7% (G 1 =-62.7%) is achieved.

TMDs optimal parameters
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Besides, one can see (in Fig. 17) that a reduction of G 1 =29.9 dB is achieved for the first mode and G 1 =34.9 dB for the second mode; for the off-target modes, no significant changes of the PSD responses are observed, except in the vicinity of the frequency of 200 Hz where a new peak appears due to the coupling effect between the TMDs and the plate-cavity mode corresponding to 196.52 Hz.

The obtained result, for the "best" solution, is relatively unexpected since generally speaking one had to make a certain compromise and select a solution among the clusters represented by solutions S79 or S99 and not a solution belonging to a cluster where a given objective function is very high and the other is too low.

This result can be explained looking at the component maps of the optimized damping ratios shown in Fig. 18. Indeed, the results in Fig. 18 (b) show that small values of the damping ratio of the second TMD, tuned to the second resonant mode, occur only at the higher left corner of the map corresponding to the cluster containing the optimal solution S8.

(a) (b) Considering previous conclusions about the single-objective optimization carried out on resonant modes controlled by the cavity, the obtained result is thus well justified because the best performance of a TMD occur when it acts as a reactive device therefore having small value of the damping ratio.

Control of the five coupled resonant modes

In the frequency range of interest, [0-400] Hz, five resonant modes have been observed therefore five TMDs should be used to control the sound field in the cavity. The number of objective functions is five and the total number of parameters, to be optimized, is 25 (five parameters for each of the TMDs); thus, it's clear that the optimization problem, dealing with the control of five modes, is more complicated than the one dealing with the control of two modes.

Preliminary investigations performed during the preparation of the present work showed that carrying out the optimization with the controlled elitist GA, implemented in Matlab, is very computationally expensive and that the convergence is not guaranteed with a reasonable number of generations. Indeed, the results (Pareto front) after more than 2000 generations have not been satisfactory.

To overcome this problem, a hybrid approach [START_REF] Deb | Multi-Objective Optimization Using Evolutionary Algorithms[END_REF][START_REF] Coello | Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation[END_REF][START_REF] Amouzgar | Multi-Objective Optimization using Genetic Algorithms[END_REF][START_REF] Goldberg | Genetic Algorithms in Search, Optimization and Machine Learning[END_REF] combining the controlled elitist GA with another local search algorithm can be used. In the work conducted here, the controlled elitist GA has been combined with the goal attainment method [START_REF] Gembicki | Approach to performance and sensitivity multiobjective optimization: The goal attainment method[END_REF] implemented in the "fgoalattain" function of Matlab and the obtained results have been satisfactory.

For the evaluations of the five objective functions, the bandwidth parameters are chosen based on the previous conclusions from the single-objective optimizations problems. For the modes controlled by the plate (i.e. Similarly to the previous case with two controlled modes, the obtained solutions and their corresponding optimized objective functions are used in the training of the SOM and then projected onto the twodimensional maps depicted in Fig. 19. The U-matrix in Fig. 19 reveals that the obtained solutions are not evenly distributed and it seems that the Pareto front presents several gaps. Indeed one can observe the presence of two clusters of data (indicated by two red circles in the U-matrix) surrounded by green and red lattices, which means that the Pareto solutions are not evenly distributed.

This result is actually predictable considering the optimization technique that has been used involving hybridization, in which the local search method (i.e. the goal attainment method) doesn't guarantee the diversity of the obtained optimal solutions. Table 9 presents the TMD optimal parameters for the five TMDs and for the four solutions S26, S19, S16 and S14, marked in Fig. 19 by red circles. The results in Table 9 show that for the first TMD (TMD 1), the optimal parameters of the four solutions are very close whereas for the other TMDs, the optimal parameters present relatively large fluctuations, especially in the optimized damping ratios of TMD 2 and TMD 3 which are both dedicated to control two modes that are controlled by the cavity. The same observation can be made for the fourth TMD, dedicated to control the fourth mode corresponding to Hz 45 . 344 4  

, where it is acting as dissipative device (relatively high value of the damping ratio) for the solution S26, whereas it behaves as a reactive device for the other solutions (very low values of the damping ratios).

The PSD responses of the plate-cavity system equipped by the five TMDs tuned using the obtained optimal solutions S26, S19, S16 and S14 are shown in Fig. 20. The analysis of the obtained PSD responses in Fig. 20 yields that they are roughly the same for the two well separated target frequencies 1  and 2  . This observation doesn't hold for the closely spaced targeted frequencies (i.e. [START_REF] Howard | Investigation of Passive Control Devices for Potential Application to a Launch Vehicle Structure to Reduce the Interior Noise Levels During Launch[END_REF]  , 4  , 5  ) where significant fluctuations can be observed.

This result can be explained by the fact that for closely spaced targeted frequencies, the coupling effects between the TMDs devices and the vibro-acoustic system is more significant therefore involving important variability of the PSD responses. Looking at the values of the 2 G index in Table 9, the optimal solution S26 will be, in our opinion, "the best one" for which significant reductions of the PSD response have been recorded for all target frequencies. Indeed, for the first targeted mode, a reduction of G 1 =29.12 dB is reached, whereas it has been 38.95 dB, 33.62 dB, 26.47 dB and 36.14 dB, respectively, for the other targeted frequencies as shown in Fig. 20 . All these values of the PSD responses attenuation prove the capability of the proposed optimization strategy to handle multimodal control of interior sound under stochastic loading. 

Conclusions

In the work presented, a vibro-acoustic control of random interior sound pressure inside a cavity is proposed. The control of the interior sound pressure has been performed using TMD devices attached to a flexible plate driven by a primary point force with Gaussian white noise characteristics. The plate is attached to a rectangular rigid-walled cavity.

In order to derive the optimal TMD parameters, a strategy based on an acoustic criterion is suggested. The strategy is to reduce the root mean square acoustic pressure in a given location inside the cavity. By making use of a numerical example, the efficiency of the proposed strategy has been investigated and comparisons with other optimization strategies, involving structural and acoustic criteria, have been discussed.

The obtained results show that for the target modes that are dominated by plate's modes, a broadband control can achieve good performance and significant reduction in the PSD responses can be reached when a relatively high mass ratio is used for the TMDs. When a narrowband control is performed, the obtained results show that for well separated target frequencies, undesirable resonant peaks appear and the global performance of the TMD device is limited. On the contrary, when the target frequency is closely spaced to its neighboring resonant frequencies, the appearance of the new resonant peaks is less significant because of the coupling that occurs between the TMD device and the neighboring frequencies. Indeed, for closely spaced natural frequencies, not only the target frequency is affected by the TMD device, but also its neighbors.

For the coupled modes that are controlled by cavity modes, the numerical investigations have shown that a narrowband control can achieve good performance especially for well separated targeted frequencies. For the target frequencies that are closely spaced, a narrowband control can generate undesirable effects on the Except for the coupled mode dominated by a plate mode (with a natural frequency separated from its neighboring), the optimal damping ratios obtained for both modes that are either controlled by the plate or by the cavity, have been relatively small. This result, particularly observed for narrowband control, is in fact coherent with the results obtained in the literature where the TMD device should act as a highly reactive device instead of dissipative device in order to guarantee a maximum sound reduction.

The performance of the proposed strategy is also compared with others, taken from the literature, and the obtained results show its effectiveness and its superiority, for both kinds of coupled modes (i.e. that are dominated by the plate and that are dominated by the cavity). Although the APE strategy shows good performance on the off-target frequencies (for some target frequencies dominated by cavity modes), the obtained results show that it is not suitable concurrently for both kinds of resonant modes, especially in the close vicinity of the target frequencies.

In order to prove the capability of the proposed optimization strategy to deal with multimodal control of interior sound, two TMDs devices have been used to control two resonant coupled modes. The optimization of the TMDs parameters has been performed using a controlled elitist GA and, unlike the single-objective optimization problem where a single optimal solution is obtained, a set of optimal solutions is obtained in a Pareto front. To help the designer in the decision-making, the SOM have been used to visualize the obtained solutions that have been clustered into four clusters allowing easier choice of an acceptable optimal solution. The numerical investigations have shown that an acceptable optimal solution allowed obtaining significant attenuations in PSD responses.

Unlike the case of control of two resonant modes where the controlled elitist GA has been used, the extension of the internal sound control to five resonant modes has required a hybridization method involving the controlled elitist GA along with the goal attainment optimization method. The hybridization has allowed obtaining satisfactory solutions with reasonable computational CPU time.

Similarly to the previous case of control of two modes, the SOM technique has been used and the optimized solutions, obtained for the five targeted modes, have been clustered allowing obtaining acceptable solutions. The numerical investigations have shown that good control attenuations of the interior sound can be achieved for all targeted modes. 
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 2 Revision Notes deal with other excitation types in a future work. understand the argument of the authors that a control at a single location is the cavity is used to mimic a driver's ear in an automobile… However, the studied problem is far from the one of an automobile (different excitations, geometry, damping: absorbing materials are usually used and must be accounted for even if the firewall is the targeted panel…). I suggest that the authors at least monitor global indicators such as the space averaged quadratic velocity (plate) and pressure (cavity). Even for the automobile problem, not sure the pressure filed is controlled, say at the passenger's ear! An alternative will be to show an example wherein the control targets two or more locations in the cavity.

  Figures R1-R3 below show the PSD responses obtained at different locations inside the cavity and when the TMD is optimized at microphone location [0.35, 010, -0.875]. Although the results in Figs. R2-R3 don't correspond to optimal performance, one can see that the TMD device performs well at locations [0.25, 0.15, -0.15] and [0.1, 0.25, -0.25] in spite of the fact that the TMD has been optimized at location [0.35, 010, -0.875].
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  Figure R1: PSD response at Microphone location [0.35 0.10 -0.875]; the TMD is optimized at microphone location [0.35 0.10 -0.875] 0 50 100 150 200 250 300 350 400 10 -8 10 -6 10 -4 10 -2 10 0
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  Figure R4: PSD response at Microphone location [0.35 0.10 -0.875]; the five TMDs are optimized at microphone location [0.35 0.10 -0.875]
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 3 Why use an absolute value in the definition of indicator G1? It is difficult to assess gain or loss: its sign is thus important. By the way this indicator is not used in the discussion. Idem for indicator G2. b) I would have defined it a)

  f =40 Hz (Damped) f =2 Hz (Damped) Undamped TMD, f=2Hz Undamped TMD, f=40Hz
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 R8 Figure R8: PSD responses (optimized undamped TMD); , 2 159.52 Hz  

5

  Explain why the constant pressure mode of the cavity lowers rather than increases the first mode of the panel. Thank for your valuable work. The constant pressure mode of the cavity increases the first mode of the panel only if the system is modeled in terms of just one uncoupled fluid mode (the first cavity mode) and one uncoupled structural mode (the first plate mode). In this situation, and as explained by Fahy and Gardonio (please see in

  denotes the transpose, and N is the total number of TMDs. Besides, the mass of a TMD is

Fig. 1 :

 1 Fig. 1: Plate-cavity system with the attached multi-TMDs devices

  displacement, the velocity and the acceleration of the attached mass of a TMD, respectively; w and w  are the ) 1 (  Ns vectors of the modal participation factor and their time derivative, respectively;

  transform of the excitation force z F

  Na rows corresponding to the modal acoustic pressure ) ( ~ p .

  pressure Frequency Response Function (FRF) measured at location a r for a given excitation applied to the plate at location F r . The expression obtained in Eq.[START_REF] Howard | Optimisation of Design and Location of Acoustic and Vibration Absorbers Using a Distributed Computing Network[END_REF] is the classical relationship between the input-
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   and u  are the lower and upper bounds of a certain bandwidth of interest [ , ] lu f   centered at a given frequency  .

Fig. 2 :

 2 Fig. 2 : schematic representation of two objective functions (i.e. the square roots of the shaded surfaces)
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  ratio between its mass and the mass of the plate ( plate s m S h     ), the others are its natural frequency

  ..,N , j  , which minimizes a vector of objective functions

  the cavity. The PSD of the point force applied to the plate is set to



  the value of the PSD response at the target frequency i value of the PSD response (with TMD) measured in the close vicinity of the target frequency i  . The higher the value of the 1 G index is, the better the performance of the TMD is.(2) the second quantifies the global performance of the TMD over the frequency range of interest and it is given as: is the RMSAP of the controlled vibro-acoustic system (equipped by TMD), evaluated over the frequency range [0-400] Hz; 0  is the RMSAP of the uncontrolled vibro-acoustic system, evaluated over the frequency range [0-400] Hz. The lower the value of the 2 G index is, the better the global performance of the TMD device is. It should be noted that for
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 3 Fig. 3: FRF for the force location (0.05m, 0.05m); (a) Pressure response, microphone location (0.35 m, 0.10m, -0.875m); (b) displacement response at force location

  of the mass ratio are considered.The results show that the best performance is achieved for the largest mass ratio ( which the Korenev's tuning is the closest to the proposed tuning, especially for the well separated target natural frequency 1  .[START_REF] Ho | Tuned Mass Damper for Rail Noise Control[END_REF] 
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 5678 Fig. 5: PSD responses of acoustic pressure for narrowband and broadband control, =2%, 1 108.59 Hz  
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 9 Fig. 9: PSD of acoustic pressure for narrowband and broadband control, , 2 159.52 Hz   The comparison of the performance of the proposed strategy with that based on APE ( % 4  
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 10111213144 Fig. 10: PSD responses of acoustic pressure for different bandwidth parameter f,  3 313.20 Hz  
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 1516 Fig. 15: Pareto front (two objective functions)
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 17 Fig.17: PSD responses of the four selected optimal solutions (sound control using two TMDs)

Fig. 18 :

 18 Fig. 18: Component maps of the optimized damping ratios (a) first TMD tuned to the first mode, (b) second TMD tuned to the second mode

Fig. 19 :

 19 Fig. 19: SOM: the U-matrix and the five objective functions Fig. 19 also presents the maps of the five objective functions; here too, the conflicting aspect is less highlighted for the same reason related to the diversity of the obtained solutions. Indeed, one can observe a main cluster (indicated by dashed black rectangles in the figure) presenting simultaneously low values of the five objective functions. Consequently, the decision-maker has to choose one solution belonging to this cluster.
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 20 Fig.20: PSD responses for four optimal solutions (sound control using five TMDs)
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 12345678 Fig. 1: Plate-cavity system with the attached multi-TMDs devices
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 91011 Fig. 9: PSD of acoustic pressure for narrowband and broadband control, , 2 159.52 Hz  

Fig. 14 :Fig. 15 :Fig. 16 :Fig. 17 :Fig. 18 :Fig. 19 :Fig. 20 :

 14151617181920 Fig. 14: PSD responses of acoustic pressure for narrowband control (f=2Hz) for different values of the mass ratio; 5 378.61 Hz  

1 a) It is not clear to the reviewer why a stochastic analysis is used; the

  

	force
	is limited to a point load is
	I guess the same
	conclusions of the study
	may have been obtained
	using a deterministic force.
	Isn't it? If not please
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	b) It would have been more
	illuminating if a distributed
	random force such as a
	Rain on the roof, a Diffuse
	acoustic field or a
	Turbulent boundary layer
	was used. Please
	comment.

Table R1

 R1 

	completely differents when	f 	40Hz	. As we can see, the best
	performance is achieved when the TMD is damped and a broadband
	control (	f 	40Hz	) is performed.	
								*	(%)	f	*	(	) Hz	x	*	(	m	)	y	*	(	m	)
								T					T				TMD	TMD
	Damped (2Hz)		0.01	110.897		0.240	0.150
	Undamped(2Hz) ------	111.001		0.242	0.149
	Damped (40Hz)		13.45	110.919		0.253	0.151
	Undamped(40Hz) -------	119.449		0.259	0.151
				(below), are also shown the optimization results for
	broadband control (	f 	40Hz	) when both cases (undamped and
	damped TMD) are considered. Unlike the narrowband control (
	f 	2Hz	), the optimal frequencies are significantly different
	leading to different performances as shown in Figure R7.
	Indeed, we can see in Figure R7 that the performances of the
	undamped and damped TMD are roughly the same when a
	narrowband control is performed (	f 	2Hz	) whereas they are

Table R1 :

 R1 Optimization results,  , 1 108.59 Hz  

						1 108.59 Hz  							
	Table R2 shows a second example (has not been included in the
	revised version) of optimization results for the target frequency
	2 159.52 Hz  	(frequency corresponding to a mode dominated by a
	cavity mode). The comparison of the optimal frequencies and
	locations corresponding to the optimized undamped and damped
	TMD, shows that they are roughly the same for	f 	40Hz	and that
	they are not for	f 	2Hz	.											
				*	(%)	f	*	(	) Hz	x	*	(	m	)	y	*	(	m	)
				T				T			TMD				TMD
	Damped (2Hz)		0.693 155.554		0.192			0.147
	Undamped(2Hz) ------		166.105		0,235			0,150
	Damped (40Hz)	0.010 184.877		0.275			0.156
	Undamped(40Hz) -------	185.072		0.275			0.155

Figure R7: PSD responses (optimized undamped TMD); 

Table R2 :

 R2 Optimization results,  , 2 159.52 Hz  

	10	0	50	100	150	200	250	300	350	400

Table 2 : Natural modes and frequencies of the uncoupled and coupled plate-cavity system

 2 The first kind corresponds to the modes controlled by the plate and those controlled by the cavity. The modes controlled by the plate are 1 108.59 Hz

			 			and 4 343.8 Hz  	. The other modes, controlled by the cavity,
	are 2 159.52 Hz  	, 3 313.20 Hz  	and 5 378.61 Hz  	.
	In-vacuo plate	Rigid-walled cavity		Coupled plate-cavity
	Modes	Frequencies (Hz)	Modes	Frequencies (Hz)	Frequencies (Hz)	Mode controlled by	Modes involved
				(0,0,0)		0		0
	(1,1)	110.43					108,59	plate	(1,1)-(0,0,0)
				(0,0,1)		156.36		159,52	cavity	(1,1)-(0,0,1)
	(2,1)	198.12					196,52	plate	(2,1)-(1,0,0)
				(0,0,2)		312.72		313,20	cavity	(3,1)-(0,0,2)
	(3,1)	344.27					343,80	plate	(3,1)-(0,0,2)
				(1,0,0)		344.00		344,45	cavity	(2,1)-(1,0,0)
	(1,2)	354.01					352,35	plate	(1,2)-(0,1,0)
				(1,0,1)		377.86		378,61	cavity	(2,1)-(1,0,1)

  [START_REF] Harrison | Vehicle Refinement, Controlling Noise and Vibration in Road Vehicles[END_REF] 

								 is targeted, and when a
	narrowband control is performed (	f 	2Hz	), the damping ratio	 of the TMD is set to 0% and an
								T
	optimization is performed. The obtained results (for	 	2%	) showed that the optimal undamped TMD
	parameters are * 111.001Hz f 	and ( * x , * y ) =(0.242, 0,149); as we can see, these results are very close
				T			c	c
	to those obtained in Table 3 (when	 	2%	and	f 	2Hz	). Inaddition, looking at Fig. 4, one can see
	that the PSDs responses corresponding to narrowband control, for both cases (damped and undamped
	TMD), are roughly the same whereas they are completely differents when a broadband control (
	f 	40Hz	) is performed. It should be noted that similar results have been obtained for different values
	of the mass ratio 		
		Fig. 4 PSD responses of acoustic pressure for the damped and undamped TMD, =2%, 1 108.59 Hz  
	Looking at the 2 G index values presented in Table 3, one can see that when a broadband control is
	performed (	f		40Hz	), the TMD device performs well overall the frequency range [0-400] Hz; this
	observation holds as the mass ratio increases. When a narrowband control is performed (	f 	2 Hz	, for
	instance), positive values of the 2

Table 3 : Optimal TMD parameters for different mass ratio and with different bandwidth control

 3 

	, 1 108.59 Hz  

Table 4 : Optimal TMD parameters for different mass ratio and with different bandwidth control

 4 , 4 344.45 Hz  

	y
	TMD

Table 5 : Optimal TMD parameters for different mass ratio and with different bandwidth control, 2

 5 

159.52 Hz  

Table 6 : Optimal TMD parameters for different mass ratio and with different bandwidth control,

 6 

	y
	TMD

Table 7 : Optimal TMD parameters for different mass ratio and with different bandwidth control,

 7 

	5  	378.61 Hz

Table 8 : Optimal parameters of the two TMDs for different optimal solutions

 8 

Table 9 : Optimal parameters of the five TMDs for different optimal solutions

 9 

		S26	8.829	98.250	0.205	0.151	1.346	0.264	-67.0
		S19	8.360	98.217	0.203	0.147	1.363	0.268	-65.5
	 )	S16	9.008	98.260	0.204	0.147	1.699	0.247	-65.6
		S14	8.708	98.322	0,206	0.146	1.730	0.239	-63.2
		S26	11.638 128.512	0.195	0,152	1.328	0.056	
	TMD 2	S19	5.320 128.580	0.195	0,151	0.918	0.061	
	( 2  )	S16	4.184 128.508	0.209	0,151	0.649	0.040	
		S14	5.456 128.391	0.208	0,150	0.851	0.039	
		S26	22.032 282.972	0.318	0.134	2.925	0.043	
	TMD 3	S19	34.786 282.951	0.020	0.025	0.100	0.039	
	( 3  )	S16	0.026 282.947	0.270	0.160	0.502	0.026	
		S14	0.001 282.926	0.322	0.107	1.518	0.032	
		S26	2.280 311.472	0.386	0.115	0.454	0.046	
	TMD 4	S19	0.010 311.401	0.301	0.119	4.000	0.015	
	( 4  )	S16	0.010 311.418	0.310	0.118	3.790	0.027	
		S14	0.010 311.337	0.300	0.123	2.595	0.030	
		S26	0.559 342.640	0.057	0.090	0.877	0.004	
	TMD 5	S19	2.535 342.754	0.066	0.117	0.549	0.039	
	( 5  )	S16	2.804 342.610	0.075	0.111	0.289	0.007	
		S14	5.633 343.263	0.080	0.112	0.236	0.011	

Table 1 : Numerical values of the parameters of the vibro-acoustic system

 1 

Table In

 In 

	-vacuo plate	Rigid-walled cavity		Coupled plate-cavity
	Modes	Frequencies (Hz)	Modes	Frequencies (Hz)	Frequencies (Hz)	Mode controlled by	Modes involved
			(0,0,0)	0	0		
	(1,1)	110.43			108,59	plate	(1,1)-(0,0,0)
			(0,0,1)	156.36	159,52	cavity	(1,1)-(0,0,1)
	(2,1)	198.12			196,52	plate	(2,1)-(1,0,0)
			(0,0,2)	312.72	313,20	cavity	(3,1)-(0,0,2)
	(3,1)	344.27			343,80	plate	(3,1)-(0,0,2)
			(1,0,0)	344.00	344,45	cavity	(2,1)-(1,0,0)
	(1,2)	354.01			352,35	plate	(1,2)-(0,1,0)
			(1,0,1)	377.86	378,61	cavity	(2,1)-(1,0,1)

Table 2 : Natural modes and frequencies of the uncoupled and coupled plate-cavity system TMD optimal parameters
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		* p	(	) Pa	2 (%) G

Table 3 : Optimal TMD parameters for different mass ratio and with different bandwidth control,
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	1 108.59 Hz  

Table 4 : Optimal TMD parameters for different mass ratio and with different bandwidth control,
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	4 344.45 Hz  

Table 5 : Optimal TMD parameters for different mass ratio and with different bandwidth control,
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	2 159.52 Hz  

Table 6 : Optimal TMD parameters for different mass ratio and with different bandwidth control,
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	3  	313.20 Hz

Table 7 : Optimal TMD parameters for different mass ratio and with different bandwidth control,
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	5  	378.61 Hz

Table 8 : Optimal parameters of the two TMDs for different optimal solutions TMDs optimal parameters
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	* pi  (Pa)	2 (%) G

Table 9 : Optimal parameters of the five TMDs for different optimal solutions

 9 

12: PSD responses of the acoustic pressure for different mass ratio; f=2Hz

  ; 2 159.52 Hz  

				w/o TMD		 =2%		 =3%	 =4%	APE
	of acoustic pressure (Pa 2 /Hz)	-6 -4 -2		w/o TMD	f =2Hz 10 -5	10 10 10	f =10Hz -6 -4 -2 16.36 dB f =20Hz 31.61 dB f =40Hz
	PSD										172.91 dB
		0	100	Frequency (Hz) 200	300	10 -10	400		140 150 160 170 180 190 200 210
							310	320	330	340	350	360	370	380	390	400



Fig.

Fig. 13: PSD of acoustic responses for different mass ratio

  , f=40Hz; 3 313.20 Hz  

					w/o TMD	 =2%		 =3%	 =4%	APE	
	/Hz)											
	pressure 2 (Pa								22.2 dB		45.13 dB
	acoustic	10	-5				10	-5				
	of											
	PSD											
			0	100	200	300	400	260	280	300	320	340	360	380
				Frequency (Hz)						
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