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In a standard Rayleigh-Bénard experiment, a layer of fluid is confined between two
horizontal plates and the convection regime is controlled by the temperature difference
between the hot lower plate and the cold upper plate. The effect of direct heat injection
into the fluid layer itself, for example by light absorption, is studied here theoretically. In
this case, the Nusselt number (Nu) depends on three non-dimensional parameters: the
Rayleigh (Ra) and Prandtl (Pr) numbers and the ratio between the spatial extension
of the heat source (l) and the height of the fluid layer (h). For both the well known
classical and ultimate convection regimes, the theory developed here gives a formula for
the variations of the Nusselt number as a function of these parameters. For the classical
convection regime, by increasing l/h from 0 to 1/2, Nu gradually changes from the
standard scaling Nu ∼ Ra1/3 to an asymptotic scaling Nu ∼ Raθ, with θ = 2/3 or θ = 1
by adopting, respectively, the Malkus (1954) theory or the Grossmann & Lohse (2000)
theory. For the ultimate convection regime, Nu gradually changes from Nu ∼ Ra1/2

scaling to an asymptotic behaviour seen only at very high Ra for which Nu ∼ Ra2. This
theory is validated by the recent experimental results given by Bouillaut et al. (2019) and
also shows that for these experiments, Ra and Re numbers were too small to observe
the ultimate regime. The predictions for the ultimate regime cannot be confirmed at
this time due to the absence of experimental or numerical work on convection driven by
internal sources and for very large Ra numbers.

1. Introduction

Rayleigh-Bénard (RB) convection is a classical fluid dynamics problem and has been
the subject of numerous experimental, theoretical and numerical studies. When Rayleigh
numbers are high (generally above 106), two distinct theories, called classical and ulti-
mate, give two distinct asymptotic behaviours for the Nusselt number as a function of the
Rayleigh number. The classical theory states that the heat flux should be independent
of the height of the fluid layer leading from the definition of Nu and Ra to the following
asymptotic law: Nu ∼ Ra1/3 (Malkus 1954; Priestley 1954; Grossmann & Lohse 2000).
The ultimate theory asserts that for very high Rayleigh numbers, the heat flux should
become independent of the fluid dissipative coefficients ν and κ giving an asymptotic
law like Nu ∼ Ra1/2 (Kraichnan 1962; Spiegel 1971; Siggia 1994; Chavanne et al. 1997;
Ahlers et al. 2009; Grossmann & Lohse 2011; Chillà & Schumacher 2012).
This paper is an extension of RB theories in the case of a heat source spatially

distributed within the fluid layer. An example of this kind of heating is given by Lepot
et al. (2018); Bouillaut et al. (2019). The authors experimentally developed a new RB
cell concept for which heat is not injected through thermal conduction between the lower
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Figure 1. Modified RB experiment in the case of l/δT < 1 (left) and in the case of l/δT > 1
(right). The heat is injected in volume near the lower plate (red zone) while the fluid is cooled
in volume near the upper plate (blue area), both with a characteristic length l. The two thermal
boundary layers with a width of δT are also displayed (hatched areas). The profiles of the

volumetric (positive and negative) power source (qv), the mean heat flux (Φ) and the mean

temperature (T ) are also shown for each case.

heating plate and the fluid above it. In their experiment, the lower plate is transparent
and the working fluid is a homogeneous mixture of water and dye. A powerful spotlight
placed under the lower plate shines through the fluid, and the light, after passing through
the transparent plate, is absorbed by dye and therefore by the fluid located near the plate.
According to the Beer-Lambert law, this kind of heating corresponds to a volume heat
source that decays exponentially from the lower plate to a characteristic height l, leading
to a local heating of the following form:

qv(z) =
Q

l
exp

(

−z

l

)

, (1.1)

where Q is the total heat flux radiated by the spotlight into the fluid (in W/m2) and z
is the vertical coordinate with z = 0 on the lower plate. The characteristic height l can
be changed since it is inversely proportional to the dye concentration. Hereafter, (1.1) is
assumed to be valid even if the model proposed in this article can easily be generalized
to other forms of local heating rates.
Lepot et al. (2018); Bouillaut et al. (2019) and Doering (2019) claimed that the study

of this type of modified RB experiments should allow progress in understanding turbulent
convection in both natural flows and a conventional RB cell. Indeed, in many geophysical
and astrophysical flows, convection is driven by internal heating due to, for example, the
radioactive decay in the Earth’s mantle or the thermonuclear reactions in stars. It is
therefore easy to understand that a modified RB experiment is a first approach to model
turbulent flows in natural systems even if Ra numbers are very different. In addition this
work also aims to provide interesting information on turbulent convection. Indeed, heat
transport in a conventional RB cell is essentially controlled by the thermal boundary
layers near the plates and their stability explains the difference between the two theories
of convection (the classical and the ultimate). To investigate these boundary layers, the
location of the heat sources can be easily changed by adjusting the absorption height
l (Lepot et al. 2018; Bouillaut et al. 2019). This is a similar approach to that used by
other authors, which consists of replacing the lower and upper plates with rough plates
(Shen et al. 1996; Roche et al. 2001; Qiu et al. 2005; Stringano et al. 2006; Tisserand



Model for classical and ultimate regimes of radiatively driven turbulent convection 3

et al. 2011; Zhu et al. 2017, 2019). Roche et al. (2001) and Tisserand et al. (2011)
reported an increase of the Nu vs Ra scaling exponent from 1/3 to 1/2, even if the
range of Ra explored and their interpretation of it was very different. Roche et al. (2001)
interpreted the transition for the exponent to the value 1/2 as a turbulent transition
for the thermal boundary layers because the Ra numbers were high (> 1012) and the
transition was already observed with smooth plates. On the contrary, Tisserand et al.
(2011) interpreted the increase in the exponent as a destabilization by buoyancy of the
fluid placed between the rough elements. The observation of the exponent 1/2 is then
fortuitous in the latter case and, as underlined by Zhu et al. (2017); Rusaouën et al.
(2018), the exponent 1/2 can only be seen over a limited range of the Rayleigh number.
By increasing Ra further, the exponent decreases and returns to its classical value close
to 1/3. Note that the range of Ra for which exponent 1/2 is observed can be increased
using multi-scale roughness (Zhu et al. 2019).

In this theoretical study, a model is proposed to deduce scaling laws of the Nusselt
number as a function of the three non-dimensional parameters that control turbulent
convection i.e. Ra, Pr and the ratio of absorption height to cell height (l̃ = l/h). In
a standard RB experiment, both plates play the same role (for a small temperature
difference and by adopting the Boussinesq approximation) and the corresponding thermal
boundary layers have the same behaviour and therefore the same width (δT ). To have
two similar boundary layers in a modified RB cell, the upper part of the cell must be
cooled with the same power profile as that used for the heating process, so qv(z) =
−Q

l exp(−h−z
l ). The injected or extracted power profile is shown in Fig. 1 for both

cases l/δT < 1 (left) and l/δT > 1 (right). When l → 0, this experiment becomes a
standard RB experiment while, when the length l increases, the lower and upper thermal
boundary layers are heated and cooled respectively. Finally, when l becomes greater
than δT , the bulk flow is also heated and cooled simultaneously since the lower region is
heated while the upper region is cooled (Fig. 1 right). The Rayleigh number in a modified
RB experiment can be defined as in a conventional RB cell by using the temperature
difference between the two plates (∆T = Th − Tc), between the lower plate and the
mean bulk flow (∆T = 2(Th − Tb)) or between the mean bulk flow and the upper plate
(∆T = 2(Tb − Tc)). When Rayleigh numbers are high, it is assumed that the convective
flow of a modified RB experiment is strong enough to impose an almost constant mean
temperature over time in the bulk flow, i.e. outside the boundary layers (see Fig. 1), as
experimentally observed in a standard RB experiment.

A major difference between modified and standard RB experiments concerns the mean
heat flux through the cell from the bottom plate to the top plate. Indeed, when a steady
state is reached, the heat flux averaged over a horizontal section must be independent
of the vertical coordinate (z) for a standard RB experiment, whereas for a modified
RB cell, this heat flux cannot be constant even in a steady state. When considering a
horizontal slice of fluid, the energy given in volume must be evacuated outside the slice,
which requires a gradient of the mean heat flux in the fluid (see Fig. 1). For z = 0
and z = h, the heat flux is zero because the two horizontal plates are assumed to be
perfectly insulated. Far from the plates, in the center of the cell where l ≪ z ≪ h − l,
the volumetric heat source qv is close to 0, and energy conservation leads to a heat flux
equal to Q~ez. Thus, with the exception of the blue and red regions shown in Fig. 1, Q
represents the heat flux through the cell and the Nusselt number can be defined as in a
standard RB experiment as

Nu =
Qh

λ∆T
, (1.2)
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where λ is the thermal conductivity of the fluid and h the height of the cell. As previously
mentioned, when l̃ → 0, Nu tends towards the Nusselt number that can be obtained in
the same cell but with standard RB conditions that are a constant heat flux and fixed
temperatures at both plates. Hereafter, this Nusselt number will be taken as a reference
and called Nu0(Ra, Pr) = liml̃→0 Nu(Ra, Pr, l̃).
Finally, it is questionable whether this type of modified RB experiment can be per-

formed experimentally. Indeed, heating in volume can be achieved using either strong
light (Lepot et al. (2018)), an electric current or even by fixing heating elements in the
fluid (Kulacki & Goldstein (1972); Goluskin (2015); Goluskin & van der Poel (2016)).
On the contrary, cooling in volume is more difficult to achieve experimentally. However,
Lepot et al. (2018); Bouillaut et al. (2019) have shown that, in their experiments,
turbulent convection develops quasi-stationary internal temperature gradients leading
to a temperature difference between the lower plate and the bulk flow that is almost
constant over time (see Fig. 1 B in Lepot et al. (2018)). Therefore, the theoretical results
given below will be compared in section 4 with those obtained experimentally by Lepot
et al. (2018); Bouillaut et al. (2019). The theoretical model is based, on the one hand,
on the known structure of the flow and temperature fields observed experimentally and
numerically in a standard RB cell at high Rayleigh numbers (generally > 106), on the
other hand, on the different theories of RB convection given in the literature.

2. Background on Nu vs Ra scalings for standard RB convection

For high Rayleigh numbers, convective flow is turbulent almost everywhere in the cell
except in two thin thermal boundary layers located against the lower and upper plates.
This dynamic structure of the flow yields to a particular field for the mean temperature.
Indeed, in the bulk flow, turbulent convection produces large temporal and spatial
variations for temperature fluctuations but an almost uniform mean temperature field
with T b = (Th+Tc)/2 for symmetry reasons and assuming the Boussinesq approximation
is valid (the mean temperature profile is represented in Fig. 1). On the contrary, the
mean temperature increases or decreases by ∆T/2 = (Th−Tc)/2 in each boundary layer.
Therefore, the heat transfer averaged over a horizontal section is dominated by turbulent
convection in the bulk flow (Φ ≈ ρcpw′T ′, where w′ and T ′ are the fluctuations of the
vertical velocity and temperature respectively), whereas the heat transfer is driven by
thermal conduction in the two thin boundary layers (Φ ≈ −λ∂T/∂z, where T (z) is the
temperature averaged both on time and on a horizontal section located at the distance z
from the plate). The thickness of each thermal boundary layer (δT ) is controlled by the
temperature difference ∆T/2 and the mean heat flux assuming that Φ can be written
as Φ = λ∆T/(2δT ). This last equation is valid regardless of the convection regime or
the adopted theory (see Kraichnan (1962) and Grossmann & Lohse (2000)), leading to
a ratio δT /h depending only on the Rayleigh number as

δT
h

=
1

2Nu0(Ra, Pr)
. (2.1)

2.1. Classical regime by Malkus (1954)

The first regime of convection, called classical, was proposed by Malkus (1954);
Priestley (1954). It has the merit of simplicity and predicts a scaling law Nu0 ∼ Ra1/3,
hence with an exponent 1/3 close to the exponents observed both in the experiments
and the numerical simulations in the range of Ra between 106 and 1012. This regime of
convection is entirely characterized by a constant Rayleigh number for each boundary



Model for classical and ultimate regimes of radiatively driven turbulent convection 5

layer as:

gα∆Tδ3T
2νκ

= Ra∗. (2.2)

Using (2.1) and (2.2), we obtain for the classical regime:

Nu0 =

(

Ra

24Ra∗

)1/3

. (2.3)

2.2. Ultimate regime by Kraichnan (1962)

For very large Rayleigh numbers, the thermal boundary layers observed in the case of
the classical regime can be destabilized and Kraichnan (1962); Spiegel (1971) assumed
that they could become similar to the velocity boundary layers observed in the case of a
fully developed mean shear flow. This ultimate regime is then characterized by a constant
but Prandtl-dependent Péclet number for each thermal boundary layer:

v∗0δT
κ

= Pe∗(Pr), (2.4)

where κ = λ/(ρcp) is the thermal diffusivity of the fluid. For small Prandtl numbers,
the thickness of the viscous sublayer is smaller than δT leading to a constant Péclet
number Pe∗ = Pe∗Pr→0. On the contrary, at moderate Pr numbers, Pe∗ varies as

√
Pr

since Pe∗ =
√

Pe∗Pr→0ResPr, where Res is the characteristic Reynolds number for the
top of the viscous sublayer (Kraichnan 1962). The new unknown parameter v∗0 can be
interpreted as a friction velocity and measures the rms value of velocity fluctuations at
the edge of each boundary layer, similarly to the friction velocity defined in the case of
a channel flow. Unlike the classical regime for which the characteristic Rayleigh number
Ra∗ depends only on ∆T and δT , Pe∗ is linked to the convective flow in the bulk by
the velocity fluctuations v∗0 . Thus, determining the Nusselt number for the ultimate
regime requires additional assumptions and equations. The parameter v∗0 is an increasing
function of the large-scale mean velocity (U0), also called as the wind turbulence. By
analogy with what is well known for the channel flow, Kraichnan (1962) assumed that
v∗0 ∼ U0/ lnRe0, with Re0 = U0h/ν. In addition, the wind velocity is obtained by writing
that the Richardson number in the bulk flow is of order 1, i.e. Ri = gα(w′T ′)h/U3

0 ∼ 1.
Using the definitions of Re0, Ra and Nu0, this last equation yields to

Re30 ∼
RaNu0

Pr2
. (2.5)

We can note that (2.5) is valid both for the classical regime obtained by Malkus (1954),
the ultimate regime proposed by Kraichnan (1962), and the two convection regimes (II
and IV) of the Grossmann & Lohse (2000) theory (see section 2.3). Using (2.1), (2.5) and
v∗0 ∼ U0/ lnRe0, (2.4) becomes

Re20 ln(Re0) ∼
Ra

PrPe∗
. (2.6)

Then, using (2.6), (2.5) gives the Nusselt number for the ultimate regime:

Nu0 ∼
(

Pr Ra

[Pe∗ ln(Re0)]3

)1/2

. (2.7)

For small Pr numbers (typically Pr < Pe∗Pr→0/Res), Nu0 ∼ Pr1/2Ra1/2/(lnRe0)
3/2

while for moderate Pr numbers, Nu0 ∼ Pr−1/4Ra1/2/[ln(Re0)]
3/2.
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2.3. RB theory by Grossmann & Lohse (2000)

Grossmann & Lohse (2000) (GL) proposed a RB theory to describe with more precision
the Rayleigh and Prandtl dependence of the Nusselt number. The kinetic energy and
thermal dissipation rates which are defined respectively as ǫu = ν

2

∑

i,j(∂jui+∂iuj)
2 and

ǫT = κ
∑

i(∂iT )
2 play a central role in GL theory. In steady state and averaging over the

whole RB cell the two equations of conservation of the turbulent kinetic energy (12
∑

i u
2
i )

and of the square of the temperature give the following two exact relations:

〈ǫu〉 =
ν3

h4

(Nu0 − 1)Ra

Pr2
, (2.8)

〈ǫT 〉 = κ

(

∆T

h

)2

Nu0. (2.9)

The key idea of the GL theory is to split both mean dissipation rates into two contribu-
tions each, one from the bulk (Bu) and one from the boundary layers (BLs) as

〈ǫu〉 = 〈ǫu〉Bu + 〈ǫu〉BL, (2.10)

〈ǫT 〉 = 〈ǫT 〉Bu + 〈ǫT 〉BL, (2.11)

where

〈ǫu〉Bu =
1

h

∫ h−δu

δu

ǫu(z)dz and 〈ǫT 〉Bu =
1

h

∫ h−δT

δT

ǫT (z)dz (2.12)

are, respectively, the viscous and thermal dissipation taking place in the bulk flow.
Whereas the viscous and thermal dissipation taking place in the boundary layers can
be written as:

〈ǫu〉BL =
2

h

∫ δu

0

ǫu(z)dz and 〈ǫT 〉BL =
2

h

∫ δT

0

ǫT (z)dz. (2.13)

In (2.12) and (2.13), the kinetic energy and thermal dissipation rates are first averaged
over a horizontal cross-section giving ǫu and ǫT , respectively. The thickness of the thermal
BLs (δT ) is given by (2.1) while a Blasius-type layer is assumed for the viscous BLs, with
a thickness of

δu
h

=
a√
Re0

. (2.14)

Note that the prefactor a is obtained by match with a record of experimental results
(Stevens et al. 2013).
To obtain the Rayleigh dependence of the Nusselt and Reynolds numbers, ǫu and ǫT

need to be estimated both in the bulk flow and in the BLs:

〈ǫu〉Bu ∼ U2
0

h/U0

(

1− δu
h

)

≈ ν3

h4
Re30, (2.15)

〈ǫT 〉Bu ∼ (∆T )2

h/Uedge
0

(

1− δT
h

)

≈ κ

(

∆T

h

)2

Re0Prf

(

2aNu0√
Re0

)

, (2.16)

〈ǫu〉BL ∼ ν

(

U0

δu

)2
δu
h

=
ν3

h4

Re
5/2
0

2a
, (2.17)

〈ǫT 〉BL ∼ κ

(

∆T

δT

)2
δT
h

= 2κ

(

∆T

h

)2

Nu0. (2.18)

In (2.16), the relevant velocity at the edge between thermal BL and the thermal bulk
can be less than U0, depending on the ratio: δu/δT = 2aNu0/

√
Re0. Grossmann & Lohse
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(2001) introduced a function 0 6 f 6 1 saying that the relevant velocity at the edge then

becomes Uedge
0 = U0f(δu/δT ), with f → 1 when δu/δT → 0 and f → 0 for δu ≫ δT .

They gave f(x) = (1 + xn)−1/n, with n=4 as an example of function f .
Grossmann & Lohse (2001) have also extended those estimations of the viscous and

dissipation rates for very large Prandtl numbers for which (2.14) cannot stay valid.
Indeed, when Pr is high enough, δu must saturate to a maximum value δu(Rec) lower than
the height of the cell. The critical Reynolds number Rec was estimated from experimental
data to 0.28 by Grossmann & Lohse (2001) and 0.35 by Stevens et al. (2013). However,
for the sake of simplicity, only the case of Re0 ≫ Rec is considered here.
From decomposition of the two global dissipation rates (2.10) and (2.11), four regimes

of convection can be defined depending on whether the bulk or the BL contributions
dominate the global dissipations. Besides, each of these four regimes is in principle divided
into two subregimes, depending on whether the thermal BL or the kinetic BL is larger.
The two 〈ǫu〉Bu bulk-dominated regimes (referred to as II and IV) are first presented
because most of the experimental and numerical results fall under one of these two
regimes (see figure 8 from Stevens et al. (2013)).

2.3.1. Regimes II and IV, 〈ǫu〉 ∼ 〈ǫu〉Bu

For regimes II and IV , the kinetic energy dissipation rate is dominated by its bulk
contribution. Combining (2.8) and (2.15), and assuming Nu0 ≫ 1, we obtain (2.5)
again. Regime IV is obtained for high Ra numbers for which thermal dissipation rate is
dominated by its bulk contribution. Combining (2.9) and (2.16), it yields to:

Nu0 ∼ Re0Prf

(

2aNu0√
Re0

)

(Regime IV ). (2.19)

For lower Ra numbers, the thermal dissipation rate is dominated by its BL contribution.
However, combining (2.9) and (2.18) yields to a trivial equation for Nu0. To obtain a
scaling relation between Nu0 and Re0, Grossmann & Lohse (2000) proposed to consider,
in each thermal BL, the order of magnitude of the different terms of energy equation:

ux∂xT + uz∂z = κ∂zzT. (2.20)

Both terms on the left-hand side are of order Uedge
0 ∆T/h whereas κ∂zzT ∼ κ∆T/δ2T .

Hence, using (2.1), one gets

Nu0 ∼
√

Re0Prf

(

2aNu0√
Re0

)

(Regime II). (2.21)

Combining (2.5) and (2.19) or else (2.5) and (2.21), we obtain:

Nuθi
0 ∼ (Nu0RaPr)1/3f

[

2a(Nu0RaPr)1/3

(Ra/Nu0)1/2

]

, with θII = 2 and θIV = 1. (2.22)

For Prandtl numbers small or large enough, f(x) ≈ 1 (δT ≫ δu) or f(x) ≈ 1/x (δu ≫ δT ),
and (2.22) can be simplified as follows:

Nu0 ∼
{

(RaPr)1/(3θi−1), for δT ≫ δu, (2.23a)

Ra1/(2θi+1), for δu ≫ δT . (2.23b)

We can note that the sub-regime IVu (δu ≫ δT ) gives the same scaling as predicted by
Malkus (1954), i.e Nu0 ∼ Pr0Ra1/3.
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2.3.2. Regimes I and III, 〈ǫu〉 ∼ 〈ǫu〉BL

For these two regimes, (2.5) needs to be replaced by

Re
5/2
0 ∼ RaNu0

Pr2
. (2.24)

Equation (2.24) is obtained by combining (2.8) and (2.17). As for regime IV , thermal
dissipation rate is dominated by its bulk contribution in regime III and (2.19) is valid.
On the contrary, in regime I, we use (2.21) instead of (2.19), as for regime II. The Ra-
and Pr-dependent Nusselt number is then given by

Nuθi
0 ∼ (Nu0Ra

√
Pr)2/5f

{

2a(Nu0Ra
√
Pr)2/5

[Ra3/(Nu2
0Pr)]1/5

}

, with θI = 2 and θIII = 1. (2.25)

For Prandtl numbers small or large enough, (2.25) becomes:

Nu0 ∼
{

(Ra
√
Pr)2/(5θi−2), for δT ≫ δu, (2.26a)

Ra3/(5θi+2)Pr−1/(5θi+2), for δu ≫ δT . (2.26b)

2.3.3. Grossmann & Lohse (2001) theory for the whole parameter (Ra, Pr) plane.

The 4 previous regimes can only be observed experimentally and numerically for
extreme values of Ra and Pr numbers. For instance regime IV corresponds to very
high Ra numbers but in this case ultimate convection could appear while regime II
is valid only for very small Ra numbers for which convection is not really turbulent.
Grossmann & Lohse (2001) proposed to describe convection at any Ra and Pr numbers
as a mixture of these 4 regimes. By replacing the expressions of 〈ǫu〉Bu (2.15) and 〈ǫu〉BL

(2.17) in the balance equation for the viscous dissipation rate (2.10), they obtained this
first generalised equation:

RaNu0

Pr2
= c1

Re
5/2
0

2a
+ c2Re30. (2.27)

Using (2.19) and (2.21), the second generalised equation can be written as:

Nu0 = c3

√

Re0Prf

(

2aNu0√
Re0

)

+ c4Re0Prf

(

2aNu0√
Re0

)

. (2.28)

Equations (2.27) and (2.28) give the dependency in Ra and Pr of both Re0 and Nu0

numbers, assuming the 5 coefficients (a,c1-c4) are known. Stevens et al. (2013) determined
these coefficients from previous experimental measurements in the literature.

3. Nu vs Ra scalings for internal source driven convection

Using the assumptions discussed below, the Nu vs Ra scalings presented in previous
section for standard RB experiments are generalized for the modified experiments de-
scribed in the introduction and in figure 1. The basic assumption is to state that, for high
Ra numbers, the dynamical structure of the convective flow is the same in the standard
and modified RB experiments. At a constant Ra number, heating in volume produces
the same type of thermal boundary layers as those observed in a standard RB cell. The
increase in the power of the heating and cooling sources results in an increase in the
bulk flow temperature, but the two types of convection experiments are so similar and
the mechanisms that control the convective flow are so robust that for both classical and
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ultimate regimes, the values of Ra∗ and Pe∗ are identical in both types of experiments.
For the GL theory, the a parameter and the 4 dimensionless prefactors (1 by regime) are
assumed to be independent of the experiment under consideration.
Secondly, in steady state, the equation of heat averaged over a horizontal section can

be written as

d(w′T ′)
dz

− λ
d2T

dz2
= qv(z). (3.1)

The internal heating and cooling sources are balanced either by convective flux in the bulk
flow or by a conductive flux in both boundary layers. Hereafter, only the lower boundary
layer will be considered since the upper boundary layer has the same behaviour. In the
boundary layer, by neglecting the convective term and using the expression of qv(z) (see
1.1), (3.1) can be integrated twice to obtain:

Th − T (z) =
Qh

λ

{

z

h
− l

h
[1− exp(−z/l)]

}

. (3.2)

For z = δT and using the definition of the Nusselt number (1.2), (3.2) yields to

1

2Nu
=

δT
h

− l

h
[1− exp(−δT /l)]. (3.3)

3.1. Extension of the classical regime given by Malkus

In the classical regime by Malkus, (2.2) yields to

δT
h

=

(

2Ra∗

Ra

)1/3

=
1

2Nu0
. (3.4)

Using (3.4), (3.3) becomes

Nu

Nu0
=

1

1− 2 l̃ Nu0

[

1− exp
(

− 1
2 l̃ Nu0

)] . (3.5)

In (3.4) and (3.5), Nu0 is the Nusselt number for a standard RB experiment in the
classical regime but it also represents the limit of Nu when l̃ = l/h → 0. Even if Nu
depends on both parameters l̃ and Ra, Eq. (3.5) shows that the Nusselt ratio Nu/Nu0

is a function of a single variable that is the product of l̃ and Nu0. This is the main result
of the present theory and is tested against experimental results in section 4.
The limits of (3.5) when l̃ → 0 and l̃Nu0 ≫ 1 are given in Table 1. It can be noted

that, when the product of l̃ and Nu0 increases from 0 to ∞, the Ra-dependent Nusselt
number (Nu) increases from a power law of one third to a two thirds, i.e. with an
exponent greater than 1/2 which characterizes the ultimate regime for a standard RB
experiment (Eq. 2.7).

3.2. Extension of the Kraichnan’s ultimate regime

Unlike the classical regime for which the thickness of the boundary layers depends only
on Ra whatever the type of experiment considered (see (3.4)), Eq. (2.4) shows that, in the
ultimate regime, δT depends on the velocity fluctuations in the bulk (v∗) and therefore
on the thermal power injected into the bulk flow. Assuming as before that v∗ ∼ U/ lnRe
(Kraichnan 1962), (2.4) becomes for a modified RB experiment

δT
h

=
Pe∗

Pr

ln(Re)

Re
=

(δT )0
h

Re0
ln(Re0)

ln(Re)

Re
. (3.6)
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For a standard RB experiment, (δT )0 is given by (2.1) and thus (3.6) becomes

δT
h

=
1

2Nu0

Re0
Re

[

1 +
ln(Re/Re0)

ln(Re0)

]

. (3.7)

As assumed previously for standard RB experiments, the Richardson number in the
bulk flow is taken of order 1 i.e. Ri = gα(w′T ′)h/U3 = gακQh/(λU3) ∼ 1 yielding to
Re3 ∼ RaNu/Pr2, similarly to (2.5). Therefore, at constant Rayleigh number, the ratio
of the Reynolds numbers for standard and modified RB experiments is proportional to
the one-third power law of the ratio of the Nusselt numbers

Re

Re0
=

(

Nu

Nu0

)1/3

. (3.8)

Furthermore, (3.8) is valid both for ultimate and classical regimes of convection. Using
(3.7) and (3.8), (3.3) can be written as

N 2 =
1

1 + α− 2l̃Nu0N
[

1− exp
(

− 1+α
2l̃Nu0N

)] , (3.9)

where N = (Nu/Nu0)
1/3 and α = lnN/ lnRe0.

In the ultimate regime and similarly to the classical regime case, the ratio Nu/Nu0

is a function of the product l̃ ×Nu0. However, α also depends on the Rayleigh number
through the Reynolds number Re0. When l̃ → 0, α ≈ 0 since on the one hand N → 1 and
on the other Reynolds numbers Re0 must be large enough to reach the ultimate regime.
The limit of (3.9) when l̃ → 0 is then given in Table 1. For large values of l̃, (3.9) can
be solved numerically for each chosen couple (Ra,l̃) to obtain N and then Nu. At high
Nu0 or else at very high Rayleigh numbers, Nu scales asymptotically as Ra2 i.e. with
an exponent 2 well above 1/2 (see Table 1).

3.3. Extension of the GL theory

The balances of the turbulent kinetic energy and of the thermal variance give the
following two exact relations (Shraiman & Siggia 1990; Grossmann & Lohse 2000):

〈ǫu〉 =
gα

h

[

∫ h

0

Φ(z)

ρcp
dz − λ∆T

ρcp

]

, (3.10)

〈ǫT 〉 =
1

h

∫ h

0

T (z)
qv(z)

ρcp
dz +

Th Φ(0)− Tc Φ(h)

ρcp h
. (3.11)

Actually, for a standard RB experiment, the convective flow is driven by the thermal
boundary conditions (∆T or Φ(z=0)) whereas for the modified RB experiment presented
in Fig. 1, the volumetric power source controls the intensity of the convective flow.
Besides, for the second case, the lower and upper plates are assumed to be perfectly
insulated conducting to Φ(0) = Φ(h) = 0. In steady state, energy conservation yields to
the following relation between the heat flux and volumetric power source:

Φ(z)

Q
=











1− exp
(

−z

l

)

for z 6 h/2,

1− exp

(

h− z

l

)

for h/2 6 z 6 h.
(3.12)
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Using (3.12) and (1.2), and assuming Nu ≫ 1, (3.10) becomes:

〈ǫu〉 =
ν3

h4

NuRa

Pr2
(1− C). (3.13)

The corrective term C = 2l̃
[

1− exp
(

− 1
2l̃

)]

only depends on l̃ and varies as 2l̃ when

l̃ → 0. Thus, the expression giving the dissipation rate of kinetic energy averaged over
the whole cell (3.13) is very similar to that obtained for a standard RB experiment (2.8).
As for the thermal dissipation rate, its average over the cell is related to the profile

of the mean temperature (Eq. 3.11). As the GL theory is based on Prandtl-Blasius-
Pohlhausen laminar boundary layers (Grossmann & Lohse 2000), the mean temperature
can be written as:

2
T (z)− Tb

∆T
=















1− ΘP

(

z

δT

)

for z 6 h/2,

ΘP

(

h− z

δT

)

− 1 for h/2 6 z 6 h,

(3.14)

with ΘP the Pohlhausen temperature profile which is assumed to be independent of the
Prandtl number. In particular, ΘP (0)=0 and ΘP (η)→1 when η ≫ 1. Using (3.14) and
(1.1), (3.11) then becomes:

〈ǫT 〉 = κ

(

∆T

h

)2

Nu
δT
l

∫ h/(2δT )

0

[1−ΘP (η)] exp

(

−δT
l
η

)

dη. (3.15)

Equation (3.15) shows that 〈ǫT 〉 depends both on l̃ = l/h and δT /h. The hypothesis
adopted in sub-section 3.1 for extending the classical regime of Malkus is again adopted
here (Eq. 3.4). δT /h is assumed to be only controlled by the Rayleigh number so that
δT /h = 1/[2Nu0(Ra)], where Nu0 is the Nusselt number for a standard RB experiment.
Equation (3.15) becomes:

〈ǫT 〉 = κ

(

∆T

h

)2

NuG(2Nu0l̃), (3.16)

with

G(y) = 1

y

∫ ∞

0

[1−ΘP (η)] exp

(

−η

y

)

dη. (3.17)

Then, the central idea of the GL theory is to split the dissipation rates into two
contributions (see (2.10)-(2.13)). Generalisation of (2.15)-(2.17) are:

〈ǫu〉Bu ∼ U2

h/U

(

1− δu
h

)

≈ ν3

h4
Re3, (3.18)

〈ǫT 〉Bu ∼ (∆T )2

h/Uedge

(

1− δT
h

)

≈ κ

(

∆T

h

)2

RePrf

(

2aNu0√
Re

)

, (3.19)

〈ǫu〉BL ∼ ν

(

U

δu

)2
δu
h

=
ν3

h4

Re5/2

2a
. (3.20)

To obtain (3.19), the relevant velocity at the edge between the thermal BL and bulk
is assumed to be expressed as Uedge = Uf(δu/δT ), with the same function f used for
standard RB convection. Besides, we have

δu
δT

=
2Nu0√

Re
. (3.21)
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Combining (3.13) and (3.18), and using (2.5), we obtain the following first equation
valid for both regimes II and IV :

Nu

Nu0
(1 − C) =

(

Re

Re0

)3

(regimes II and IV ). (3.22)

Forgetting the corrective term C which must be small since l̃ ≪ 1, (3.22) is the same
equation as the one obtained both for extending the classical and ultimate regimes of
Malkus and Kraichnan (see Eq. 3.8). On the contrary, for regimes I and III, (3.22) needs
to be replaced by:

Nu

Nu0
(1− C) =

(

Re

Re0

)5/2

(regimes I and III). (3.23)

The results of this theory is first presented for regime IV because most of the
experimental and numerical results fall into this regime. In addition, unlike regime II, the
extension of regime IV to internally heated convection does not require the introduction
of any adjustable parameters.

3.3.1. Regime IV, 〈ǫu〉 ∼ 〈ǫu〉Bu and 〈ǫT 〉 ∼ 〈ǫT 〉Bu

For regime IV , the thermal dissipation rate is dominated by its bulk contribution.
Combining (3.16) and (3.19), and using (2.19), we obtain:

Nu

Nu0
G(2Nu0 l̃) =

Re

Re0

f(2aNu0/
√
Re)

f(2aNu0/
√
Re0)

. (3.24)

The system of equations (3.22) and (3.24) gives the dependency of both Nu/Nu0 and
Re/Re0 as a function of the 3 control parameters: Ra, Pr and l̃ = l/h. For Prandtl
numbers small or large enough, (3.24) can be simplified as follows:

Nu

Nu0
=

{

(1− C)− 1

2 [G(2Nu0 l̃)]
− 3

2 , for δT ≫ δu (regime IVl) (3.25a)

(1− C) [G(2Nu0l̃)]
−2, for δu ≫ δT (regime IVu). (3.25b)

Besides, the limits of (3.25a) and (3.25b) when l̃Nu0 tends to 0 or ∞ can be obtained

saying that G(y) y→0≈ 1 − Θ′
P (0)y or G(y) y→∞≈ δdΘ/y, where δdΘ =

∫∞
0 [1 − θP (η)]dη. A

summary of the corresponding results is given in Table 1.

3.3.2. Regime II, 〈ǫu〉 ∼ 〈ǫu〉Bu and 〈ǫT 〉 ∼ 〈ǫT 〉BL

Following the idea of Grossmann & Lohse (2000), we consider the order of magnitude
of the different terms of energy equation i.e. ux∂xT + uz∂zT = κ∂zzT + qv

ρcp
. It yields to

Uedge∆T

h
∼ κ∆T

δ2T
+A

qv(δT )

ρcp
. (3.26)

Using (1.1), (1.2), (2.1), (2.21) and Uedge = Uf(δu/δT ), (3.26) becomes:

1 + Ã
Nu

Nu0
H(2Nu0l̃) =

Re

Re0

f(2aNu0/
√
Re)

f(2aNu0/
√
Re0)

, (3.27)

with H(y) = 1
y exp

(

− 1
y

)

, 0 6 H(y) 6 exp(−1) ≈ 0.37, and Ã a numerical constant of

the order of one to be determined experimentally.
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Nu0
Nu
Nu0

−1 for l̃ Nu0 ≪ 1 Nu for l̃ Nu0 ≫ 1

Classical regime

by Malkus, Eq. (3.5)
∼ Ra

1

3

2 l̃ Nu0

∼ l̃ Ra
1

3

4 l̃ Nu2
0

∼ l̃ Ra
2

3

Ultimate regime

by Kraichnan, Eq. (3.9)
∼ (CU

0 Ra)
1

2

3 l̃ Nu0

∼ l̃ (CU

0 Ra)
1

2

( 2

1+α
)6 l̃3 Nu4

0

∼ l̃3 (CU
0 Ra)2

Regime IVl

by GL, Eq. (3.25a)
∼ (RaPr)

1

2

3Θ′

P (0) l̃ Nu0

∼ l̃(RaPr)
1

2

(

2

δd
Θ

)3/2

l̃
3

2 Nu
5

2

0

∼ l̃
3

2 (RaPr)
5

4

Regime IVu

by GL, Eq. (3.25b)
∼ Ra

1

3

4Θ′

P (0) l̃ Nu0

∼ l̃ Ra
1

3

(

2

δd
Θ

)2

l̃2 Nu3
0

∼ l̃2 Ra

Regime IIIu

by GL, Eq. (3.30)
∼ Ra

3

7 Pr−
1

7

5Θ′

P (0) l̃ Nu0

∼ l̃ Ra
3

7Pr−
1

7

(

2

δd
Θ

) 5

2

l̃
5

2 Nu
7

2

0

∼ l̃
5

2 Ra
3

2Pr−
1

2

Table 1. Limits when l̃ Nu0 ≪ 1 and l̃ Nu0 ≫ 1 of the Nusselt number for a radiatively heated
convection experiment. For the ultimate regime by Kraichnan, α = ln(Nu/Nu0)/(3 lnRe0) and

CU

0 = Pr/(Pe∗ lnRe0)
3. For regimes IV and III by GL, we assume that l̃ ≪ 1 to have C → 0.

Equations (3.22) and (3.27) give the dependency of both Nu/Nu0 and Re/Re0 as a
function of Ra, Pr and l̃ = l/h. Contrary to the regime IV , Re/Re0 and Nu/Nu0 both
tend towards 1 when Nu0 l̃ ≫ 1 for regime II because H(y) ≈ 1/y when y ≫ 1. For the
two limits Nu0 l̃ ≪ 1 and Nu0l̃ ≫ 1, we obtain:

Nu

Nu0
(1 − C) = 1 +

Ã θi
1− CH(2Nu0l̃), (3.28)

with θi = 3 for δT ≫ δu (regime IIl) and θi = 2 for δu ≫ δT (regime IIu).

For any value of Nu0l̃, we show in appendix A that Nu/Nu0 can be given with a very
good approximation by:

Nu

Nu0
(1− C) =

[

Sβ0

(

ÃH
1− C

)]3

, (3.29)

with Sβ(x) the real and positive solution of the equation: 1 + xS3
β = S1+β/2

β , and β0 =
[

2aNu0√
Re0

f(2aNu0√
Re0

)
]−n

.

3.3.3. Regime I, 〈ǫu〉 ∼ 〈ǫu〉BL and 〈ǫT 〉 ∼ 〈ǫT 〉BL

For regime I, (3.23) and (3.27) give Nu/Nu0 and Re/Re0 as a function of Ra, Pr and
l̃ = l/h. For the two limits Nu0l̃ ≪ 1 and Nu0 l̃ ≫ 1, (3.28) is valid with θi = 5/2 for
δT ≫ δu (regime Il) and θi = 5/3 for δu ≫ δT (regime Iu).
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Figure 2. Results of the extension of GL theory for radiatively heated convection using (3.33)

and (3.34) with Ã = 0.3. The coefficient a and prefactors c1-c4 are given by Stevens et al. (2013).
(a) Nu/Nu0 versus Ra for Pr = 0.01 (red dotted lines) and Pr = 1 (blue dashed lines), and

for l̃ = 10−3 (lowest line), l̃ = 10−2 (middle line) and l̃ = 0.1 (highest line). (b) Nu/Nu0 versus

Pr for Ra = 108 (red dotted lines) and Ra = 1010 (blue dashed lines), and for l̃ = 0.01 (lowest

line), l̃ = 0.02 (middle line) and l̃ = 0.05 (highest line). (c) Nu/Nu0 versus l̃ for Pr = 1 and for
Ra = 106 (lowest line), 108, 1010, 1012 and 1014 (highest line). (d) Same results as (c) but using

l̃×Nu0 as x-coordinate. Also shown: regime IVu (Nu/Nu0 = G−2) (blue solid line), regime IVl

(Nu/Nu0 = G−3/2) (blue dashed line), regime IIu (red solid line) and regime IIl (red dashed
line).

3.3.4. Regime III, 〈ǫu〉 ∼ 〈ǫu〉BL and 〈ǫT 〉 ∼ 〈ǫT 〉Bu

For regime III, (3.23) and (3.24) give Nu/Nu0 and Re/Re0 as a function of Ra, Pr
and l̃ = l/h. For Prandtl numbers large enough, we obtain:

Nu

Nu0
= (1− Cu)3/2 [G(2Nu0l̃)]

−5/2 for δu ≫ δT (regime IIIu). (3.30)

The limits of (3.30) when l̃ ×Nu0 tends to 0 or ∞ are given in Table 1.

3.3.5. Theory in the whole parameter (Ra, Pr, l̃) plane

Following the idea of Grossmann & Lohse (2001) (see paragraph 2.3.3), at given Ra,
Pr and l̃, radiatively driven convection can be described as a mixture of these 4 regimes.
By replacing the expressions of 〈ǫu〉Bu (3.18) and 〈ǫu〉BL (3.20) in the balance equation
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for the viscous dissipation rate (3.13), the first generalised equation can be written as:

RaNu

Pr2
(1− C) = c1

Re5/2

2a
+ c2Re3. (3.31)

Using (3.24) and (3.29), the second generalised equation becomes:

Nu =
c3

1− C

[

Sβ

(

ÃH
1− C

)]3√

Re0Prf

(

2aNu0√
Re0

)

+
c4
G RePrf

(

2aNu0√
Re

)

. (3.32)

By combining on the one hand (2.27) and (3.31), and on the other hand (2.28) and
(3.32), we obtain the two equations which give Nu and Re numbers as a function of the
3 parameters Ra, Pr and l̃:

Nu

Nu0
=

1

1− C
c1

Re5/2

2a + c2Re3

c1
Re

5/2
0

2a + c2Re30

, (3.33)

Nu

Nu0
=

c3
1−C

[

Sβ

(

ÃH
1−C

)]3
√

Re0Prf
(

2aNu0√
Re0

)

+ c4
G RePrf

(

2aNu0√
Re

)

c3

√

Re0Prf
(

2aNu0√
Re0

)

+ c4Re0Prf
(

2aNu0√
Re0

)

. (3.34)

Figures 2 (a) and (b) show the variations of the ratio Nu/Nu0 against Ra and Pr for
fixed values of l̃, while Nu/Nu0 is plotted against l̃ in Fig. 2 (c) for Pr = 1 and for fixed
values of Ra between 106 and 1014. As observed previously for the extensions of Malkus
and Kraichnan theories, the use of the variableNu0× l̃ allows to gather the various curves
drawn in Fig. 2 (c) (see Fig. 2d). As underlined by Grossmann & Lohse (2001) for RB
convection, pure regime IVu is only reached for very high Ra and Pr numbers (blue
upper solid line in Fig. 2d) while for moderate values of Ra and Pr numbers, radiatively
heated convection is described by a mixing of the 4 regimes I-IV .

4. Comparison with experimental results

The predictions of this theoretical approach can be tested thanks to the recent exper-
imental investigation of Lepot et al. (2018); Bouillaut et al. (2019). The measurements
cover a range of 4 × 106 to 4 × 109 for Ra, 5 × 10−5 to 0.1 for l̃ = l/h and the working
fluid was water so the Prandtl number was set at a constant value close to 7. Here, the
Rayleigh and Nusselt numbers are defined using ∆T = 2(Th − Tb), where Th and Tb

are the measured temperature of the lower plate and the bulk flow, respectively. Hence,
there is a factor 2 for Ra (and a factor 1/2 for Nu) by comparing the figures from Lepot
et al. (2018); Bouillaut et al. (2019) and with those presented here. Instead of plotting
Nu as a function of Ra, the theory presented in section 3 shows that Nusselt numbers for
various l̃ should better collapse around a single curve by plotting the ratio of the Nusselt
numbers for modified and standard RB experiments (Nu/Nu0) against the product of l̃
and Nu0. As underlined by Lepot et al. (2018); Bouillaut et al. (2019), their experiments
converge to RB experiments when l̃ → 0, even though the boundary conditions are very
different (the horizontal plates are insulated while they are perfectly conductive for RB
convection). Indeed, for l̃ = 5 × 10−5, Nusselt numbers given by Bouillaut et al. (2019)
can be fitted by a simple scaling such as Nu = 0.076×Ra1/3 with a maximum deviation
of 7%, or by the GL theory with a = 0.75, c1 = 8.05, c2 = 1.38, c3 = 0.3 and c4 = 0.03.
Prefactors c1 and c2 are the ones given by Stevens et al. (2013) while c3 and c4 are slightly
modified to better fit to the experimental results (Stevens et al. (2013) advocated taking
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1
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l̃ Nu0

Nu

Nu0

Figure 3. Compensated Nusselt numbers for a radiatively heated convection experiment as a
function of l̃ Nu0. Coloured symbols: experiments from Bouillaut et al. (2019) with l̃ = 0.0015

(⋆), l̃ = 0.003 (+), l̃ = 0.006 (♦), l̃ = 0.0012 (∗), l̃ = 0.0024 (�), l̃ = 0.048 (⊲), l̃ = 0.05 (◦),
l̃ = 0.096 (∇). Black dashed line: extension of the classical regime by Malkus (1954), Eq. (3.5),
no adjustable parameter. Blue solid line: extension of the classical regime IVu by Grossmann &
Lohse (2000), Eq. (3.25b) with C = 0, no adjustable parameter. Grey symbols: Eqs. (3.33) and

(3.34) with Ã = 0.35. Upper red lines: extension of the ultimate regime by Kraichnan (1962),
Eq. (3.9) with Re0 = 1000 (red dotted line) and Re0 = 1010 (red dashed line).

c3 = 0.487 and c4 = 0.0252). Using GL theory for defining Nu0, the experimental results
of Bouillaut et al. (2019) are plotted in Fig. 3 for 0.0015 6 l̃ 6 0.01 (coloured symbols).
The black dashed and blue solid lines represent, respectively, the extension of the classical
scaling proposed by Malkus (1954) (Eq. 3.5) and the extension of regime IVu proposed
by Grossmann & Lohse (2000) (Eq. 3.25b). First, instead of plotting Nu against Ra
(see Fig. 2 in Bouillaut et al. (2019)), plotting compensated Nusselt numbers Nu/Nu0

as a function of l̃ Nu0 ∼ l̃ Ra1/3 allows to collapse the experimental data on a single
curve. Secondly, this curve is given by (3.5) or (3.25b) with a fairly good accuracy and
without the use of any adjustable parameter. The system of equations (3.33) and (3.34)
that results from a mixture of regimes I to IV and is represented by grey symbols in
Fig. 3 gives slightly lower values for the ratio Nu/Nu0 than the pure regime IV (blue
solid line). The new parameter Ã has little impact on the curve for this data set and
is fixed to 0.35 in Fig. 3. In view of: (i) the experimental uncertainties, (ii) the product
l̃ × Nu0 is always less than 5 and (iii) Pr number is fixed to 7 for the experimental
results, it is difficult to discriminate between the different extensions of the theoretical
models presented in section 3 describing convection in classical regimes.
On the contrary, it is well known that convection in the so-called ultimate regime

behaves very differently since Nu0 scales asymptotically as Ra1/2, thus with an exponent
1/2 much higher than 1/3. The theoretical work presented in section 3 shows that,
for radiatively heated convection, there is also a clear difference for the ratio Nu/Nu0

between classical regimes and the ultimate regime. In figure 3, the two upper red lines
represent the ultimate regime (Eq. 3.9) for two fixed Reynolds numbers (dotted line:
Re0 = 1000, dashed line: Re0 = 1010). They are clearly above all other curves and
symbols describing the theoretical and experimental results for classical regimes. Indeed,
Ra numbers achieved by the experiments of Bouillaut et al. (2019) are not sufficient to
trigger the ultimate regime (a detailed discussion is given in appendix B).
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5. Conclusions

The well known theories of RB convection have been extended here to radiatively
heated convection. The evolution of the Nusselt number as a function of Ra, Pr and
l/h (where l is the heating length near the lower plate and h the height of the cell) is
predicted whatever the convection regime considered. In the classical regime and using
the simple theory of Malkus (1954), equation (3.5) gives Nu/Nu0 as a function of Ra
and l/h without adjustable parameter, while, considering the more recent Grossmann &
Lohse (2000) theory, the two equations (3.33) and (3.34) give the dependency of both
Nu/Nu0 and Re/Re0 as a function of the 3 control parameters Ra, Pr and l/h. It
can be noted that only the extension of regimes I and II of the GL theory, observable
only at low Ra numbers, needs an adjustable parameter. A good agreement is observed
between the experimental results obtained by Bouillaut et al. (2019) and the theoretical
results for the classical regime. For the ultimate regime, equation (3.9) gives the Nusselt
number as a function of Ra and l/h without adjustable parameter, but, in this case,
no experimental or numerical results exist to test this prediction. Finally, this work
predicts that the Nusselt number behaves asymptotically as Ra2/3 or Ra for the classical
regime (see Table 1) while it scales as Ra2 in the ultimate regime, and this prediction is
of major interest for geophysical and astrophysical flows where convection is driven by
internal heat sources.
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Appendix A. Extension of regime II of the GL theory

For regime II, Eqs. (3.22) and (3.27) give the dependency of both Nu/Nu0 and Re/Re0
as a function of Ra, Pr and l̃ = l/h. Using (3.22), (3.27) becomes:

1 +
ÃH
1− C

(

Re

Re0

)3

=
Re

Re0

f
(

2aNu0√
Re

)

f
(

2aNu0√
Re0

) . (A 1)

A.1. Regime IIu (high Pr numbers or δu ≫ δT )

Equation (A 1) becomes:

1 +
ÃH
1− C

(

Re

Re0

)3

=

(

Re

Re0

)3/2

. (A 2)

To get a positive value for Re, we must have: ÃH 6 (1 − C)/4 6 1/4. As H 6 exp(−1),
the parameter Ã needs to be lower than exp(1)/4 ≈ 0.68. Resolution of (A 2) gives:

Re

Re0
= Su

(

ÃH
1− C

)

, (A 3)
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Figure 4. Nu/Nu0 versus l̃ Nu0 in the regime II of the extension of GL theory for
radiatively heated convection. Grey symbols: solution of Eqs. (3.22) and (3.27) with C = 0,

Ã = 4 exp(1)/27 ≈ 0.40 (a) and Ã = 0.35 (b). Black solid lines: Eq. (3.29). From top to bottom,
the parameter 2aNu0/

√
Re0 is taken equal to 0.5, 1 and 1.5. The lower solid red line represents

regime IIu while the upper dashed red line shows regime IIl.

with Su(x) =

(

1−
√
1− 4x

2x

)2/3

. Su(x) is an increasing function of x with Su(0) = 1

and Su(1/4) = 22/3 ≈ 1.59, yielding to 1 6 Re/Re0 6 1.59.

A.2. Regime IIl (low Pr numbers or δT ≫ δu)

Equation (A 1) becomes:

1 +
ÃH
1− C

(

Re

Re0

)3

=
Re

Re0
. (A 4)

To get a positive value for Re, we must have: ÃH 6 4(1−C)/27 6 4/27. As H 6 exp(−1),
the parameter Ã needs to be lower than 4 exp(1)/27 ≈ 0.40. Resolution of (A 4) gives:

Re

Re0
= Sl

(

ÃH
1− C

)

, (A 5)

with Sl(x) =
2√
3x

cos

[

1

3
arccos

(

3
√
3x

2

)

+
π

3

]

. Sl(x) is an increasing function of x with

Sl(0) = 1 and Sl(4/27) = 3/2 yielding to 1 6 Re/Re0 6 3/2.

A.3. Approximation of (A 1) for any Pr numbers

For the two limits Pr ≫ 1 and Pr ≪ 1, we have shown that 1 6 Re/Re0 6 3/2.
The following approximation can then be adopted: f(x0) ≈ f(x)( x

x0

)−β0 , with β0 =

−
(

d ln f
d ln x

)

x=x0

= [x0f(x0)]
−n (n = 4). When x0 ≫ 1, β0 → 3/2 while β0 → 0 when

x0 → 0. Equation (A 1) can therefore be approximated by:

1 +
ÃH
1− C

(

Re

Re0

)3

=

(

Re

Re0

)1+β0/2

. (A 6)
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Figure 5. Comparison of the scaling proposed by Bouillaut et al. (2019) (a) and the model
described in section 3 (b). Symbols as in Fig. 3. Dotted lines: (3.5), without adjustable
parameter.

By calling Sβ(x) the real and positive solution of the equation: 1 + xS3
β = S1+β/2

β , we
obtain:

Re

Re0
= Sβ0

(

ÃH
1− C

)

, (A 7)

with β0 =
[

2aNu0√
Re0

f(2aNu0√
Re0

)
]−n

. Using (A 7), (3.22) gives the variations of Nu/Nu0 as

a function of Ra, Pr and l̃ in the regime II (Eq. 3.29). These variations are plotted in
Fig. 4 (a) with Ã = 4 exp(1)/27 ≈ 0.40 and in Fig. 4 (b) with Ã = 0.35. For each case,
we can note that Eq. (3.29) (represented by black solid lines) is a good approximation of
the solution of the system of Eqs. (3.22) and (3.27) (grey symbols). That is why (3.29)
is used in sub-section 3.3.5 to extent GL theory to radiatively heated convection in the
whole parameter (Ra, Pr, l̃) plane.

Appendix B. Discussion of the model and scaling proposed by
Bouillaut et al. (2019)

Bouillaut et al. (2019) proposed a simple model to describe radiatively driven convec-
tion leading to the scaling relation Nu ∼ l̃ (RaPr)1/2. The theory presented in section 3
shows that the scaling Nu ∼ Ra1/2 can only be observed for a limited range of Ra for
each l̃ considered. Indeed, using for example Eq. (3.5), Nu scales as Ra1/3 when l̃ → 0
while it scales as Ra2/3 when l̃×Ra1/3 is quite high. Thus, for a limited range of Ra, Nu
can be fitted by Ra1/2 but this scaling cannot be observed asymptotically. Bouillaut et al.
(2019) have also proposed to represent the experimental data considering the product of
Nu and l̃2 as a function of the product of Ra and l̃6 (see Fig. 5a). The theory presented
here shows that, in this representation, the experimental data can only collapse on a
single curve if both the range of Ra is relatively small and this range is the same for
all the l̃ investigated. On the contrary, (3.5) predicts that Nu l̃ depends only on Nu0 l̃
or only on Ra l̃3 with assuming Nu0 ∼ Ra1/3 (Eq. 2.3). Besides, in this representation
(Fig. 5b), the curve is given by (3.5) and without any adjustable parameter.

REFERENCES



20 M. Creyssels

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in
turbulent Rayleigh-Bénard convection. Rev. Mod. Phys. 81, 503–537.
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Chillà, F & Schumacher, J. 2012 New perspectives in turbulent Rayleigh-Bénard convection.
Eur. Phys. J. E 35, 58.

Doering, C. R. 2019 Thermal forcing and classical and ultimate regimes of Rayleigh-Bénard
convection. J. Fluid Mech. 868, 1–4.

Goluskin, D. 2015 Internally Heated Convection and Rayleigh-Bénard Convection. Springer.
Goluskin, D. & van der Poel, E. P. 2016 Penetrative internally heated convection in two

and three dimensions. J. Fluid Mech. 791, R6.
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: A unifying view. J. Fluid

Mech. 407, 27–56.
Grossmann, S. & Lohse, D. 2001 Thermal convection for large Prandtl numbers. Phys. Rev.

Lett. 86, 3316–3319.
Grossmann, S. & Lohse, D. 2011 Multiple scaling in the ultimate regime of thermal convection.

Phys. Fluids 23 (4), 045108.
Kraichnan, R. H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys.

Fluids 5 (11), 1374–1389.
Kulacki, F. A. & Goldstein, R. J. 1972 Thermal convection in a horizontal fluid layer with

uniform volumetric energy sources. J. Fluid Mech. 55 (2), 271–287.
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Rusaouën, E., Liot, O., Castaing, B., Salort, J. & Chillà, F. 2018 Thermal transfer in
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