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GENERALIZED DEHN TWISTS IN

LOW-DIMENSIONAL TOPOLOGY

YUSUKE KUNO, GWÉNAËL MASSUYEAU, AND SHUNSUKE TSUJI

Abstract. The generalized Dehn twist along a closed curve in an ori-
ented surface is an algebraic construction which involves intersections
of loops in the surface. It is defined as an automorphism of the Malcev
completion of the fundamental group of the surface. As the name sug-
gests, for the case where the curve has no self-intersection, it is induced
from the usual Dehn twist along the curve. In this expository article,
after explaining their definition, we review several results about gener-
alized Dehn twists such as their realizability as diffeomorphisms of the
surface, their diagrammatic description in terms of decorated trees and
the Hopf-algebraic framework underlying their construction. Going to
the dimension three, we also overview the relation between generalized
Dehn twists and 3-dimensional homology cobordisms, and we survey the
variants of generalized Dehn twists for skein algebras of the surface.
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1. Introduction

Let C be a simple closed curve in the interior of an oriented surface.
The (right-handed) Dehn twist along C, denoted by tC , is an orientation-
preserving diffeomorphism of the surface obtained by cutting the surface
along C, rotating, and gluing back:

(1.1)

C

ℓ tC(ℓ)
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Dehn twists appear in a number of basic constructions in low-dimensional
topology. This mainly stems from the so-called “Dehn–Lickorish theorem”
[4, 25], stating that Dehn twists give rise to generators for the mapping
class group of a compact oriented surface. For instance, the presentation of
closed orientable 3-manifolds in terms of framed links in the 3-sphere [25, 19]
relies crucially on this fact. For another instance, Dehn twists appear as
monodromy around critical points of Lefschetz fibrations and thus provide
a combinatorial approach to study this interesting class of 4-manifolds; see,
e.g., the survey article [20]. Compared with general elements of the mapping
class group, Dehn twists are easy to handle since the support of tC lies in an
annulus neighborhood of the curve C. So, when one wants to understand
a given element of the mapping class group, it is sometimes convenient to
write it as a product of Dehn twists.

This article is aimed at giving a survey on “generalized” Dehn twists tγ
along non-simple closed curves γ in an oriented surface. This construction
has been introduced in [16] and studied in [22, 27, 15, 18]. It originates from
the study of the action of “usual” Dehn twists on the fundamental group
of the surface, or more precisely, on its nilpotent quotients and its Malcev
completion. After explaining the definition of generalized Dehn twists, we
present several results to illustrate how they are related to other objects
in low-dimensional topology such as the mapping class group of a surface,
3-dimensional cobordisms over the surface, and skein algebras of the surface.

1.1. Preliminary discussion. Before giving a precise definition in Sec-
tion 2, let us explain how one is led to the generalized Dehn twist tγ along
a closed curve γ. First of all, notice that the cut-and-paste procedure il-
lustrated by ( 1.1) apparently does not work if the simple closed curve C
is replaced by a self-intersecting closed curve γ. Rather, we focus on the
action of usual Dehn twists on loops in the surface.

For definiteness and for simplicity, here and throughout, we only consider
the case where the surface is a compact oriented connected surface Σ :=
Σg,1 of genus g with one boundary component. Let π := π1(Σ, ∗) be the
fundamental group of Σ with basepoint ∗ chosen from the boundary ∂Σ. Let
M be the mapping class group of Σ, namely the group of diffeomorphisms
of Σ fixing the boundary pointwise, modulo isotopies fixing the boundary.
By the Dehn–Nielsen theorem, the action of M on π induces a canonical
isomorphism

M
∼=
−→ Aut∂(π),

where Aut∂(π) is the group of automorphisms of π fixing the based loop
that is parallel to the boundary ∂Σ.

The action of a usual Dehn twist on π is described explicitly as follows.
Let C ⊂ Int(Σ) be a simple closed curve. If ℓ : [0, 1]→ Σ is a based loop in Σ
which intersects C in general position, then tC(ℓ) is obtained by inserting a
copy of C (with a suitable orientation) at every intersection of ℓ with C. To
be more precise, give an orientation to C and let ℓ∩C = {p1, . . . , pn} be the
intersection of ℓ and C, where 0 < ℓ−1(p1) < ℓ−1(p2) < · · · < ℓ−1(pn) < 1.
We denote by εi ∈ {±1} the local intersection number at pi of the two
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oriented curves ℓ and C. Then,

(1.2) tC(ℓ) = ℓ∗p1(Cp1)
ε1ℓp1p2(Cp2)

ε2 · · · ℓpn−1pn(Cpn)
εnℓpn∗ ∈ π

where ℓ∗p1 is the subpath of ℓ from ∗ to p1, Cp1 is the closed curve C based
at p1, and so on. (Concatenation of paths is read from left to right.) Note
that we need the orientation of Σ to define tC , but it is easily seen that the
right hand side of ( 1.2) is independent of the orientation of C.

Now let γ ⊂ Int(Σ) be any closed curve, with or without self-intersection.
A first naive trial to define tγ would be to use formula ( 1.2) with replacing C
by γ, but this does not work. In fact, the right hand side of ( 1.2) is not
invariant under homotopy of ℓ when γ has self-intersections. Even if we
neglect this fact and pretend that formula ( 1.2) works, we cannot expect it
to define a diffeomorphism of Σ. This is because when ℓ is simple, the right
hand side of ( 1.2) may have non-trivial self-intersection (arising from γ),
while any diffeomorphism of Σ must preserve simple paths in Σ.

One outcome of this apparently hopeless situation is to consider, instead,
the formal linear combination

(1.3) σ(C)(ℓ) :=

n∑

i=1

εi ℓ∗piCpiℓpi∗ ∈ Zπ,

which one may view as a “linearization” of ( 1.2). A key fact is that the
right hand side is homotopy invariant even if we replace C with any closed
(oriented) curve γ. By linearity, any linear combination u of free loops in Σ
gives an endomorphism σ(u) : Zπ → Zπ, which turns out to be a derivation
of the group ring Zπ.

The result in [16, 27, 18] describes the action of tC on the group ring
Zπ as the exponential of a derivation of Zπ, which depends only on the
homotopy class of C and is built from the action ( 1.3). To be more specific,
in order to work with the exponential, one has to replace Zπ with the I-adic

completion Q̂π of the group algebra Qπ, where I denotes the augmentation
ideal. Then the formula is

(1.4) tC = exp

(
σ
(1
2
(logC)2

))
∈ Aut(Q̂π).

Of course, the right hand side of ( 1.4) makes sense if we replace C with
any closed curve γ. Thus we define the generalized Dehn twist along γ to be

(1.5) tγ := exp

(
σ
(1
2
(log γ)2

))
.

In general, tγ does no longer preserve the fundamental group π ⊂ Q̂π, but
turns out to preserve the Malcev completion π̂ of π.

1.2. Organization. This expository paper is organized as follows.
In Section 2, we give the precise definition of a generalized Dehn twist tγ

along a closed curve γ. It is defined as an element of the generalized map-

ping class group M̂ := Aut∂(π̂), i.e. the group of automorphisms of π̂ that

preserves the element corresponding to the boundary of Σ. The group M̂
naturally contains the mapping class groupM as a subgroup.
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Section 3 is concerned with the question whether tγ ∈ M̂ is induced by a
diffeomorphism of Σ or not, i.e. tγ ∈ M or not. In fact, as we will see, there
are many examples of closed curves γ for which the answer to this question
is negative.

In Section 4, we give a diagrammatic description of generalized Dehn
twists in terms of decorated trees whose leaves are colored by the first homol-
ogy group of Σ. Although we do not explicitly review this here, that point
of view is closely related to the theory of the Johnson homomorphisms for
the mapping class group [14, 32]. Using this diagrammatic description, we
show the following analogue of the Dehn–Lickorish theorem, which seems to

be new: the generalized mapping class group M̂ is topologically generated
by (rational powers of) generalized Dehn twists.

In Section 5, we present an approach of [27] to generalize Dehn twists
which is based on the notion of “Fox pairing”. This approach enables us to
consider “twists” in a more algebraic setting. We mention some examples
arising elsewhere in topology, and which could be interesting for further
investigation.

In Section 6, we review recent results from [23] about a (partial) topolog-
ical interpretation of tγ in terms of 3-dimensional surgery. In more detail,
given a closed curve γ ⊂ Int(Σ), we choose a knot resolution K of γ in
U := Σ × [−1,+1], and perform a surgery along K with a suitable fram-
ing. We compare the resulting homology cobordism, denoted by UK , with
tγ through their respective actions on the Malcev completion π̂.

Finally, in Section 7, we summarize some results from the series of pa-
pers [43, 44, 45, 46, 47]. We explain two variations of formula ( 1.4) that
exist for the Kauffman bracket skein algebra, on the one hand, and for the
HOMFLY-PT skein algebra, on the other hand. The resulting skein ver-
sions of generalized Dehn twists are related to ( 1.5) via some commutative
diagrams. We conclude by reviewing applications of this skein approach of
mapping class groups to the construction of topological invariants of homol-
ogy 3-spheres.

1.3. Acknowledgments. The main tools used in the study of generalized
Dehn twists are algebraic operations on loop spaces in an oriented surface
which are defined by intersection, or, self-intersection. We would like to
point out that Vladimir Turaev already introduced in 1978 such kind of
operations [48]: these should be viewed as precursors of the so-called “Gold-
man bracket” [7] and “Turaev cobracket” [50], as well as the loop action
( 1.3) that is discussed above. Thus, we hope that the reader will be con-
vinced that the framework of generalized Dehn twists borrows much to the
influential works of Turaev in low-dimensional topology, from the late 1970’s
to nowadays.

This paper was finalized while the two first-named authors were visiting
the CRM in Montréal: they thank the Simons Foundation for support. Y.K.
is supported by JSPS KAKENHI 18K03308; G.M. is supported in part by
the project ITIQ-3D, funded by the “Région Bourgogne Franche-Comté.”
S.T. is supported by JSPS KAKENHI 18J00305 and the Research Institute
for Mathematical Sciences, an International Joint Usage/Research Center
located in Kyoto University.
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2. The Dehn twist formula and generalized Dehn twists

In this section, we review the definition of generalized Dehn twists. Recall
that π is the fundamental group of the surface Σ = Σg,1 with basepoint
∗ ∈ ∂Σ.

2.1. Malcev completion. Let I be the augmentation ideal of the group
algebra Qπ. An element of I is a formal Q-linear combination

∑
x∈π axx,

where ax = 0 for all but finite x and
∑

x∈π ax = 0. The powers {Im}m
define a multiplicative filtration of Qπ. The I-adic completion of Qπ is the
projective limit

Q̂π := lim←−
m

Qπ/Im.

The powers of I induce a natural filtration of Q̂π which we denote by {Îm}m.
There is also a canonical Hopf algebra structure on Qπ whose coproduct

is given by ∆(x) = x ⊗ x for any x ∈ π, and this induces a complete Hopf

algebra structure on Q̂π. The Malcev completion π̂ of π is defined to be the

set of group-like elements in Q̂π:

π̂ :=
{
x ∈ Q̂π | x 6= 0,∆(x) = x⊗̂x

}
.

There is a filtration of the group π̂ whose mth term is π̂m := π̂ ∩ (1 + Îm).

Since π is a free group of finite rank, the natural map Qπ → Q̂π is injective,
and so is the natural map π → π̂. Let π = Γ1π ⊃ Γ2π ⊃ Γ3π ⊃ · · ·
be the lower central series of the group π. For each m ≥ 0, the map π → π̂
induces an injective group homomorphism

(2.1) π/Γmπ −→ π̂/π̂m.

2.2. The action of free loops on based loops. Let us recall the oper-
ation σ introduced in [16]. Let α be an (oriented) free loop in Σ and β a
based loop, and assume that they intersect in transverse double points. Set

(2.2) σ(α)(β) :=
∑

p∈α∩β

εp β∗pαpβp∗ ∈ Zπ.

Here, the sum is taken over all the intersections of α and β, εp ∈ {±1} is
the local intersection number of α and β at p, and β∗p, αp, and βp∗ have
the same meaning as in formula ( 1.2). Extending by linearity, we obtain a
Q-linear map

σ(u) : Qπ −→ Qπ

for any Q-linear combination u of (homotopy classes of) free loops in Σ. It is
in fact a derivation of Qπ: for any v1, v2 ∈ Qπ,

σ(u)(v1v2) = (σ(u)(v1)) v2 + v1 (σ(u)(v2)).

Let α be a free loop in Σ. For each m ∈ Z, let αm be the mth power of α.
For any polynomial f(x) ∈ Q[x], the expression f(α) makes sense as a Q-
linear combination of free loops in Σ, so that the derivation σ(f(α)) : Qπ →
Qπ is defined. As is proved in [15, 17, 27], it holds that

(2.3) σ((α− 1)m)(In) ⊂ Im+n−2 for any m,n ≥ 0
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(with the convention that Qπ = I0 = I−1 = I−2). Therefore, for any power
series f(x) ∈ Q[[x− 1]], one can consider the derivation

σ(f(α)) : Q̂π −→ Q̂π,

which is continuous with respect to the filtration {Îm}m.

Remark 2.1. (1) The operation σ is a refinement of the Goldman bra-
cket [7] of two (homotopy classes of) free loops in Σ. In order to
give a precise statement, for a based loop α in Σ denote by |α| the
free homotopy class of α. (We also apply this convention to Q-linear
combinations of based loops in Σ.) Let α and β be based loops in Σ.
Then the Goldman bracket

[
|α|, |β|

]
of the two free loops |α| and |β|

is equal to
∣∣σ(|α|)(β)

∣∣.
(2) The operation σ itself has a refinement, which is called the homo-

topy intersection form and denoted by η : Qπ × Qπ → Qπ. This
form, which can be regarded as a “universal” version of Reidemeis-
ter’s equivariant intersection pairings, is explicit in [48] and implicit
in [35]; see also [36, 27]. Let α and β be immersed based loops in Σ
such that their intersections in the interior of Σ consists of finitely
many transverse double points, and in a neighborhood of the base-
point of Σ, they are arranged as shown in the following figure:

∗

α β

Then,

(2.4) η(α, β) :=
∑

p∈α∩β

εp α∗pβp∗.

How to reconstruct σ from η will be explained in Example 5.1.

2.3. Logarithms of Dehn twists. Consider now the power series

L(x) :=
1

2
(log x)2 ∈ Q[[x− 1]],

where

log x =

∞∑

n=1

(−1)n−1

n
(x− 1)n.

Let γ be an (unoriented) closed curve in Σ. We pick an orientation of γ
but, for simplicity, we use the same letter γ for the resulting free loop. Since

L(x−1) = L(x), the derivation σ(L(γ)) : Q̂π → Q̂π does not depend on this
choice of orientation.

Remark 2.2. The set of conjugacy classes in π, denoted by |π|, is naturally
identified with the set of free homotopy classes of loops in Σ. Thus the Q-
linear span Q|π| is the underlying vector space for the Goldman bracket. As
was shown in [15, 17, 27], there is a natural filtration of Q|π| defined by using
the filtration {Im}m of Qπ and the canonical projection |−| : Qπ → Q|π|.
Then, the expression L(γ) makes sense as an element of the completion
of Q|π| with respect to this filtration.
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Theorem 2.3 ([16, 27]). Let C be a simple closed curve in Int(Σ). Then
the exponential of the derivation σ(L(C)) converges, and it coincides with

the action of the Dehn twist tC on Q̂π:

tC = exp
(
σ(L(C))

)
: Q̂π −→ Q̂π.

2.4. Definition of a generalized Dehn twist. Let γ be a closed curve
in Σ. As was shown in [15, 17, 27], for any γ the exponential of the derivation
σ(L(γ)) converges and defines a filtration-preserving algebra automorphism

of Q̂π. Theorem 2.3 shows that when γ is simple, exp(σ(L(γ))) is the action

on Q̂π of the usual Dehn twist along γ. In this case, exp(σ(L(γ))) : Q̂π →

Q̂π is clearly a Hopf algebra automorphism since it preserves π. In fact,
exp(σ(L(γ))) is a Hopf algebra automorphism for any closed curve γ [27, §5],
see also [18, §5]. Thus, by restriction, exp(σ(L(γ))) can be regarded as an
automorphism of the Malcev completion π̂ of π. Furthermore, tγ preserves
the boundary loop ζ ∈ π ⊂ π̂ since σ(α)(ζ) = 0 for any free loop α.

Definition 2.4. The generalized Dehn twist along γ is the automorphism

of the complete Hopf algebra Q̂π defined by

tγ := exp
(
σ(L(γ))

)
: Q̂π −→ Q̂π,

or equivalently, its restriction to the Malcev completion π̂.

Note that, for any integer n ≥ 0, it holds that tγn = (tγ)
n2

.

2.5. Action on the nilpotent quotients of π. We say that a closed
curve γ in Σ is of nilpotency class ≥ k if its homotopy class in π (after some
arbitrary choices of orientation and basing arc) lies in Γkπ. The generalized
Dehn twists act on π̂ and hence on the quotient π̂/π̂m for each m ≥ 0.
It will turn out in Section 6 that, if γ is of nilpotency class ≥ k, the action
of tγ on π̂/π̂2k+1 preserves the image of the map ( 2.1) with m = 2k + 1,
and therefore, tγ acts on the free nilpotent group π/Γ2k+1π. In particular,
tγ acts on π/Γ2kπ. The following result describes this action in the manner
of formula ( 1.2).

Proposition 2.5. Let γ ⊂ Int(Σ) be a closed curve of nilpotency class ≥ k
and give an orientation to γ. Let ℓ : [0, 1] → Σ be a based loop which in-
tersects γ in general position, and let ℓ ∩ γ = {p1, . . . , pn} with ℓ−1(p1) <
ℓ−1(p2) < · · · < ℓ−1(pn). For each i ∈ {1, . . . , n}, let εi ∈ {±1} be the sign
of intersection of ℓ and γ at pi. Then, the class {ℓ}2k−1 ∈ π/Γ2kπ of ℓ ∈ π
is mapped by tγ to

tγ({ℓ}2k−1) = ℓ∗p1(γp1)
ε1ℓp1p2(γp2)

ε2 · · · ℓpn−1pn(γpn)
εnℓpn∗ ∈

π

Γ2kπ
.

Proof. Let ℓ′ be the based loop in the right hand side of the above formula.
We need to prove that tγ(ℓ) (ℓ

′)−1 ∈ π̂2k. This is equivalent to showing that

tγ(ℓ) ℓ
−1 ≡ ℓ′ℓ−1 modulo Î2k. By assumption on γ, we have γ − 1 ∈ Ik.

Using ( 2.3) and the fact that the leading term of L(x) is (x − 1)2/2, we
obtain

tγ(ℓ) ℓ
−1 ≡ 1 + σ

(
1

2
(γ − 1)2

)
(ℓ) ℓ−1 mod Î2k.
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Thus, the proof is reduced to showing that

(2.5) ℓ′ℓ−1 − 1 ≡ σ

(
1

2
(γ − 1)2

)
(ℓ) ℓ−1 mod I2k.

To simplify notation, for each j ∈ {1, . . . , n} put δj := ℓ∗pj (γpj)ℓ∗pj where

ℓ∗pj denotes the reverse of the path ℓ∗pj . Note that δj ∈ Γkπ by our assump-
tion on γ. Then, on the one hand, we compute

ℓ′ℓ−1 − 1 =




n∏

j=1

δ
εj
j


− 1 =

n∑

j=1

δε11 · · · δ
εj−1

j−1 (δ
εj
j − 1) ≡

n∑

j=1

(δ
εj
j − 1),

where the last equivalence is modulo I2k. On the other hand, we compute

σ

(
1

2
(γ − 1)2

)
(ℓ) ℓ−1 = σ

(
1

2
γ2 − γ

)
(ℓ) ℓ−1

=




n∑

j=1

εj ℓ∗pj (γ
2
pj − γpj)ℓpj∗


 ℓ−1

=

n∑

j=1

εj(δ
2
j − δj).

Finally, using again the fact that δj ∈ Γkπ, we have εj(δ
2
j −δj) ≡ εj(δj−1) ≡

(δ
εj
j − 1) modulo I2k. This proves ( 2.5). �

3. Realizability as diffeomorphisms

Let Aut∂(π) be the group of automorphisms of π that fix the boundary
element ζ. Then, by the Dehn–Nielsen isomorphismM∼= Aut∂(π), we can
regard the mapping class group as a subgroup of the group of automorphisms
of the filtered group π̂ that fix the boundary element ζ ∈ π̂:

(3.1) M̂ := Aut∂(π̂).

We shall refer to M̂ as the generalized mapping class group of Σ. It can be
equivalently defined as the group of automorphisms of the complete Hopf

algebra Q̂π that preserve the homotopy intersection form η : Q̂π×Q̂π → Q̂π:

(3.2) M̂ = Autη
(
Q̂π
)
.

(See [27, §8.1 & §10.3] for the equivalence between the two definitions.)
As we have seen in Section 2.4, the generalized Dehn twists tγ are defined

as elements in M̂. We say that tγ is realizable as a diffeomorphism if tγ ∈ M.

Problem 3.1. Given a closed curve γ in Σ, determine whether tγ is realiz-
able as a diffeomorphism or not.

The following result generalizes the fact that the support of the usual
Dehn twist tC is in an annulus neighborhood of C.

Theorem 3.2 ([22, 15]). Let γ be an immersed closed curve in Int(Σ),
and suppose that tγ is realizable as a diffeomorphism. Then there is an
orientation-preserving diffeomorphism of Σ which represents tγ and whose
support lies in a regular neighborhood of γ.
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It is conjectured that tγ is not realizable as a diffeomorphism unless γ is
homotopic to a power of a simple closed curve [22, 18]. The following result
produces many examples of closed curves γ such that tγ /∈M.

Theorem 3.3 ([17]). Let γ be an immersed non-simple closed curve in
Int(Σ) whose self-intersections consist of transverse double points. If the
inclusion homomorphism π1(N(γ)) → π1(Σ) is injective, where N(γ) is a
closed regular neighborhood of γ, then tγ is not realizable as a diffeomor-
phism.

The proof of this theorem uses Theorem 3.2 and a certain operation mea-
suring self-intersections of loops in Σ which is essentially equivalent to the
operation introduced by Turaev [48].

Example 3.4. Figure 1 shows two examples of a closed curve γ in the sur-
face of genus two. These examples are easily seen to satisfy the assumption
of Theorem 3.3, and thus tγ 6∈ M. The example in the left part is a figure
eight, i.e. a closed curve with a single transverse double point. In fact, if a
figure eight γ is not homotopic to a simple closed curve, nor to the square
of a simple closed curve, then we can use Theorem 3.3 to conclude that
tγ 6∈ M.

Figure 1. Closed curves γ such that tγ /∈ M

4. Diagrammatic formulation of generalized Dehn twists

Generalized Dehn twists have a useful description in terms of so-called
“Jacobi diagrams”. In this section, we review this description and draw
some consequences.

4.1. Generalized Dehn twists as Lie automorphisms. Generalized
Dehn twists have been defined in Section 2.4 as automorphisms of the com-

plete Hopf algebra Q̂π or, by restriction, as automorphisms of the Malcev
completion π̂. In some situations, however, it is appropriate to swap π̂ for
its “infinitesimal” analogue, namely the Malcev Lie algebra M(π) of π. The

latter can be defined as the primitive part of Q̂π:

M(π) :=
{
x ∈ Q̂π |∆(x) = x⊗̂1 + 1⊗̂x

}
.

Indeed, the Malcev completion and the Malcev Lie algebra correspond one
to the other through the exponential and logarithm series

(4.1) 1 + Î1 ⊃ π̂
log

∼= ))

exp

ii M(π) ⊂ Î1
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which are defined, for all u ∈ Î1, by

exp(u) =

∞∑

k=0

uk

k!
and log(1 + u) =

∞∑

k=1

(−1)k+1u
k

k
,

respectively. For any closed curve γ in Σ, the generalized Dehn twist

tγ ∈ Aut(Q̂π) restricts to an automorphism of M(π), which preserves the
element log(ζ). We denote this restriction in the same way:

tγ ∈ Aut(M(π)).

Remark 4.1. We are using the same notation for three different kinds of
automorphisms:

(i) tγ ∈ Aut(Q̂π), (ii) tγ ∈ Aut(π̂), (iii) tγ ∈ Aut(M(π)).

To sum up: each of (ii) and (iii) are restrictions of (i); furthermore, (ii) and
(iii) correspond each other through the correspondence ( 4.1).

Next, to make this Lie algebra automorphism tγ more concrete, one can
swap the Malcev Lie algebra M(π) for the free Lie algebra

L := L(H)

generated by H := H1(Σ;Q). But, this can not be done in a canonical
way and requires a notion that has been coined in [26] as a “symplectic
expansion” of the free group π. Recall that L is the primitive part of the
tensor algebra T (H) generated by H, and that L is a graded Lie algebra:

L =

∞⊕

j=1

Lj where L1 = H.

Since the homology intersection form ω : H×H → Z of the oriented surface Σ
is skew-symmetric and non-degenerate, it defines a duality H ∼= H∗ by
x 7→ ω(x,−): hence we regard ω as an element of

Λ2H∗ ∼= Λ2H ∼= L2.

Then, a symplectic expansion of π is defined as a map

θ : π −→ T̂ (H)

with values in the degree-completion of T (H), which is multiplicative, maps
the boundary element ζ to exp(−ω) and satisfies

θ(x) = 1 + [x] + (deg ≥ 2)︸ ︷︷ ︸
group-like

for all x ∈ π with homology class [x] ∈ H. The condition that θ(x) is group-
like is equivalent to requiring that log θ(x) lies in the degree-completion of L.
Symplectic expansions are easily proved to exist [26, Lemma 2.16], and some
instances can be constructed in an explicit combinatorial way [21]. In this
section, we fix a symplectic expansion θ.

This map θ : π → T̂ (H) can be extended, by linearity and continuity, to

a complete Hopf algebra isomorphism θ : Q̂π → T̂ (H), which restricts to
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a complete Lie algebra isomorphism θ : M(π) → L̂. Hence, for any closed
curve γ in Σ, the generalized Dehn twist tγ can be equivalently considered as

tθγ := θ ◦ tγ ◦ θ
−1 ∈ Aut(L̂).

4.2. The Lie algebra of symplectic derivations. Let γ be a closed curve
in Σ and consider now the logarithm

log(tθγ) = θ ◦ log(tγ) ◦ θ
−1 = θ ◦ σ(L(γ)) ◦ θ−1

which is a derivation of L̂ vanishing on ω ∈ L2. The set consisting of all
derivations of L that vanish on ω ∈ L2 is stable under the usual Lie bracket
of derivations. It is called the Lie algebra of symplectic derivations and
denoted by

Derω(L).

This Lie algebra can also be regarded as a subspace of Hom(H,L) (since
any derivation is determined by its restriction to H) and, therefore, it can
be regarded as a subspace of H ⊗ L (using the duality H ∼= H∗). From this
viewpoint, Derω(L) is the kernel of the Lie bracket H ⊗ L → L≥2. Note
that Derω(L) is a graded Lie algebra, where a derivation is homogeneous of
degree k if and only if it increases the degree of L by k.

It is well-known that the above-mentioned graded Lie algebras have dia-
grammatic descriptions, which we now recall. First of all, note that a linear
combination T of planar binary rooted trees with j leaves colored by H de-
fines an element comm(T ) ∈ Lj. For instance:

comm

(
h1 h2 h3 h4

root

)
= [h1, [[h2, h3], h4]] (with h1, . . . , h4 ∈ H).

A Jacobi diagram is a graph with only univalent and trivalent vertices, the
latter being assumed to be oriented (i.e. half-edges are cyclically ordered
around each trivalent vertex); it is said H-colored if all its univalent vertices
are colored by H. Its degree is the number of its trivalent vertices. In the
sequel, we always assume that Jacobi diagrams are finite, tree-shaped and
connected. For example, here is an H-colored Jacobi diagram of degree 3
(where, by convention, vertex orientations are given by the trigonometric
orientation of the plan):

h1

h2
h3 h4

h5
(with h1, . . . , h5 ∈ H)

Let

T =

∞⊕

d=0

Td

be the graded Q-vector space of H-colored Jacobi diagrams modulo the AS,
IHX and multilinearity relations, which are the local relations shown below:
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AS IHX multilinearity

= − − + = 0 +=

h1 + h2 h1 h2

There is a graded linear map Ξ: T → Derω(L) ⊂ H ⊗ L which is defined,
for any H-colored Jacobi diagram T , by

Ξ(T ) :=
∑

v

col(v)⊗ comm(Tv).

Here the sum is over all univalent vertices v of T , col(v) denotes the element
of H carried by v and Tv is the tree T rooted at v. The map Ξ is known to
be an isomorphism (see, for instance, [10]).

Example 4.2. In degree 0, Ξ maps any diagram of the form h - - - k to
h ⊗ k + k ⊗ h. Indeed, as a subspace of Hom(H,L), the degree 0 part of
Derω(L) corresponds to{

u ∈ Hom(H,H) | (u⊗ id+ id⊗u)(ω) = 0 ∈ Λ2H ⊂ H⊗2
}
;

therefore, as a subspace of H ⊗ L, this corresponds to the kernel of the
canonical projection H ⊗H → Λ2H, i.e. to the symmetric part of H ⊗H.

The isomorphism Ξ−1 transports the Lie bracket of derivations to the
following Lie bracket in T : for any H-colored Jacobi diagrams T and T ′,

(4.2) [T, T ′] =
∑

v,v′

ω(v, v′) · Tv - - -Tv′

where the sum is over all univalent vertices v and v′ of T and T ′, respectively,
and Tv - - -Tv′ is obtained by gluing “root-to-root” Tv and Tv′ .

4.3. A diagrammatic formula for generalized Dehn twists. Recall
that, in this section, we have fixed a symplectic expansion θ of π.

Theorem 4.3 ([23]). For any closed curve γ in Σ, we have

(4.3) Ξ−1
(
log(tθγ)

)
=

1

2
· log θ([γ]) - - - log θ([γ])

meaning that Ξ−1
(
log(tθγ)

)
is half the series of Jacobi diagrams obtained by

gluing “root-to-root” two copies of the series of planar rooted trees log θ([γ]).

Formula ( 4.3) is shown in [23, Proof of Theorem 5.1] for a null-homologous
closed curve γ, but the proof extends verbatim to any closed curve. This
proof of ( 4.3) is based on a formal description of the loop operation σ using
the symplectic expansion θ. (See [16, Theorem 1.2.2] and also [27, §10].)

We now mention some consequences of ( 4.3) as for the “leading terms”
of generalized Dehn twists. Let L

Z be the Lie ring freely generated by
H1(Σ;Z) and regard L

Z as a subset of L. Let k ≥ 1 be an integer. Recall
from Section 2.5 that a closed curve γ in Σ is of nilpotency class ≥ k if,
when it is oriented and connected to ∗ by an arc (in an arbitrary way), its
homotopy class [γ] ∈ π belongs to Γkπ. Then,

θ([γ]) = 1 + {γ}k + (deg ≥ k + 1)

where {γ}k ∈ Lk ⊂ H
⊗k corresponds to the class of γ modulo Γk+1π through

the canonical isomorphism L
Z
k
∼= Γkπ/Γk+1π.
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Proposition 4.4. (i) Let γ be a closed curve of nilpotency class ≥ k
in Σ. Then

Ξ−1
(
log(tθγ)

)
=

1

2
{γ}k - - - {γ}k + (deg ≥ 2k − 1).

(ii) Let γ−, γ+ be closed curves in Σ of nilpotency class ≥ k such that
{γ−}k = {γ+}k. Then

Ξ−1
(
log
(
(tθγ−)

−1 tθγ+
))

= {γ±}k - - - {γ+γ
−1
− }k+1 + (deg ≥ 2k)

where each curve γ± is oriented and connected to ∗ by an arc (in an
arbitrary way) to define γ+γ

−1
− ∈ Γk+1π.

About the proof. Statement (i) is a direct consequence of formula ( 4.3). As
for statement (ii), note that the product (tθγ−)

−1 tθγ+ does have a logarithm

since it acts trivially on I/I2 ∼= H; then (ii) is a less immediate consequence
of ( 4.3) using the Baker–Campbell–Hausdorff formula and the Lie bracket
( 4.2) in T . �

4.4. Generation of the generalized mapping class group. Recall from
Section 3 that the mapping class group M can be regarded as a subgroup

of the generalized mapping class group M̂. Think of the latter in the

form ( 3.2). Then, for any k ≥ 0, let M̂[k] be the subgroup of M̂ that

acts trivially on Q̂π/Îk+1: the sequence of nested subgroups

M̂ = M̂[0] ⊃ M̂[1] ⊃ · · · ⊃ M̂[k] ⊃ M̂[k + 1] ⊃ · · ·

is the analogue for M̂ of the Johnson filtration of the mapping class groupM,
which has been introduced by Johnson in [14] and studied by Morita in [32].

It can be verified that the Johnson filtration is “strongly” central in the

sense that
[
M̂[j],M̂[k]

]
⊂ M̂[j+k] for all j, k ≥ 0. In particular, it consists

of normal subgroups of M̂. Furthermore, the fact that the filtration {Îk}k
of Q̂π has a trivial intersection easily implies that

∞⋂

k=0

M̂[k] = {1}.

In the sequel, we consider the Hausdorff topology on the group M̂ defined
by the Johnson filtration.

Any closed curve γ in Σ defines a one-parameter family {tr,γ}r∈Q in M̂
by setting

(4.4) tr,γ := exp
(
rσ
(
(log γ)2

))
.

Note that t1/2,γ is the generalized Dehn twist tγ along γ: hence {tr,γ}r∈Q
consists of all rational roots of tγ . The following result, which seems to be
new, is an algebraic analogue of the fact thatM is generated by usual Dehn
twists.

Theorem 4.5. The group M̂ is topologically generated by the elements tr,γ
for all r ∈ Q and any closed curve γ in Σ.
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Proof. Let T WQ be the subgroup of M̂ generated by the tr,γ for all r ∈ Q

and any γ ⊂ Σ. To prove that T WQ is dense in M̂, we shall prove the

following statement for any u ∈ M̂ and any integer n ≥ 0:

there exist elements uk ∈ T W
Q ∩ M̂[k] for k ∈ {0, . . . , n}

such that

(Hn) u ≡
n∏

k=0

uk mod M̂[n+ 1].

The proof is by induction on n. We firstly prove (H0). Consider the au-

tomorphism ũ0 of Î1/Î2 ∼= H induced by u: it preserves ω since u preserves
the homotopy intersection form η. Therefore, ũ0 is a finite product of sym-
plectic transvections. Observe the following general fact about a symplectic
transvection

(4.5) H −→ H, h 7−→ h+ ω(c, h) · c,

that is defined by an element c ∈ H: one can find a closed curve C in
Σ and an integer m ≥ 1 such that (for some orientation of C) we have

c = [C]/m ∈ H; then t1/2m,C induces ( 4.5) at the level of Î1/Î2 ∼= H. We

deduce that there exists u0 ∈ T W
Q such that u0 induces ũ0 ∈ Aut(H):

therefore u ≡ u0 mod M̂[1].

Assuming (Hn−1) for n ≥ 1, we shall now prove (Hn). Set v :=
∏n−1
k=0 uk.

Choose a symplectic expansion θ of π. Since v−1u belongs to M̂[n], the
derivation

δ := log(θ ◦ (v−1u) ◦ θ−1) ∈ Derω(L̂)

increases degrees by at least n. Therefore, the series of Jacobi diagrams

Ξ−1(δ) ∈ T̂ starts in degree n.
Assume that n = 2m is even. As any element of the vector space Tn, the

leading term of Ξ−1(δ) can be written in the form
p∑

i=1

ri · xi - - -xi ∈ Tn

where ri ∈ Q and xi ∈ L
Z
m+1. For every i ∈ {1, . . . , p}, we choose a closed

curve Ci in Σ of nilpotency class ≥ m + 1 that represents xi ∈ L
Z
m+1

∼=
Γm+1π/Γm+2π. Proposition 4.4.(i) has the following generalization: for any
closed curve γ in Σ of nilpotency class ≥ k and for any r ∈ Q, we have

Ξ−1
(
log(θ ◦ tr,γ ◦ θ

−1)
)
= r · {γ}k - - - {γ}k + (deg ≥ 2k − 1)

and, in particular, tr,γ belongs to M̂[2k − 2]. Therefore,

Ξ−1 log
(
θ ◦
( p∏

i=1

tri,Ci

)
◦ θ−1

)

=

p∑

i=1

Ξ−1 log
(
θ ◦ tri,Ci

◦ θ−1
)
+ (deg ≥ n+ 1)

=

p∑

i=1

ri · xi - - -xi + (deg ≥ n+ 1)
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and then v−1u ≡ un mod M̂[n+ 1] where

un :=

p∏

i=1

tri,Ci
∈ T WQ ∩ M̂[n].

Assume now that n = 2m + 1 is odd. As any element of the vector
space Tn, the leading term of Ξ−1(δ) can be written in the form

p∑

i=1

2ri · xi - - - yi ∈ Tn

where ri ∈ Q, xi ∈ L
Z
m+1 and yi ∈ L

Z
m+2 . For every i ∈ {1, . . . , p},

we choose two closed curves Ci and Di in Σ of nilpotency class ≥ m + 1
that both represent xi ∈ L

Z
m+1

∼= Γm+1π/Γm+2π and such that DiC
−1
i

represents yi. Then, by a similar argument to the case where n is even and
using a generalized version of Proposition 4.4.(ii), we obtain

Ξ−1 log
(
θ ◦
( p∏

i=1

(
tri,Ci

)−1
tri,Di

)
◦θ−1

)
=

p∑

i=1

2ri ·xi - - - yi+(deg ≥ n+1),

and then v−1u ≡ un mod M̂[n+ 1] where

un :=

p∏

i=1

(tri,Ci
)−1 tri,Di

∈ T WQ ∩ M̂[n].

�

5. Algebraic formulation of generalized Dehn twists

We review from [27] a group-algebraic framework for generalized Dehn
twists. In fact, (at least) part of this framework can be extended to Hopf
algebras [28]. Hence we consider a Hopf algebra A: let ∆: A → A ⊗ A
be the coproduct, ε : A → Q the counit and S : A → A the antipode. We
assume that A is involutive, i.e. S2 = idA, and we denote by I := ker ε the
augmentation ideal of A.

A Fox pairing in A is a Q-bilinear map η : A×A→ A such that

(5.1) η(ab, c) = a η(b, c) + ε(b) η(a, c), η(a, bc) = η(a, b) c + ε(b) η(a, c)

for all a, b, c ∈ A. It follows that

(5.2) η(Im, In) ⊂ Im+n−2

for any integers m,n ≥ 1 (with the convention that I−2 = I−1 = I0 = A).
A Fox pairing η induces two other bilinear forms. First, the homological

form induced by η is the bilinear map

(− •η −) : I/I
2 × I/I2 −→ Q

defined by {a}•η {b} = εη(a, b). Second, the derived form of η is the bilinear
map ση : A×A→ A defined by

ση(a, b) :=
∑

(a)

∑

(b)

∑

(η(a′′ ,b′′))

b′ S(η(a′′, b′′)′) a′ η(a′′, b′′)′′
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for any a, b ∈ A. (Here we have used Sweedler’s notation ∆(c) =
∑

(c) c
′⊗c′′

to write down the coproduct of any element c ∈ A.) It can be checked that
ση induces a map

ση : A −→ Der(A,A), a 7−→ ση(a,−)

with values in the Lie algebra of derivations of A and which vanishes on
commutators of A.

We now recall the most fundamental example of Fox pairings that arises
from topology, and which we have already mentioned in previous sections.

Example 5.1. Assume that A := Qπ is the algebra of a group π. Then,
the notion of Fox pairing appears under different names (but equivalent
forms) in Papakyriakopoulos’s work [35] and in Turaev’s paper [48]. These
works mostly considered the fundamental group π of an oriented surface
with non-empty boundary, and the homotopy intersection form

η : Qπ ×Qπ −→ Qπ

that we have reviewed in ( 2.4). It turns out that η is a Fox pairing, whose
homological form •η in

I/I2 ∼= H1(π;Q) ∼= H1(Σ;Q)

is the intersection form ω, and whose derived form σ = ση is the action ( 2.2).
This Fox pairing η has some remarkable properties: it is “skew-symmetric”
in some weak sense, and the corresponding “double bracket” is “quasi-
Poisson” in the sense of [51]. (See [27, 28].) These properties generalize the
fact that the Goldman bracket (which is induced by σ) is a Lie bracket [7].

Here are two other examples of Fox pairings that still arise from topology,
and which need to consider Hopf algebras in a broader sense.

Example 5.2. Assume that, instead of a Hopf algebra A, we are given a

complete Hopf algebra Â (i.e. a “Hopf monoid” in the symmetric monoidal
category of complete Q-vector spaces: see [41, Appendix A] for the defini-

tion). Then the notion of “Fox pairing” extends verbatim to Â. Let π be a
group, and let

Â := lim
←−
k

A/Ik

be the I-adic completion of the group algebra A := Qπ. By ( 5.2), any Fox

pairing in A induces by continuity a Fox pairing in Â, but there also exist

Fox pairings in Â that (a priori) do not arise from A. For the commutator
subgroup π of a knot group in the standard 3-sphere, Turaev constructed

such a Fox pairing in Â using the homotopy intersection form of a Seifert
surface of the knot: see [48, Supplement 3] and [49, §5] for further details.

Example 5.3. Assume that A is a graded Hopf algebra (i.e. a “Hopf monoid”
in the symmetric monoidal category of graded Q-vector spaces): then the
theory of Fox pairings can be easily adapted to this setting. Let M be a
smooth oriented manifold of dimension d > 2 with non-empty boundary,
and let A := H∗(Ω(M,⋆);Q) be the homology of its loop space Ω(M,⋆)
based at a point ⋆ ∈ ∂M . Then, by intersecting families of loops in M , one
defines in the graded Hopf algebra A a Fox pairing of degree 2 − d: it is
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“skew-symmetric” in some sense, and the corresponding “double bracket”
is Gerstenhaber of degree 2 − d in the sense of [51]. We refer to [29] for
the construction of this intersection double bracket which uses the ideas of
string topology, and to [30, Appendix B] for the correspondence between
Fox pairings and double brackets.

We now restrict ourselves to the case where the Hopf algebra A = Qπ is

a group algebra. Let Â = Î0 ⊃ Î1 ⊃ Î2 ⊃ · · · be the canonical filtration on

the I-adic completion Â of A. Let η be a Fox pairing in A and let C be a

group-like element of Â such that

(5.3) {C − 1} •η {C − 1} = 0

where {C−1} ∈ Î/Î2 ∼= I/I2 denotes the class of C−1. It follows from ( 5.2)

that ση induces a map ση : Î2 → Der(Â, Â) with values in the Lie algebra

of filtration-preserving derivations of Â. Furthermore, the hypothesis ( 5.3)
implies that

ση
(
log(C)2

)
∈ Der(Â, Â)

is “weakly nilpotent” in the sense that, for any integer m ≥ 1, it maps Â

to Îm after sufficiently enough iterations [27, Lemma 4.1]. Hence, we can
consider the twist map

(5.4) tr,C := exp
(
rση
(
log(C)2

))

for any scalar r ∈ Q and any group-like element C ∈ Â. It turns out that

tr,C is an automorphism of the complete Hopf algebra Â [27, Theorem 5.1]:
thus, tr,C can be equivalently regarded as an automorphism of the Malcev
completion π̂.

Example 5.4. If π is the fundamental group of an oriented surface with
non-empty boundary and η is the homotopy intersection form ( 2.4), then
tr,C is the generalized Dehn twist ( 4.4).

Remark 5.5. As it has been overviewed above, the theory of Fox pairings
also exists for (graded) Hopf algebras [28, 30]. Thus, it seems possible to
define twists in the Hopf-algebraic setting as well. In particular, it would
be interesting to understand the topological origin of the twists that arise
in higher dimension from the intersection operation of [27].

6. Generalized Dehn twists and homology cylinders

There is another field of low-dimensional topology where automorphisms
of the Malcev completion π̂ naturally appear: this is the study of homol-
ogy cylinders. The latter has started with the work of Garoufalidis and
Levine [6]; see also [11, §8.5] and [9].

A homology cobordism of Σ is a pair (M,m) consisting of a compact
oriented 3-manifold M and a diffeomorphism m : ∂(Σ × [−1,+1]) → ∂M
preserving the orientations, such that the inclusion maps m± : Σ → M de-
fined by m±(x) := m(x,±1) give isomorphisms in integral homology. Thus
M is a cobordism (with corners) whose “input” surface ∂+M := m+(Σ) and
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“output” surface ∂−M := m−(Σ) are both parametrized by the “standard”
surface Σ:

∂+M

∂−M

M

m+

m−

Σ

Σ

Homology cobordisms can be multiplied in the usual fashion by gluing “out-
put” to “input” surfaces. Hence the set

C :=
{
homology cobordisms of Σ

}
/diffeomorphism

is a monoid, whose neutral element is the usual cylinder U := Σ× [−1,+1]
(taking the identity as boundary parametrization u : ∂(Σ×[−1,+1])→ ∂U).
It is well-known that the group of invertible elements of C is the mapping
class groupM, which is viewed as a subset of C by the “mapping cylinder”
construction. (See, for instance, [12, §2] for a survey.)

Let (M,m) ∈ C and k ≥ 1. It follows from a result of Stallings [42] that
the maps m+ and m− induce isomorphisms π/Γk+1π → π1(M)/Γk+1π1(M).
Thus there is a monoid homomorphism

ρk : C −→ Aut(π/Γk+1π), (M,m) 7−→
(
(m−)

−1 ◦m+

)
.

Since π̂ is the projective limit of the Malcev completions of π/Γk+1π as
k →∞, we obtain a homomorphism ρ̂ : C → Aut(π̂), which generalizes the
Dehn–Nielsen representation of the mapping class group:

M
ρ

//
� _

mapping
cylinder

��

Aut∂(π)

�̂

��

C
ρ̂

// Aut∂(π̂) = M̂

We now explain how the representation ρ̂ is related to generalized Dehn
twists. Let γ ⊂ Σ be a closed curve. A resolution of γ is a knot K in the
usual cylinder U which projects onto γ in Σ = Σ× {+1}.

Theorem 6.1 ([23]). Let γ ⊂ Σ whose class [γ] ∈ π (for some arbitrary
choices of orientation and connecting arc to ∗) belongs to Γkπ for some
k ≥ 2. Then, for any resolution K of γ, we have a commutative diagram

π/Γ2k+1π

ρ2k(UK)
��

// π̂/π̂2k+1

(tγ )ε

��

π/Γ2k+1π // π̂/π̂2k+1

where UK ∈ C is obtained from U by surgery along K taking ε ∈ {−1,+1}
as “framing number”.

The proof of Theorem 6.1 is based on some explicit formulas for ρ2k(UK) ∈
Aut(π/Γ2k+1π) and tγ ∈ Aut(π̂/π̂2k+1): the one for tγ is obtained by com-
mutator calculus and refines Proposition 2.5; the one for ρ2k(UK) is proved
by surgery calculus. Both formulas are expressed in terms of the class of [γ]
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modulo Γk+2π using the homotopy intersection form η, and they turn out
to be the same.

Remark 6.2. Of course, Theorem 6.1 reduces to a basic fact if γ is simple:
in that case, there is only one way to “resolve” γ to K and, by Lickorish’s
trick [25, Proof of Theorem 2], the cobordism UK is merely the mapping
cylinder of the usual Dehn twist tγ .

Considering arbitrary closed curves γ ⊂ Σ, one derives from Theorem 6.1
a few applications to the study of homology cylinders. A homology cylin-
der is an M ∈ C such that m+ = m− : H1(Σ) → H1(M) or, equivalently,
such that ρ1(M) is the identity of π/Γ2π. Examples of homology cylinders
include all the cobordims UK of the type considered in Theorem 6.1. Ho-
mology cylinders constitute a submonoid IC ⊂ C on which it is important
to compute the generalized Dehn–Nielsen representation

ρ̂ : IC −→ IAut∂(π̂).

Here IAut∂(π̂) is the subgroup of Aut∂(π̂) that gives the identity on the
associated graded of π̂. Through the correspondence ( 4.1), IAut∂(π̂) is
identified with the group IAut∂(M(π)) of automorphisms of the Malcev Lie
algebra M(π) that induce the identity on the associated graded and fix
log ζ. Furthermore, for any symplectic expansion θ of π, the latter group is

identified with the Lie algebra Derω(L̂) through the map ψ 7→ log(θ◦ψ◦θ−1).
Thus, we can consider the composition

IC
ρ̂

//

̺θ

55❚
❱

❲
❨

❩ ❭ ❪ ❴ ❛ ❜ ❞
❡

❣
❤

❥
IAut∂(π̂) ∼= IAut∂(M(π)) ∼= Derω(L̂)

Ξ−1
// T̂

as a diagrammatic version of the generalized Dehn–Nielsen representation.

Remark 6.3. For some instances of symplectic expansions θ, the composi-
tion ̺θ gives the “tree-reduction” of the LMO homomorphism [26], which is
a fundamental invariant of homology cylinders in quantum topology.

Consequently, by combining Theorem 4.3 and Theorem 6.1, we obtain
a partial, but explicit, computation of ρ̂(UK) for any knot K ⊂ U whose
homotopy class [K] belongs to Γkπ1(U) ∼= Γkπ:

̺θ(UK) ≡
1

2
· log θ([K]) - - - log θ([K]) + (trees of degree ≥ 2k)

The authors do not know whether this identity holds true in higher degrees.
In particular, the possibility that ̺θ(UK) depends only on the homotopy
class [K] ∈ π is not excluded yet.

To conclude, we mention that Theorem 6.1 also implies an analogue of
Proposition 4.4 where generalized Dehn twists are replaced by surgeries.
This provides new surgery formulas for the Johnson homomorphisms, from
which an alternative proof of the surjectivity of the Johnson homomorphisms
[6, 9] can be derived. We refer to [23] for further details.
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7. Skein versions of generalized Dehn twists

In this section, we present formulas giving the action of the (usual) Dehn
twists on skein algebras of the thickened surface Σ × [−1,+1] in terms of
commutators in these algebras. These formulas lead to some “skein ver-
sions” of the generalized Dehn twists. Recall that, for simplicity, the surface
Σ = Σg,1 is assumed to be compact oriented connected of genus g with one
boundary component. In this section, in addition to the previously fixed
basepoint ∗ ∈ ∂Σ, we take a second basepoint • 6= ∗ in ∂Σ.

7.1. Skein algebras and skein modules. We start by recalling the two
versions of “skein algebras” with which we will work.

Let S(Σ) be the Kauffman bracket skein module of the thickened surface
Σ× [−1,+1]. This is the quotient of the free Q[[A+1]]-module generated by
the (isotopy classes of) framed unoriented links in Σ× [−1,+1] modulo the
relations of Figure 2. Similarly, we define the Kauffman bracket skein mod-
ule S(Σ, •, ∗) by considering the framed unoriented tangles with endpoints
in {•, ∗}. Here tangles have (in addition to closed components) a unique
component homeomorphic to the interval, called the string, such that one
of its endpoints is in {•} × (−1,+1) and the other in {∗} × (−1,+1); fur-
thermore, the framing of the string is given at its endpoints by the positive
direction of the (−1,+1) factor. Note that A = −1 + (A+ 1) and

A−1 = −
1

1− (A+ 1)
= −1−

∑

m≥1

(A+ 1)m

are viewed here as power series in (A+ 1).

Remark 7.1. The Kauffman bracket skein module was introduced by Przy-
tycki [38] for links in oriented 3-manifolds. There are several versions for
tangles in a thickened surface with boundary. For a full detail of the version
that we work with here, see [43, Definition 3.2]. Note that our version is
different from Muller’s one [33], which involves additional skein relations.

+ A−1= A

= (−A2 −A−2) ∅

Figure 2. S(Σ)

= h−

= exp(ρh)

= 2sinh(ρh)
h ∅

Figure 3. A(Σ)

Let A(Σ) be the HOMFLY-PT skein module of Σ × [−1,+1]. This is
the quotient of the free Q[ρ][[h]]-module generated by the (isotopy classes
of) framed oriented links in Σ × [−1,+1] modulo the relations of Figure 3.
Similarly, we define the HOMFLY-PT skein module A(Σ, •, ∗) by consid-
ering framed oriented tangles with a unique string, which is oriented from
{•} × (−1,+1) to {∗}×(−1,+1) and framed at its endpoints by the positive
direction of the (−1,+1) factor.
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Remark 7.2. The HOMFLY-PT skein module for links in oriented 3-
manifolds was introduced in the works of Przytycki [38] and Turaev [50].
Turaev shows that his version of the skein module gives a quantization of
the Goldman bracket. Here we consider a version for tangles in a thickened
surface with boundary. For more detail, [47, Definition 3.2].

Remark 7.3. The definitions above of the skein modules work for any com-
pact oriented surface (with non-empty boundary). Furthermore, they are
functorial in the following sense: suppose that Σ and Σ′ are compact ori-
ented surfaces with non-empty boundary and assume given an orientation-
preserving embedding e : Σ× [−1,+1]→ Σ′ × [−1,+1] of 3-manifolds, then
e induces a Q[[A + 1]]-linear map e∗ : S(Σ) → S(Σ

′) and a Q[ρ][[h]]-linear
map e∗ : A(Σ)→ A(Σ

′).

In the sequel, we sometimes use the notation (G,V) in order to refer
either to the pair (S(Σ),S(Σ, •, ∗)) or to the pair (A(Σ),A(Σ, •, ∗)); in such
a situation, we set

ǫG :=

{
−A+A−1 if G = S(Σ),
h if G = A(Σ).

The “stacking” operation ab (with a “over” b) is defined whenever (a, b) is
an element of G×G, G×V or V×G. With this operation, G is an associative
algebra and called the skein algebra. There is also a Lie bracket on G defined
by renormalizing the algebra commutator operation:

(7.1) [x, x′] :=
xx′ − x′x

ǫG
,

and there is an action σ of the Lie algebra G on V defined by

(7.2) σ(x)(y) :=
xy − yx

ǫG
.

The operations ( 7.1) and ( 7.2) are well-defined (although ǫG is not invert-
ible in the ground ring): see [43, §3.2] and [47, §3.3].

7.2. Comparison of algebras and modules. We now explain how the
skein algebras/modules are related one to the other, and how they are
connected to the constructions of the previous sections like Goldman’s Lie
bracket. We shall define four types of homomorphisms — for algebras as
well as for modules; these homomorphisms will fit all together into diagrams

(7.3) A(Σ) ⊃ A0(Σ)
ψ

//

̟
����

S(Σ)

̟
����

S′(Q |π|) ⊃ S′(Q ||π||)
ψ

// // S−1(Σ).

and
(7.4)

A(Σ, •, ∗) ⊃ A0(Σ, •, ∗)
ψ

//

̟
����

S(Σ, •, ∗)

̟
����

S′(Q |π|) ⊗Qπ•,∗ ⊃ S
′(Q ||π||) ⊗Qπ•,∗

ψ
// // S−1(Σ, •, ∗)
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whose notations will be explained one by one. Those diagrams will be
commutative in the following sense: for any x ∈ A0(Σ) such that ̟(x) ∈
S′(Q ||π||) (resp., any x ∈ A0(Σ, •, ∗) such that ̟(x) ∈ S′(Q ||π||) ⊗ Qπ•,∗),
we have ψ(̟(x)) = ̟(ψ(x)).

⋆ Maps ̟ : A(Σ)→ S′(Q |π|) and ̟ : A(Σ, •, ∗)→ S′(Q |π|) ⊗Qπ•,∗.

Recall that |π| is the set of conjugacy classes of π, with natural projection
|−| : Qπ → Q |π|, and that [−,−] : Q |π| ×Q |π| → Q |π| denotes Goldman’s
Lie bracket (see Remarks 2.1 and 2.2). Let π•,∗ := π1(Σ, •, ∗) be the set of
homotopy classes of paths connecting • to ∗. There is a groupoid version of
the action ( 2.2)

(7.5) σ : Q |π| ⊗Qπ•,∗ −→ Qπ•,∗

which is defined in the same manner (see [15, 18]) and makes Qπ•,∗ into a
Q |π|-module.

Let S′(Q |π|) be the quotient of the symmetric algebra of Q |π| where
the trivial loop is identified with the constant 1 ∈ Q. Since the trivial
loop is central in Q |π|, one can extend by the Leibniz rule the Goldman
bracket to S′(Q |π|) which turns into a Poisson algebra. The resulting Lie
bracket of S′(Q |π|) and the action ( 7.5) merge to give an action σ of the
Lie algebra S′(Q |π|) on the Q-vector space S′(Q |π|) ⊗ Qπ•,∗. This action
is characterized by the following two properties:

(i) for any degree one element w ∈ Q |π|, for all v ∈ S′(Q |π|) and
y ∈ Qπ•,∗,

σ(w)(v ⊗ y) = [w, v] ⊗ y + v ⊗ σ(w)(y);

(ii) for any w,w′ ∈ S′(Q |π|), for all v ∈ S′(Q |π|) and y ∈ Qπ•,∗,

σ(ww′)(v ⊗ y) = w′
(
σ(w)(v ⊗ y)

)
+ w

(
σ(w′)(v ⊗ y)

)

where w′ acts on the first factor of σ(w)(v ⊗ y) by multiplication.

There is a surjective Q-linear map ̟ : A(Σ)→ S′(Q |π|) which maps any
framed oriented link L = L1∪· · ·∪Lj to the product [L1] · · · [Lj ] ∈ S

′(Q |π|)
of (the free homotopy classes of) its components projected onto Σ. By con-
vention, the empty link is mapped to the unit 1 ∈ S′(Q |π|). Furthermore,
assigning 0 to the variable h and 1/2 to the variable ρ ensures that ̟ is
well-defined. Besides, there is a surjective Q-linear map ̟ : A(Σ, •, ∗) →
S′(Q |π|) ⊗ Qπ•,∗ which is defined in a similar way by projecting the string
of a tangle to (the homotopy class of) its projection. It is easily verified
(using the idea of Turaev [50, proof of Theorem 3.3]) that the diagrams

A(Σ)⊗A(Σ)
[−,−]

//

̟⊗̟
��

A(Σ)

̟

��

S′(Q |π|)⊗ S′(Q |π|)
[−,−]

// S′(Q |π|)
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and

A(Σ)⊗A(Σ, •, ∗)
σ //

̟⊗̟
��

A(Σ, •, ∗)

̟

��

S′(Q |π|) ⊗
(
S′(Q |π|) ⊗Qπ•,∗

)
σ

// S′(Q |π|)⊗Qπ•,∗

are commutative: in other words, ̟ : A(Σ)→ S′(Q |π|) is a Lie algebra ho-
momorphism and the map ̟ : A(Σ, •, ∗)→ S′(Q |π|)⊗Qπ•,∗ of Lie modules
is equivariant over this homomorphism.

⋆ Maps ψ : A0(Σ)→ S(Σ) and ψ : A(Σ, •, ∗)→ S(Σ, •, ∗).

It is easily verified from its defining relations that the Q[ρ][[h]]-module A(Σ)
has a direct sum decomposition

A(Σ) =
⊕

x∈H1(Σ;Z)

Ax(Σ)

where Ax(Σ) denotes the Q[ρ][[h]]-submodule generated by links with total
homology class equal to x. Then, for any x, y ∈ H1(Σ;Z), we have Ax(Σ) ·
Ay(Σ) ⊂ Ax+y(Σ) and [Ax(Σ),Ay(Σ)] ⊂ Ax+y(Σ).

Let ψ′ : A(Σ)→ S(Σ) be theQ-linear map defined by ψ′(L) := (−A)w(L) L
for any framed oriented link L, while assigning −A2 +A−2 to h and

logA4

−A2 +A−2
=

4 log
(
(1− (A+ 1)

)

−
(
1− (A+ 1)

)2
+
(
1− (A+ 1)

)−2

= −1 +
2

3
(A+ 1)2 + · · · ∈ Q[[A+ 1]]

to ρ so that exp(ρh) = A4. Here w(L) is the total framing number of L,
which can be computed as the difference between the total number of pos-
itive crossings and the total number of negative crossings in a projection
diagram of L. (See [47, Proposition 7.15].) Similarly, we define a Q-linear
map ψ′ : A(Σ, •, ∗) → S(Σ, •, ∗). We remark that, for any framed oriented
link L and any framed oriented tangle T ,

ψ′(LT ) = (−A)w(L,T ) ψ′(L)ψ′(T )

and

ψ′(TL) = (−A)w(T,L) ψ′(T )ψ′(L)

where w(L, T ) = −w(T,L) is the intersection number ω([L], [T ]) of the
homology classes of L and T projected onto Σ. Hence, for any x ∈ A0(Σ)
and y ∈ A(Σ), we have

(7.6) ψ′(xy) = ψ′(x)ψ′(y), ψ′(yx) = ψ′(y)ψ′(x)

and, similarly, for any x ∈ A0(Σ) and z ∈ A(Σ, •, ∗), we have

(7.7) ψ′(xz) = ψ′(x)ψ′(z), ψ′(zx) = ψ′(z)ψ′(x).

Next, we renormalize the above two maps ψ′ by setting ψ := 1
A+A−1ψ

′ where

1

A+A−1
=

1

−2−
∑

m≥2(A+ 1)m
= −

1

2
+

1

4
(A+ 1)2 + · · · ∈ Q[[A+ 1]].
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It follows from ( 7.6) that ψ : A0(Σ) → S(Σ) is a Lie algebra homomor-
phism, and it follows from ( 7.7) that the map ψ : A(Σ, •, ∗)→ S(Σ, •, ∗) of
Lie modules is equivariant over this homomorphism.

⋆ Maps ̟ : S(Σ)→ S−1(Σ) and ̟ : S(Σ, •, ∗)→ S−1(Σ, •, ∗).

Let S−1(Σ) be the Kauffman bracket skein algebra “at A := −1”, namely
the quotient of S(Σ) by (A + 1)S(Σ), and let ̟ : S(Σ) → S−1(Σ) be the
canonical projection. Define the quotient space S−1(Σ, •, ∗) in a similar way,
and let ̟ : S(Σ, •, ∗) → S−1(Σ, •, ∗) be the canonical projection. In those
quotients, the class of a tangle depends only on its homotopy class, and
hence S−1(Σ) is a commutative algebra. The Lie bracket of S(Σ) and the
Lie action of S(Σ) on S(Σ, •, ∗) descend to S−1(Σ) and S−1(Σ, •, ∗), respec-
tively. Hence, just like S(Σ), the quotient S−1(Σ) is a Poisson algebra.

⋆ Maps ψ : S′(Q ||π||)→ S−1(Σ) and ψ : S′(Q ||π||) ⊗Qπ•,∗ → S
−1(Σ, •, ∗).

Since the works of Goldman [7], Turaev [50], Bullock [3] and others, there
is a well-known relationship between the symmetric algebra of the Goldman
Lie algebra, the SL2-representation algebra of π and the Kauffman bracket
skein algebra “at A := −1”. Let us recall this relationship in our setting.

Goldman [7] introduced the subspace Q ||π|| of Q |π| generated by the
elements

||x|| := |x|+ |x−1|

for all x ∈ π, which correspond to homotopy classes of unoriented loops in Σ.
It turns out that Q ||π|| is a Lie subalgebra of Q |π|. We denote by S′(Q ||π||)
the quotient of the symmetric algebra of Q ||π|| by the relation ||1|| = 2 ∈ Q.
Let ψ : S′(Q ||π||)→ S−1(Σ) be the algebra homomorphism mapping, for all
x ∈ π, the element ||x|| to minus the class of any knot that projects onto the
unoriented loop corresponding to ||x||. In a similar way, we have a Q-linear
map ψ : S′(Q ||π||) ⊗ Qπ•,∗ → S

−1(Σ, •, ∗). It can be verified that the maps
ψ have the following properties.

Proposition 7.4. (i) For all v, v′ ∈ S′(Q ||π||), ψ([v, v′]) = [ψ(v), ψ(v′)].
(ii) The map ψ : S′(Q ||π||) → S−1(Σ) is surjective and its kernel is the

ideal generated by ||xx′||+ ||x−1x′|| − ||x||||x′|| for all x, x′ ∈ π.
(iii) For all v ∈ S′(Q ||π||) and w ∈ Qπ•,∗, ψ

(
σ(v)(w)

)
= σ

(
ψ(v))(ψ(w)

)
.

(iv) The map ψ : S′(Q ||π||) ⊗ Qπ•,∗ → S
−1(Σ, •, ∗) is surjective and its

kernel is generated as an S′(Q ||π||)-module by the following two types
of elements:
• 1⊗ (rxr′ + rx−1r′)− ||x|| ⊗ (rr′), where r ∈ π•,∗ and r′, x ∈ π;
• (||xx′||+ ||x−1x′|| − ||x||||x′||)⊗ r, where x, x′ ∈ π and r ∈ π•,∗.

Statement (i) is the well-known expression of the Goldman bracket as a
commutator in the skein algebra: thus ψ : S′(Q ||π||) → S−1(Σ) is a Lie
algebra homomorphism and, by (iii), the map ψ : S′(Q ||π||) ⊗ Qπ•,∗ →
S−1(Σ, •, ∗) of Lie modules is equivariant over this homomorphism.

Statement (ii) is the usual description of the Kauffman bracket skein alge-
bra “at A := −1” in terms of the fundamental group π. This commutative
algebra is known to be isomorphic to the GL2-invariant part of the coordi-
nate algebra of the affine scheme Xπ of SL2-representations of the group π.
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Specifically, Xπ is the functor that assigns to any commutative Q-algebra B
the set of group homomorphisms Hom(π,SL2(B)). The action of the group
scheme GL2 on Xπ given by conjugation of matrices induces an action of
GL2 on the coordinate algebra Q[Xπ] of Xπ: we denote by Q[Xπ]

GL2 the
GL2-invariant part. The trace map

tr : S′(Q ||π||) −→ Q[Xπ]
GL2

is the algebra homomorphism mapping ||x|| to the regular function that,
for any commutative Q-algebra B, is defined by Hom(π,SL2(B)) ∋ ρ 7→
tr(ρ(x)) ∈ B. Besides, there is another trace map

tr : S−1(Σ) −→ Q[Xπ]
GL2

which is the algebra homomorphism mapping a knot K to the regular func-
tion defined by Hom(π,SL2(B)) ∋ ρ 7→ − tr(ρ(K)) ∈ B. (Here π is identified
with π1(Σ× [−1,+1]).) Then, we have a commutative diagram

S′(Q ||π||)

ψ
����

tr // Q[Xπ]
GL2 .

S−1(Σ)

tr
∼=

88
qqqqqqqqqqq

The trace map defined on S−1(Σ) is known to be an isomorphism (see [2,
Proposition 9.1] and [39, Theorem 7.1]): therefore the kernel of the trace map
defined on S′(Q ||π||) coincides with ker(ψ), which is described by statement
(ii) of Proposition 7.4. Finally, note that the Poisson bracket in Q[Xπ]

GL2

corresponding to the Poisson bracket in S−1(Σ) via the trace map is an
algebraic counterpart of the Atiyah–Bott Poisson structure on the moduli
space of SL2(C)-representation of π [7].

7.3. Filtrations. For both G = S(Σ) and G = A(Σ), the skein algebra G
and the corresponding skein module V can be endowed with decreasing fil-
trations. Denoted by {FnG}n and {FnV}n, respectively, these filtrations
have the following properties.

(i) The stacking operations of (G,V) are filtration-preserving.
(ii) The Lie bracket [−,−] of G and the Lie action σ of G on V are maps

of degree (−2): for instance, one has [FmG, FnG] ⊂ Fm+n−2G.
(iii) The image of the filtration ofA(Σ) by the surjective map̟ : A(Σ)→

S′(Q |π|) is the filtration of S′(Q |π|) inherited from the I-adic filtra-
tion of Qπ (see Remark 2.2).

(iv) All the maps in the diagrams ( 7.3) and ( 7.4) are filtration-preserving.
(v) Let e : Σ× [−1,+1]→ Σ′× [−1,+1] be an embedding between thick-

ened surfaces as in Remark 7.3. Then the induced map e∗ : S(Σ)→
S(Σ′) and e∗ : A(Σ)→ A(Σ

′) are filtration-preserving.

We do not give details of the construction of these filtrations which are de-
fined by explicit systems of generators; see [43, §5] and [44, §5] for G = S(Σ),
and [47, §4] for G = A(Σ). Instead, we give a few examples.
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Example 7.5. (1) Consider an embedding e of the oriented fatgraph

Γ :=

into Σ× [−1,+1]. Then, the linear combination of knots

e( ) − e( ) − e( ) + e( )

obtained by restriction of e to four cycles in Γ is one of the generators
of F 2A(Σ).

(2) If K is a framed unoriented knot in Σ× [−1,+1], then K + 2 is one
of the generators of F 2S(Σ).

Remark 7.6. As the above discussion indicates, the filtrations on G and V
could be thought of as analogues of filtrations in other contexts: one is the
I-adic filtration of the group algebra Qπ, and the other is the Vassiliev–
Goussarov filtration in the theory of finite-type invariants of links. In fact,
when the surface Σ is a disk, the filtrations on G and V are indeed induced by
the Vassiliev–Goussarov filtration. (See [44, §5.1] and [47, §4.1].) However,
it should be remarked that when Σ has non-trivial fundamental group, the
filtrations on G and V can not be obtained by simply “resolving double points
of singular links” but needs the more general constructions of Goussarov [8]
and Habiro [11].

We shall need the completions of the skein algebra and skein module
resulting from those filtrations:

Ĝ := lim
←−
m

G/FmG, V̂ := lim
←−
m

V/FmV.

Thus we obtain Ŝ(Σ), Ŝ(Σ, •, ∗), Â(Σ) and Â(Σ, •, ∗). From properties (i)
to (iv) of the filtrations listed above, it follows that the stacking operation,
the Lie bracket [−,−], the Lie action σ, and all the maps in diagrams ( 7.3)
and ( 7.4) descend to the completions. Also, property (v) shows that the
maps e∗ descend to completions.

7.4. Dehn twists on skein modules. We are now ready to state two
variations of the formula ( 1.4) for the skein modules V = S(Σ, •, ∗) and
V = A(Σ, •, ∗). The relationship between these and the original version
( 1.4) will be explained in the next subsection.

⋆ The case of the Kauffman bracket skein module.

For a simple closed curve C in Σ, we define the element LS(C) ∈ Ŝ(Σ) by

(7.8) LS(C) :=
−A+A−1

4 log(−A)

(
arccosh

(
−C

2

))2

− (−A+A−1) log(−A).

Here, we regard C as a framed knot in Σ×[−1,+1] using the framing defined
by the surface, and we use the following power series:

(
arccosh

(
−x

2

))2

= −
1

4

∞∑

i=0

i!i!

(i+ 1)(2i + 1)!

(
4− x2

)i+1
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= −(x+ 2)−
1

12
(x+ 2)2 + · · · ∈ Q[[x+ 2]]

−A+A−1

4 log(−A)
=

1− (A+ 1)−
∑

n≥0(A+ 1)n

−4
∑

n≥1(A+ 1)n/n
(7.9)

=
1

2
+

1

12
(A+ 1)2 + · · · ∈ Q[[A+ 1]]

(−A+A−1) log(−A) = −
(
1− (A+ 1)−

∑

n≥0

(A+ 1)n
)
·
∑

n≥1

(A+ 1)n

n

= 2(A + 1)2 + 2(A+ 1)3 + · · · ∈ Q[[A+ 1]]

Theorem 7.7 ([43, Theorem 4.1]). The action of the Dehn twist along C

on the completed skein module Ŝ(Σ, •, ∗) coincides with the exponential of
σ(LS(C)):

tC = exp
(
σ(LS(C))

)
: Ŝ(Σ, •, ∗) −→ Ŝ(Σ, •, ∗).

Remark 7.8. Of course, the power series (−A + A−1) log(−A) is in the
annihilator of the Lie action σ, and Theorem 7.7 still holds if we omit this
term in ( 7.8). However, it plays some role in a relationship between S(Σ)
and the Torelli group of Σ. See [44, Remark 6.5] and Remark 7.19 below.

⋆ The case of the HOMFLY-PT skein module.

Let π+•,∗ := π+(Σ, •, ∗) be the set of regular homotopy classes of properly
immersed paths from • to ∗. Let ν be the simple path from • to ∗ that
traverses the oriented boundary of Σ:

Σ

• ∗ν

We define a group law on π+•,∗ in the following way. Given two properly

immersed paths r1 and r2 from • to ∗, consider the concatenation r1 ν
−1 r2,

smooth its corners and insert a small counterclockwise curl; then the result-
ing path represents the multiplication of r1 and r2:

r1

• ∗ • ∗

r2

• ∗

r1

r2

r1r2 :=

By abusing notation, let ν ∈ π+•,∗ be represented by a simple path regularly
homotopic to ν:

• ∗

Note that ν is a unital element for the group law on π+•,∗.

Let P(Σ, •, ∗) be the free Q[ρ][[h]]-module generated by the set π+•,∗ mod-
ulo the relation that transforms a clockwise little curl to exp(ρh). For a
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properly immersed path r : [0, 1]→ Σ from • to ∗, a framed oriented tangle
ϕ(r) is defined by

ϕ(r) : [0, 1] × [−1,+1] −→ Σ× [−1,+1], (t, s) 7−→
(
r(t), 1/2 − t+ ǫs

)

where ǫ > 0 is a number small enough. This ϕ induces a Q[ρ][[h]]-linear
map ϕ : P(Σ, •, ∗) → A(Σ, •, ∗).

We also define a multiplication law on A(Σ, •, ∗) in the following way.
Given two tangles T1 and T2, stack T1 over T2 and, next, connect the final
point of the string of T1 with the initial point of the string of T2 by a segment
that monotonically goes down (between T1 and T2) and projects onto ν−1

and, finally, insert a small negative kink:

T1

• ∗ • ∗

T2

• ∗

T1

T2

T1T2 :=

Then A(Σ, •, ∗) becomes an associative algebra and the Lie action σ of
A(Σ) on A(Σ, •, ∗) is an action by derivations. Furthermore, the map ϕ is
an algebra homomorphism.

Finally, there is a closure operation |−| : A(Σ, •, ∗)→ A(Σ) which consists
in connecting the two endpoints of the string of a tangle using an arc that
projects onto ν−1:

• ∗ • ∗

T |T |

For any integer n ≥ 1, let ϕn : P(Σ, •, ∗)
⊗n → A(Σ) be the Q[ρ][[h]]-linear

map defined by ϕn(r1 ⊗ · · · ⊗ rn) := |ϕ(r1)| · · · |ϕ(rn)|. There is a filtration
of the module P(Σ, •, ∗) defined in terms of the augmentation ideal of the
group algebra of π+•,∗, and the map ϕn naturally descends to completions:

ϕn : P̂(Σ, •, ∗)
⊗̂n → Â(Σ).

We define the power series λ[n](X1, · · · ,Xn) ∈ Q[[X1 − 1, . . . ,Xn − 1]] in

n variables, inductively, by setting λ[1](X1) := (1/2)(logX1)
2 and

λ[n+1](X1, · · · ,Xn+1) :=

X1 · · ·Xn λ
[n](X1, · · · ,Xn)−X2 · · ·Xn+1 λ

[n](X2, · · · ,Xn+1)

X1 −Xn+1

for n ≥ 1. Now, for any r ∈ π+•,∗, define the element LA(r) ∈ Â(Σ) by

LA(r) :=

(
h/2

arcsinh(h/2)

)2

·(7.10)

(
∞∑

n=1

(−h)n−1

n exp(nρh)
ϕn(λ

[n](r1,n, · · · , rn,n))−
1

3
ρ3h2

)
,

where ri,n := ν⊗(i−1)⊗exp(ρh)r⊗ν⊗n−i and the evaluation λ[n](r1,n, · · · , rn,n)
is understood as substitution of Xi − 1 with ri,n − ν

⊗n.
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Finally, we associate to any simple closed curve C in Σ the element

(7.11) LA(C) := LA(rC) ∈ Â(Σ)

where rC ∈ π
+
•,∗ is a simple path such that ν−1rC is homotopic to C.

Theorem 7.9 ([47, Theorem 5.2 & Theorem 5.1]). For any simple closed
curve C in Σ, the skein element LA(C) is independent of the choice of rC ,
and the action of the Dehn twist along C on the completed skein module

Â(Σ, •, ∗) coincides with the exponential of σ(LA(C)):

tC = exp
(
σ(LA(C))

)
: Â(Σ, •, ∗) −→ Â(Σ, •, ∗).

7.5. Generalized Dehn twists on skein modules. Based on Theorems
7.7 and 7.9, we define generalized Dehn twists on skein modules. In both
cases, there are two possible definitions which we shall refer to as “geomet-
ric” and “algebraic” versions.

⋆ The case of the Kauffman bracket skein module.

Let K be a framed unoriented knot in Σ × [−1,+1]. On the one hand,
we can regard K as an embedding of the annulus R := S1 × [−1,+1] into
Σ× [−1,+1] mapping the core CR := S1×{0} to K, and we extend it to an
embedding e = eK of the solid torus R × [−1,+1] into Σ × [−1,+1] whose
image is a tubular neighborhood of K. By Remark 7.3, there is an induced
map e∗ : S(R) → S(Σ) of skein algebras. The core CR is a simple closed

curve in R, and thus the element LS(CR) ∈ Ŝ(R) is defined. Then we set

Lgeom
S (K) := e∗(LS(CR)) ∈ Ŝ(Σ).

Definition 7.10. Let tgeomS,K := exp
(
σ(Lgeom

S (K))
)
: Ŝ(Σ, •, ∗)→ Ŝ(Σ, •, ∗).

On the other hand, we can regard K as an element of S(Σ) and use
formula ( 7.8) more directly to set

Lalg
S (K) :=

−A+A−1

4 log(−A)

(
arccosh

(
−K

2

))2

− (−A+A−1) log(−A).

Definition 7.11. Let talgS,K := exp
(
σ(Lalg

S (K))
)
: Ŝ(Σ, •, ∗)→ Ŝ(Σ, •, ∗).

Both tgeomS,K and talgS,K are filtration-preserving automorphisms of Ŝ(Σ, •, ∗).
Note that, if K is given by a simple closed curve C in Σ as in Theorem 7.7,
then these automorphisms coincide and are induced by the classical Dehn
twist along C.

We now discuss the relationship between the skein versions of generalized
Dehn twists and the original version ( 1.5). To compare them, note the

following two facts. On the one hand, the automorphisms tgeomS,K and talgS,K

induce automorphisms of Ŝ−1(Σ, •, ∗) in the natural way. On the other hand,
by using the Lie action σ of S′(Q ||π||) on S′(Q ||π||)⊗Qπ•,∗, one can define the
automorphism exp(σ(L(γ))) of the I-adic completion of S′(Q ||π||) ⊗ Qπ•,∗
for any closed curve γ in Σ. By Proposition 7.4 (iii) & (iv), exp(σ(L(γ)))

induces an automorphism of Ŝ−1(Σ, •, ∗).
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Proposition 7.12. Let K be a framed unoriented knot in Σ×[−1,+1] which
projects onto a closed curve γ in Σ. Then,

ψ(L(γ)) = ̟(Lgeom
S (K)) = ̟(Lalg

S (K)) ∈ Ŝ−1(Σ)

where the maps ψ and ̟ are as in ( 7.3). In particular, tgeomS,K and talgS,K

induce the same automorphism of Ŝ−1(Σ, •, ∗) as the one induced by the
automorphism exp(σ(L(γ))) of the I-adic completion of S′(Q |π|)⊗Qπ•,∗.

Proof. In S−1(Σ), the class of a tangle depends only on its homotopy class.

Hence ̟(Lgeom
S (K)) = ̟(Lalg

S (K)). Note also, that for any r ∈ π, the
element |(log r)2| = ||(1/2)(log r)2|| is in the completion of Q ||π||. Since we
have

−A+A−1

4 log(−A)

∣∣∣∣
A=−1

=
1

2

by ( 7.9), it suffices to prove that ψ(||(1/2)(log r)2||) =
(
arccosh(ψ(||r||)/2)

)2
.

We compute

ψ(||(log r)2||) = ψ

(∣∣∣∣∣

∣∣∣∣∣

(
arccosh

(r + r−1

2

))2
∣∣∣∣∣

∣∣∣∣∣

)
= ψ

((
arccosh

( ||r||
2

))2

||1||

)
,

where the second equality is a repeated use of the identity ψ(||(r+r−1)x||) =
ψ(||r||||x||). (See Proposition 7.4.(ii).) Since ψ is an algebra homomorphism
and ψ(||1||) = 2, we obtain the assertion. �

Remark 7.13. The automorphism exp(σ(L(γ))) in Proposition 7.12 re-
stricts to an automorphism of the I-adic completion of Qπ•,∗. If we identify
π•,∗ with the fundamental group π by using the path ν, this automorphism
(which is the one constructed from the exponential of the groupoid version

( 7.5) of the action σ) is identical with the generalized Dehn twist tγ on Q̂π.

⋆ The case of the HOMFLY-PT skein module.

On the one hand, let K be a framed unoriented knot in Σ× [−1,+1]. As we
did in the case of the Kauffman bracket skein module, we consider a tubular
neighborhood e : R× [−1,+1]→ Σ× [−1,+1] of K and set

Lgeom
A (K) := e∗(LA(CR)) ∈ Â(Σ),

where e∗ : Â(R) → Â(Σ) is the induced map of completed skein algebras

and LA(CR) ∈ Â(R) is defined by ( 7.11).

Definition 7.14. Let tgeomA,K := exp
(
σ(Lgeom

A (K))
)
: Â(Σ, •, ∗) → Â(Σ, •, ∗).

On the other hand, let r ∈ π+•,∗. Then, by ( 7.10), the skein element

LA(r) ∈ Â(Σ) is defined.

Definition 7.15. Let talgA,r := exp
(
σ(LA(r))

)
: Â(Σ, •, ∗) → Â(Σ, •, ∗).

Both tgeomA,K and talgA,r are filtration-preserving algebra automorphisms of

Â(Σ, •, ∗), where the algebra structure of Â(Σ, •, ∗) is the one described in
the second part of §7.4. If C is a simple closed curve in Σ as in Theorem 7.9,
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then both tgeomA,KC
and talgA,rC

coincide with the automorphism induced by the

classical Dehn twist along C, where KC is the framed knot in Σ× [−1,+1]
corresponding to C and rC ∈ π

+
•,∗ is chosen as in ( 7.11).

Proposition 7.16. Let K be a framed unoriented knot in Σ × [−1,+1]
which projects onto a closed curve γ in Σ, and let r ∈ π+•,∗ be such that γ is

homotopic to ν−1r. Then,

L(γ) = ̟(Lgeom
A (K)) = ̟(LA(r)) ∈ Q̂ |π|

where the map ̟ is as in ( 7.3). In particular, the following diagram is
commutative:

Â(Σ, •, ∗)
tgeom
A,K

or talg
A,r

//

̟
��

Â(Σ, •, ∗)

̟
��

Ŝ′(Q |π|)⊗̂Q̂π•,∗
exp(σ(L(γ)))

// Ŝ′(Q |π|)⊗̂Q̂π•,∗

Proof. Since the image of a tangle by ̟ depends only on its homotopy class,
we have ̟(Lgeom

A (K)) = ̟(LA(r)). Furthermore, the map ̟ maps h to 0:
hence, in the expression of LA(r) in ( 7.10), all the terms for n ≥ 2 do not
contribute to ̟(LA(r)). Since we have

(
h/2

arcsinh(h/2)

)2
∣∣∣∣∣
h=0

= 1

and λ[1](X1) = (1/2)(logX1)
2, we conclude that ̟(LA(r)) is equal to

|(1/2)(log ν−1r)2| = L(γ). �

7.6. The generalized Dehn twist along a figure eight. In this sub-
section, we work with S−1(Σ), the Kauffman bracket skein algebra “at
A = −1”, and give an explicit description of the generalized Dehn twist
along a figure eight for S−1(Σ). Since all of the constructions in the previ-
ous subsections apply to any compact oriented surface with boundary (cf.
Remark 7.3), we localize the situation and consider a figure eight γ in a
pair of pants Σ0,3, i.e. a surface of genus 0 with 3 boundary components, as
shown in Figure 4.

We fix some notations: take one point from each boundary component
of Σ0,3 and consider the fundamental groupoid based at those three points
{∗0, ∗1, ∗2}. Then the paths r1, r2, r3 and r4 shown in Figure 5 are generators
for this groupoid. Let πj := π1(Σ0,3, ∗j) and πi,j := π1(Σ0,3, ∗i, ∗j) for
any i, j ∈ {0, 1, 2}. Diagrams ( 7.3) and ( 7.4) exist also in this setting:
in particular, we have a surjective map of Lie algebras ψ : S′(Q ||πj ||) →
S−1(Σ0,3) and a surjective map of Lie modules ψi,j : S

′(Q ||πj ||) ⊗ Qπi,j →
S−1(Σ0,3, ∗i, ∗j).

In order to describe the generalized Dehn twist along γ as an automor-
phism of S−1(Σ0,3, ∗i, ∗j) for any i, j, it is enough to determine how it acts
on each of ψ0,1(1⊗ r1), ψ0,2(1⊗ r2), ψ1,1(1⊗ r3) and ψ2,2(1⊗ r4). The last
two ones are fixed by the generalized Dehn twist since r3 and r4 are disjoint
from γ. Let us compute the image of ψ0,1(1⊗r1) which, by Proposition 7.12,



32 YUSUKE KUNO, GWÉNAËL MASSUYEAU, AND SHUNSUKE TSUJI

γ

Figure 4. γ

r1 r2

r3 r4

∗1 ∗2

∗0

Figure 5. r1, r2, r3, r4

is equal to ψ(tγ(r1)) := ψ0,1(1⊗̂tγ(r1)). The computation of the image of
ψ0,2(1⊗ r2) being similar, it is omitted here.

Firstly, we compute

−σ(||γ||)(r1) =

(7.12)

= r2r4r
−1
2 r1r

−1
3 − r1r3r

−1
1 r2r

−1
4 r−1

2 r1

and we observe that γ is the free homotopy class of r1r3r
−1
1 r2r

−1
4 r−1

2 . Next,
we claim that

(7.13) ψ
(
σ(||γ||)(r1)

)
= ψ

(
(r5 − r

−1
5 )r1 − ||r4|| ⊗ r1(r3 − r

−1
3 )
)

where r5 := r1r3r
−1
1 r2r4r

−1
2 is the loop parallel to the boundary component

based at ∗0 and we use the following shorthand notations: ψ := ψ0,1 and
r := 1⊗ r ∈ S′(Q ||π1||)⊗Qπ0,1 for any r ∈ Qπ0,1. To justify ( 7.13), observe
that ( 7.12) implies

σ(||γ||)(r1) = r2(r4 + r−1
4 )r−1

2 r1r
−1
3 − r2r

−1
4 r−1

2 r1r
−1
3

− r1r3r
−1
1 r2(r4 + r−1

4 )r−1
2 r1 + r1r3r

−1
1 r2r4r

−1
2 r1

≡ ||r4|| ⊗ r1r
−1
3 − r

−1
5 r1 − ||r4|| ⊗ r1r3 + r5r1

= (r5 − r
−1
5 )r1 − ||r4|| ⊗ r1(r3 − r

−1
3 )

where the second identity is modulo the kernel of ψ (as it is described by
Proposition 7.4.(iv)). To continue, note that

σ(xn)(ψ(y)) = nxn−1σ(x)(ψ(y))

for any n ≥ 0, x ∈ S−1(Σ0,3) and any path y from ∗0 to ∗1; besides Proposi-
tion 7.12 implies that ψ(L(γ)) = ψ

(
(1/2)(arccosh(||γ||/2))2

)
. Hence ( 7.13)

implies that the action ψ(σ(L(γ))(r1)) = σ(ψ(L(γ))(ψ(r1)) is described by
using the derivative

χ(x) :=
d

dx

(
1

2

(
arccosh

(x
2

))2)
=
x

4

∞∑

i=0

i!i!

(2i+ 1)!

(
4− x2

)i
.

More explicitly, we obtain

ψ
(
σ(L(γ))(r1)

)

= ψ(χ(||γ||))ψ
(
(r5 − r

−1
5 )r1 − ||r4|| ⊗ r1(r3 − r

−1
3 )
)
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= ψ
(
(χ(||γ||) ⊗ (r5 − r

−1
5 )) · r1 − r1 · (χ(||γ||)||r4|| ⊗ (r3 − r

−1
3 ))

)
.

The elements ψ(||γ||), ψ(||r4||), ψ(r3) and ψ(r5) are annihilated by σ(ψ(L(γ))).
Thus we can compute the action of the exponential of σ(ψ(L(γ))) on ψ(r1)
and conclude that

ψ(tγ(r1)) = ψ
(
exp(σ(L(γ)))(r1)

)
= exp

(
σ(ψ(L(γ)))

)
(ψ(r1))

= ψ
(
exp(χ(||γ||) ⊗ (r5 − r

−1
5 )) · r1 · exp(−χ(||γ||)||r4|| ⊗ (r3 − r

−1
3 ))

)
.

7.7. Invariants of integral homology 3-spheres. Using the formulas for
the action of Dehn twists on skein modules (Theorems 7.7 and 7.9), we can
construct invariants of integral homology 3-spheres.

We first explain constructions of embeddings of the Torelli group I :=
I(Σ) of Σ into the completions of the skein algebras S(Σ) and A(Σ). For
this, we assume that the genus g of Σ is at least three. Recall that I is the
kernel of the action of the mapping class groupM on H1(Σ;Z). Based on
earlier results by Birman [1] and Powell [37], Johnson [13] proved that the
group I is generated by elements of the form tC1

tC2

−1, where C1 and C2 are
disjoint non-separating simple closed curves in Σ such that C1 ∪C2 bounds
a subsurface of Σ. Such a couple (C1, C2) is called a bounding pair.

The Lie brackets on S(Σ) and A(Σ) extend to the completions Ŝ(Σ) and

Â(Σ), respectively. Since these Lie brackets are of degree (−2), the third

terms of the filtrations F 3Ŝ(Σ) and F 3Â(Σ) are pronilpotent Lie algebras.
Hence, by using the Baker–Campbell–Hausdorff series, we can regard them
as pronilpotent groups.

Theorem 7.17 ([45, Theorem 3.13 & Corollary 3.15]). Assigning the skein
element ζS(tC1

tC2

−1) := LS(C1) − LS(C2) to any bounding pair (C1, C2)
defines an injective group homomorphism

ζS : I −→ F 3Ŝ(Σ).

Furthermore, for any ξ ∈ I, we have

ξ = exp
(
σ(ζS(ξ))

)
: Ŝ(Σ, •, ∗) −→ Ŝ(Σ, •, ∗).

Theorem 7.18 ([47, Theorem 7.13 & Corollary 7.14]). Assigning the skein
element ζA(tC1

tC2

−1) := LA(C1) − LA(C2) to any bounding pair (C1, C2)
defines an injective group homomorphism

ζA : I −→ F 3Â(Σ).

Furthermore, for any ξ ∈ I, we have

ξ = exp
(
σ(ζA(ξ))

)
: Â(Σ, •, ∗) −→ Â(Σ, •, ∗).

The proofs of the above two theorems use the infinite presentation of the
Torelli group by Putman [40].

Remark 7.19. For any separating simple closed curve C in Σ, we have

(7.14) ζS(tC) = LS(C) and ζA(tC) = LA(C).

If the genus g is 1 or 2, twists along separating simple closed curves are also
needed among the generators of I and one can still define the homomor-
phisms ζS and ζA taking ( 7.14) as definition on those generators.
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We now turn our attention to oriented integral homology 3-spheres. We
fix a Heegaard splitting of S3 = H+

g ∪ι H
−
g , where H

+
g and H−

g are han-
dlebodies of genus g and ι is an orientation-reversing diffeomorphism from
∂H+

g to ∂H−
g . We regard the surface Σ as being obtained by deleting the

interior of a closed disk from ∂H+
g . Given an element ξ ∈ I, the 3-manifold

Mξ := H+
g ∪ι◦ξ H

−
g

is an oriented integral homology 3-sphere. Conversely, any oriented integral
homology 3-sphere arises in this way for some g, see [31, §2]. Let H be the
set of diffeomorphism classes of oriented integral homology 3-spheres, which
forms a commutative monoid under the connected sum.

Let e : Σ× [−1, 1]→ S3 be a tubular neighborhood of Σ. Since the skein
algebras S(S3) and A(S3) are isomorphic to their respective ground rings,

e induces a Q[ρ][[h]]-linear map e∗ : Â(Σ)→ Q[ρ][[h]] and a Q[[A+1]]-linear

map e∗ : Ŝ(Σ)→ Q[[A+ 1]].

Theorem 7.20 ([46, Theorem 1.1]). There is an invariant of oriented in-
tegral homology 3-spheres zS : H → Q[[A+ 1]] which is defined by

zS(Mξ) :=
∞∑

i=0

1

i!(−A+A−1)i
e∗
(
(ζS(ξ))

i
)
∈ Q[[A+ 1]]

for any element ξ ∈ I.

Theorem 7.21 ([47, Theorem 9.1]). There is an invariant of oriented in-
tegral homology 3-spheres zA : H → Q[ρ][[h]] which is defined by

zA(Mξ) :=

∞∑

i=0

1

i!hi
e∗
(
(ζA(ξ))

i
)
∈ Q[ρ][[h]]

for any element ξ ∈ I.

We refer to the papers [46] and [47] for further explanations about these
invariants, and we only mention here some of their properties:

(i) the maps zS and zA are monoid homomorphisms;
(ii) for any n > 0, the truncations zS : H → Q[[A + 1]]/((A + 1)n+1)

and zA : H → Q[ρ][[h]]/(hn+1) are finite-type invariants of degree 2n
using the definition of [5, 11];

(iii) if ξ ∈ ζ−1
S (F 2n+1Ŝ(Σ)), we have zS(Mξ) ∈ 1 + ((A+ 1)n);

(iv) if ξ ∈ ζ−1
A (F 2n+1Â(Σ)), we have zA(Mξ) ∈ 1 + (hn).

Note that the assumptions of (iii) and (iv) are satisfied if ξ is in the (2n−1)st
term of the lower central series of I.

There is a ring isomorphism Q[[q − 1]] ∼= Q[[A + 1]] obtained by substi-
tuting q with A4. With this identification, we can regard the invariant zS
as taking values in Q[[q − 1]]. We expect that zS : H → Q[[q − 1]] equals
the Ohtsuki series [34], which is the “perturbative” quantum invariant of
integral homology 3-spheres derived from the quantum group Uq(sl2). We
also expect that, for any integer N , the “perturbative” slN -quantum in-
variant [24] of M ∈ H can be recovered from zA(M) by the substitution

ρ 7→ (N/2) log q/(−q1/2 + q−1/2) and h 7→ −q1/2 + q−1/2.
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