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Abstract. In this work we are interested in placing test components
for Internet of Things (IoT) and Smart Cities. Our work is inspired by
similar works aiming the placement of application components in Fog
computational nodes. First we give an overview about the decision vari-
ables to consider. Then, we define several types of constraints that may
be included in the placement problem. Moreover, We list a set of possi-
ble Objectives Functions to maximize or minimize. Finally, we propose
some algorithms and techniques to solve the considered Test Component
Placement Problem (TCPP) taken from the literature.
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1 Introduction

The city of the future is more sustainable, cleaner, safer and smarter than ever.
Full networks and smart cities offer versatile solutions to current challenges such
as environmental protection, growing traffic volumes and increasing urbaniza-
tion. In particular, the Internet of Things (IoT) plays a key role here, as it links
devices, programs and users together. In Smart Cities cars communicate with
houses, houses with digital devices, and these in turn communicate with the
city’s inhabitants. Most errors and problems of IoT applications only become
apparent during actual use by the customer. This is why a classic integration
test is usually not enough. In addition, it is hardly possible in the laboratory
to reproduce the variety of devices and operating systems combinations. Mov-
ing testings to the real world [22, 20, 16, 18] also helps counteract operational
blindness. Because some usability problems are not noticed by the developers,
because they deal with the product every day. Often, real users interact with
the application differently than thought, resulting in unexpected bugs. That is
why it is important to test under real conditions with potential end users.

Test Components can be placed either locally on the same computational
node under test or remotely on the cloud. An other half-way alternative consists
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in using Fog computing techniques which allow to distribute application com-
ponents -test components in our case- on the different available computational
nodes in the Fog. In some of previous works [13, 11, 12] we proposed a formal
work for testing security aspects of IoT and Smartc Cities. In [25, 21, 15], we
were interested in placement problems of test components for distributed and
dynamic distributed systems in general. In the present work we concentrate on
test component placement problem (TCPP) for IoT and Smart Cities. We are
mainly inspired by the work of Brogi et al. [4]. The remaining part of the paper
is organised as follows. Section 2 provides some preliminaries about IoT, Testing,
Fog computing and placement problem. In section 3, we deal with decision vari-
ables and different types of constraints used in the placement problem. Section 4
lists a set of possible Objective Functions. Section 5 proposes a set of algorithms
and techniques to solve TCPP. Finally Section 6 concludes the paper.

2 Preliminaries

2.1 Fog Computing

After Cloud Computing [19, 17] now Fog Computing is to come. The goal of Fog
Computing is to bring the analysis, processing and storage functions from the
cloud back to the edge of the network. The more networked our world becomes,
the more data is processed. The communication path into a cloud computing
center and then back to the terminal leads to high latencies - for example for
autonomously driving cars whose information processing must be guaranteed in
real time.

Some advantages of Fog Computing are as follows:

– Faster data processing due to reduced network traffic.

– Networked devices in the IoT also work when the Internet goes down or the
cloud connection causes delays.

– Sensitive company and customer data would not have to be transferred to
the cloud and can remain on the spot.

2.2 Test Component Placement Problem (TCPP)

Let TC be the set of test components we aim to distribute. The set of require-
ments to satisfy by the placement strategy is called Req and the distributed
architecture inside which the test components will be placed is called Infr. Pos-
sible Solutions to the Test Component Placement Problem (TCPP) are mappings
from the set of test components TC to the set of computational nodes Infr,
satisfying the requirements fixed by Req and maximizing/minimizing a set of
objective functions Obj used to measure their quality. The adopted Solutions
are many-to-many. That is a test component can be assigned to one or many
nodes and a computational node can execute one or many test components.
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2.3 Decision Variables

The values of these variables need to be calculated during the optimisation pro-
cedure. They also define the requirements Req to satisfy. Values of the variables
which do not satisfy the constraints are rejected and can not be considered as
acceptable solutions. For TCPP, they may be binary decision variables which in-
dicate if a test component of TC is allocated to a computational node of Infr.

3 Different Constraints

3.1 Energy Constraints

The authors of [2] characterised the fog nodes with their energy capacities. De-
vices with batteries are considered in order to guarantee lifetime constraints. The
authors of [30] introduced the concept of energy cells to calculate the energy con-
sumed by the computational devices. The optimisation procedure considers the
number of available energy cells. The goal is to minimise energy consumption in
constrained nodes.

3.2 Network Constraints

Network latency, bandwidth, link reliability and topology are examples of net-
work constraints. For instance on the one hand, the authors of [26] considered
only latency constraint. On the other hand in [8], the authors considered both
latency and bandwidth. Bandwidth was also taken into account in [32, 1] along
with hardware requirements.

3.3 Node Constraints

This type of constraints correspond to the resource capacity of the computational
nodes. Resources are usually modelled as a vectors of elements like CPU, RAM,
storage, etc. For instance the authors of [8] considered only CPU and the authors
of [38] considered only storage. In [1], the authors considered CPU and storage.
In [6], RAM, CPU and storage were all taken into account.

3.4 Application Constraints

Three types of application constraints have been considered for the classification
of the papers in the survey: constraints related to the dependencies between
the modules or services of the applications; the workload generated over the
applications; and if the users are able to define any kind of preference in the
deployment of the services.
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4 Objective Functions

4.1 Network Delay and Execution Time

For instance this objective function is considered in [39]. Similarly the authors
of [37] minimised the response time to increase the number of requests which
are served before a fixed deadline. Moreover, the authors of [31] diminished the
computation time of the service by calculating the consumed time slots.

4.2 Energy

The optimisation of energy was considered from different aspects. For instance,
the authors of [2] proposed a linear function of the cost of energy and they
optimised it. Similarly in [9], the authors were interested in reducing the cost of
communication energy. Their approach was mainly based on placing interrelated
applications and services on the same device. This choice allows to diminish
communications between computational nodes.

4.3 Cost

In Fog computing the consideration of cost aspects is at an initial phase. In
[1] the authors aimed to minimize the total cost of applications deployment by
assigning them to the computational nodes with have optimal costs. Similarly
the authors of [35] considered cost minimisation of each device and link.

4.4 Migrations

This objective function consists in minimizing migrations number and/or the
effects of migrations on the system. In [27], the authors optimised the number
of migrations by minimising the network use without influencing the network
latency. Similarly, the authors of [38] optimised the number of migrations along
with resource usage and latency. Moreover, a technique was presented in [5] to
reduce the number of migrated applications between computational nodes.

4.5 QoS-assurance

In [26], the objective of the optimisation procedure was to diminish the number
of active Fog nodes. The QoS requirement considered in this work consisted in
obtaining execution times which are shorter than the deadlines of the application.
In addition, the authors of [34] considered QoS aspects realted to the frequency
of executed requests and transactions.
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5 Algorithms

5.1 Mathematical Programming

Mathematical programming is usually used to find solutions for optimisation
problems by exploring the domain of the objective function. Many approaches
[38, 6] tackled the placement problem using this mathematical procedure by ex-
ploiting ILP (Integer Linear Programming), MILP (Mixed-Integer Linear Pro-
gramming) or MINLP (Mixed-Integer Non-Linear Programming).

5.2 Dynamic Programming

The authors of [30] modelled the placement problem as a multidimensional knap-
sack problem with the goal objective of optimising a particular objective func-
tion. Similarly in [28], the authors modelled the placement problem as a knap-
sack instance, by considering the assignment of application services to running
computational nodes in a Fog infrastructure.

5.3 Search-based Algorithms

The authors of [8] proposed a search algorithm to compute a placement solution
of IoT applications to a tree-structured infrastructure. Further in [7] proposed
a distributed search strategy to compute the best placement solution in the
Fog, which corresponds to the minimal distance between clients and requested
services. In addition the authors of [3] proposed a greedy and exhaustive back-
tracking algorithm to solve the placement problem.

5.4 Genetic Algorithms

Genetic algorithms use meta-heuristics to deal with search and optimisation
problems. In [36], the authors provided a description of the use of genetic algo-
rithms and parallel genetic algorithms to solve to placement problems. Similarly,
the authors of [29] also proposed a genetic algorithm approach solution imple-
mented in iFogSim.

5.5 Deep Learning

The authors of [33] used recent learning techniques to solve placement problems.
After defining a Markov Decision Process to optimize power consumption, com-
munication delay and migration costs, a deep learning algorithm is provided to
support migration of applications hosted in computational nodes. The proposed
approach takes into consideration the mobility of the user.
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5.6 Game Theory

The authors of [40] modelled the palcement problem as a set of games.The first
game is defined to find the number of computing blocks that users have to buy.
The second game is defined for providers to set prices so to maximise financial
profits. A matching game is proposed to map providers to computational nodes.
Finally, matching between subscribers and computational nodes is refined.

6 Conclusion

Although the smart city is still considered as a future scenario, it will soon be-
come a reality for future generations. How people move in cities in the future and
how they live there will change significantly as a result of increasing networking.

In this work we were interested in the test component placement problem
for these modern technologies. We identified existing techniques in the literature
used for the placement of application components in Fog domain. In the future
we need to adapt the found methods to the case of TCPP for IoT and Smart
cities and to implement them. We may also use optimization techniques like
in [10] and combine functional and load tests as proposed in [14, 23, 24].
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