
HAL Id: hal-02299922
https://hal.science/hal-02299922

Preprint submitted on 28 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some Placement Techniques of Test Components
Inspired by Fog Computing Approaches

Moez Krichen, Wilfried Yves Hamilton Adoni, Tarik Nahhal

To cite this version:
Moez Krichen, Wilfried Yves Hamilton Adoni, Tarik Nahhal. Some Placement Techniques of Test
Components Inspired by Fog Computing Approaches. 2019. �hal-02299922�

https://hal.science/hal-02299922
https://hal.archives-ouvertes.fr


Some Placement Techniques of Test Components
Inspired by Fog Computing Approaches

Moez Krichen1, Wilfried Yves Hamilton Adoni2, and Tarik Nahhal2

1 FCSIT, Albaha University, Albaha, Saudi Arabia
ReDCAD Laboratory, University of Sfax, Tunisia

moez.krichen@redcad.org
2 Hassan II University of Casablanca, Morocco

adoniwilfried@gmail.com, t.nahhal@fsac.ac.ma

Abstract. In this work we are interested in placing test components
for Internet of Things (IoT) and Smart Cities. Our work is inspired by
similar works aiming the placement of application components in Fog
computational nodes. First we give an overview about the decision vari-
ables to consider. Then, we define several types of constraints that may
be included in the placement problem. Moreover, We list a set of possi-
ble Objectives Functions to maximize or minimize. Finally, we propose
some algorithms and techniques to solve the considered Test Component
Placement Problem (TCPP) taken from the literature.

Keywords: Internet of Things, Smart Cities, Test Components, Place-
ment, Optimisation, Constraints, Objective Functions, Algorithms, Fog.

1 Introduction

The city of the future is more sustainable, cleaner, safer and smarter than ever.
Full networks and smart cities offer versatile solutions to current challenges such
as environmental protection, growing traffic volumes and increasing urbaniza-
tion. In particular, the Internet of Things (IoT) plays a key role here, as it links
devices, programs and users together. In Smart Cities cars communicate with
houses, houses with digital devices, and these in turn communicate with the
city’s inhabitants. Most errors and problems of IoT applications only become
apparent during actual use by the customer. This is why a classic integration
test is usually not enough. In addition, it is hardly possible in the laboratory
to reproduce the variety of devices and operating systems combinations. Mov-
ing testings to the real world [22, 20, 16, 18] also helps counteract operational
blindness. Because some usability problems are not noticed by the developers,
because they deal with the product every day. Often, real users interact with
the application differently than thought, resulting in unexpected bugs. That is
why it is important to test under real conditions with potential end users.

Test Components can be placed either locally on the same computational
node under test or remotely on the cloud. An other half-way alternative consists



2 M. Krichen et al.

in using Fog computing techniques which allow to distribute application com-
ponents -test components in our case- on the different available computational
nodes in the Fog. In some of previous works [13, 11, 12] we proposed a formal
work for testing security aspects of IoT and Smartc Cities. In [25, 21, 15], we
were interested in placement problems of test components for distributed and
dynamic distributed systems in general. In the present work we concentrate on
test component placement problem (TCPP) for IoT and Smart Cities. We are
mainly inspired by the work of Brogi et al. [4]. The remaining part of the paper
is organised as follows. Section 2 provides some preliminaries about IoT, Testing,
Fog computing and placement problem. In section 3, we deal with decision vari-
ables and different types of constraints used in the placement problem. Section 4
lists a set of possible Objective Functions. Section 5 proposes a set of algorithms
and techniques to solve TCPP. Finally Section 6 concludes the paper.

2 Preliminaries

2.1 Fog Computing

After Cloud Computing [19, 17] now Fog Computing is to come. The goal of Fog
Computing is to bring the analysis, processing and storage functions from the
cloud back to the edge of the network. The more networked our world becomes,
the more data is processed. The communication path into a cloud computing
center and then back to the terminal leads to high latencies - for example for
autonomously driving cars whose information processing must be guaranteed in
real time.

Some advantages of Fog Computing are as follows:

– Faster data processing due to reduced network traffic.

– Networked devices in the IoT also work when the Internet goes down or the
cloud connection causes delays.

– Sensitive company and customer data would not have to be transferred to
the cloud and can remain on the spot.

2.2 Test Component Placement Problem (TCPP)

Let TC be the set of test components we aim to distribute. The set of require-
ments to satisfy by the placement strategy is called Req and the distributed
architecture inside which the test components will be placed is called Infr. Pos-
sible Solutions to the Test Component Placement Problem (TCPP) are mappings
from the set of test components TC to the set of computational nodes Infr,
satisfying the requirements fixed by Req and maximizing/minimizing a set of
objective functions Obj used to measure their quality. The adopted Solutions
are many-to-many. That is a test component can be assigned to one or many
nodes and a computational node can execute one or many test components.



Placement Techniques of Test Components 3

2.3 Decision Variables

The values of these variables need to be calculated during the optimisation pro-
cedure. They also define the requirements Req to satisfy. Values of the variables
which do not satisfy the constraints are rejected and can not be considered as
acceptable solutions. For TCPP, they may be binary decision variables which in-
dicate if a test component of TC is allocated to a computational node of Infr.

3 Different Constraints

3.1 Energy Constraints

The authors of [2] characterised the fog nodes with their energy capacities. De-
vices with batteries are considered in order to guarantee lifetime constraints. The
authors of [30] introduced the concept of energy cells to calculate the energy con-
sumed by the computational devices. The optimisation procedure considers the
number of available energy cells. The goal is to minimise energy consumption in
constrained nodes.

3.2 Network Constraints

Network latency, bandwidth, link reliability and topology are examples of net-
work constraints. For instance on the one hand, the authors of [26] considered
only latency constraint. On the other hand in [8], the authors considered both
latency and bandwidth. Bandwidth was also taken into account in [32, 1] along
with hardware requirements.

3.3 Node Constraints

This type of constraints correspond to the resource capacity of the computational
nodes. Resources are usually modelled as a vectors of elements like CPU, RAM,
storage, etc. For instance the authors of [8] considered only CPU and the authors
of [38] considered only storage. In [1], the authors considered CPU and storage.
In [6], RAM, CPU and storage were all taken into account.

3.4 Application Constraints

Three types of application constraints have been considered for the classification
of the papers in the survey: constraints related to the dependencies between
the modules or services of the applications; the workload generated over the
applications; and if the users are able to define any kind of preference in the
deployment of the services.



4 M. Krichen et al.

4 Objective Functions

4.1 Network Delay and Execution Time

For instance this objective function is considered in [39]. Similarly the authors
of [37] minimised the response time to increase the number of requests which
are served before a fixed deadline. Moreover, the authors of [31] diminished the
computation time of the service by calculating the consumed time slots.

4.2 Energy

The optimisation of energy was considered from different aspects. For instance,
the authors of [2] proposed a linear function of the cost of energy and they
optimised it. Similarly in [9], the authors were interested in reducing the cost of
communication energy. Their approach was mainly based on placing interrelated
applications and services on the same device. This choice allows to diminish
communications between computational nodes.

4.3 Cost

In Fog computing the consideration of cost aspects is at an initial phase. In
[1] the authors aimed to minimize the total cost of applications deployment by
assigning them to the computational nodes with have optimal costs. Similarly
the authors of [35] considered cost minimisation of each device and link.

4.4 Migrations

This objective function consists in minimizing migrations number and/or the
effects of migrations on the system. In [27], the authors optimised the number
of migrations by minimising the network use without influencing the network
latency. Similarly, the authors of [38] optimised the number of migrations along
with resource usage and latency. Moreover, a technique was presented in [5] to
reduce the number of migrated applications between computational nodes.

4.5 QoS-assurance

In [26], the objective of the optimisation procedure was to diminish the number
of active Fog nodes. The QoS requirement considered in this work consisted in
obtaining execution times which are shorter than the deadlines of the application.
In addition, the authors of [34] considered QoS aspects realted to the frequency
of executed requests and transactions.



Placement Techniques of Test Components 5

5 Algorithms

5.1 Mathematical Programming

Mathematical programming is usually used to find solutions for optimisation
problems by exploring the domain of the objective function. Many approaches
[38, 6] tackled the placement problem using this mathematical procedure by ex-
ploiting ILP (Integer Linear Programming), MILP (Mixed-Integer Linear Pro-
gramming) or MINLP (Mixed-Integer Non-Linear Programming).

5.2 Dynamic Programming

The authors of [30] modelled the placement problem as a multidimensional knap-
sack problem with the goal objective of optimising a particular objective func-
tion. Similarly in [28], the authors modelled the placement problem as a knap-
sack instance, by considering the assignment of application services to running
computational nodes in a Fog infrastructure.

5.3 Search-based Algorithms

The authors of [8] proposed a search algorithm to compute a placement solution
of IoT applications to a tree-structured infrastructure. Further in [7] proposed
a distributed search strategy to compute the best placement solution in the
Fog, which corresponds to the minimal distance between clients and requested
services. In addition the authors of [3] proposed a greedy and exhaustive back-
tracking algorithm to solve the placement problem.

5.4 Genetic Algorithms

Genetic algorithms use meta-heuristics to deal with search and optimisation
problems. In [36], the authors provided a description of the use of genetic algo-
rithms and parallel genetic algorithms to solve to placement problems. Similarly,
the authors of [29] also proposed a genetic algorithm approach solution imple-
mented in iFogSim.

5.5 Deep Learning

The authors of [33] used recent learning techniques to solve placement problems.
After defining a Markov Decision Process to optimize power consumption, com-
munication delay and migration costs, a deep learning algorithm is provided to
support migration of applications hosted in computational nodes. The proposed
approach takes into consideration the mobility of the user.



6 M. Krichen et al.

5.6 Game Theory

The authors of [40] modelled the palcement problem as a set of games.The first
game is defined to find the number of computing blocks that users have to buy.
The second game is defined for providers to set prices so to maximise financial
profits. A matching game is proposed to map providers to computational nodes.
Finally, matching between subscribers and computational nodes is refined.

6 Conclusion

Although the smart city is still considered as a future scenario, it will soon be-
come a reality for future generations. How people move in cities in the future and
how they live there will change significantly as a result of increasing networking.

In this work we were interested in the test component placement problem
for these modern technologies. We identified existing techniques in the literature
used for the placement of application components in Fog domain. In the future
we need to adapt the found methods to the case of TCPP for IoT and Smart
cities and to implement them. We may also use optimization techniques like
in [10] and combine functional and load tests as proposed in [14, 23, 24].

References

1. Arkian, H.R., Diyanat, A., Pourkhalili, A.: Mist: Fog-based data analytics scheme
with cost-efficient resource provisioning for iot crowdsensing applications. Journal
of Network and Computer Applications 82 (2017) 152 – 165

2. Barcelo, M., Correa, A., Llorca, J., Tulino, A.M., Vicario, J.L., Morell, A.: Iot-
cloud service optimization in next generation smart environments. IEEE Journal
on Selected Areas in Communications 34(12) (Dec 2016) 4077–4090

3. Brogi, A., Forti, S.: Qos-aware deployment of iot applications through the fog.
IEEE Internet of Things Journal 4(5) (Oct 2017) 1185–1192

4. Brogi, A., Forti, S., Guerrero, C., Lera, I.: How to place your apps in the fog -
state of the art and open challenges. CoRR abs/1901.05717 (2019)

5. Filiposka, S., Mishev, A., Gilly, K.: Community-based allocation and migration
strategies for fog computing. In: 2018 IEEE Wireless Communications and Net-
working Conference (WCNC). (April 2018) 1–6

6. Gu, L., Zeng, D., Guo, S., Barnawi, A., Xiang, Y.: Cost efficient resource manage-
ment in fog computing supported medical cyber-physical system. IEEE Transac-
tions on Emerging Topics in Computing 5(1) (Jan 2017) 108–119

7. Guerrero, C., Lera, I., Juiz, C.: A lightweight decentralized service placement policy
for performance optimization in fog computing. Journal of Ambient Intelligence
and Humanized Computing 10(6) (Jun 2019) 2435–2452

8. Gupta, H., Dastjerdi, A.V., Ghosh, S.K., Buyya, R.: ifogsim: A toolkit for modeling
and simulation of resource management techniques in the internet of things, edge
and fog computing environments. Softw., Pract. Exper. 47(9) (2017) 1275–1296

9. Huang, Z., Lin, K.J., Yu, S.Y., jen Hsu, J.Y.: Co-locating services in iot systems
to minimize the communication energy cost. Journal of Innovation in Digital
Ecosystems 1(1) (2014) 47 – 57



Placement Techniques of Test Components 7

10. Krichen, M.: Improving formal verification and testing techniques for internet of
things and smart cities. Mobile Networks and Applications (Sep 2019)

11. Krichen, M., Alroobaea, R.: A new model-based framework for testing security of
iot systems in smart cities using attack trees and price timed automata. In: Pro-
ceedings of the 14th International Conference on Evaluation of Novel Approaches
to Software Engineering, ENASE 2019, Heraklion, Crete, Greece, May 4-5, 2019.
(2019) 570–577

12. Krichen, M., Cheikhrouhou, O., Lahami, M., Alroobaea, R., Jmal Maâlej, A.: To-
wards a model-based testing framework for the security of internet of things for
smart city applications. In: Smart Societies, Infrastructure, Technologies and Ap-
plications, Cham, Springer International Publishing (2018) 360–365

13. Krichen, M., Lahami, M., Cheikhrouhou, O., Alroobaea, R., Maâlej, A.J. In: Secu-
rity Testing of Internet of Things for Smart City Applications: A Formal Approach.
Springer International Publishing, Cham (2020) 629–653

14. Krichen, M., Maâlej, A.J., Lahami, M.: A model-based approach to combine con-
formance and load tests: an ehealth case study. IJCCBS 8(3/4) (2018) 282–310

15. Krichen, M., Maâlej, A.J., Lahami, M., Jmaiel, M.: A resource-aware model-based
framework for load testing of ws-bpel compositions. In Hammoudi, S., Śmia lek,
M., Camp, O., Filipe, J., eds.: Enterprise Information Systems, Cham, Springer
International Publishing (2019) 130–157

16. Lahami, M., Krichen, M.: Test isolation policy for safe runtime validation of evolv-
able software systems. In: 2013 Workshops on Enabling Technologies: Infrastruc-
ture for Collaborative Enterprises. (June 2013) 377–382

17. Lahami, M., Krichen, M., Alroobaea, R.: Towards a test execution platform as-a-
service: Application in the e-health domain. In: 2018 International Conference on
Control, Automation and Diagnosis (ICCAD). (March 2018) 1–6

18. Lahami, M., Fakhfakh, F., Krichen, M., Jmaiel, M.: Towards a ttcn-3 test system
for runtime testing of adaptable and distributed systems. In Nielsen, B., Weise, C.,
eds.: Testing Software and Systems, Berlin, Heidelberg, Springer Berlin Heidelberg
(2012) 71–86

19. Lahami, M., Krichen, M., Alroobaea, R.: Tepaas: test execution platform as-a-
service applied in the context of e-health. IJAACS 12(3) (2019) 264–283

20. Lahami, M., Krichen, M., Barhoumi, H., Jmaiel, M.: Selective test generation
approach for testing dynamic behavioral adaptations. In: Testing Software and
Systems, Cham, Springer International Publishing (2015) 224–239

21. Lahami, M., Krichen, M., Bouchakwa, M., Jmaiel, M.: Using knapsack problem
model to design a resource aware test architecture for adaptable and distributed
systems. In: ICTSS. Volume 7641 of Lecture Notes in Computer Science., Springer
(2012) 103–118

22. Lahami, M., Krichen, M., Jmaiel, M.: Safe and efficient runtime testing framework
applied in dynamic and distributed systems. Science of Computer Programming
122 (2016) 1 – 28

23. Maâlej, A.J., Krichen, M.: A model based approach to combine load and functional
tests for service oriented architectures. In: Proceedings of the 10th Workshop
on Verification and Evaluation of Computer and Communication System, VECoS
2016, Tunis, Tunisia, October 6-7, 2016. (2016) 123–140

24. Maâlej, A.J., Krichen, M., Jmaiel, M.: Model-based conformance testing of WS-
BPEL compositions. In: 36th Annual IEEE Computer Software and Applications
Conference Workshops, COMPSAC 2012, Izmir, Turkey, July 16-20, 2012. (2012)
452–457



8 M. Krichen et al.

25. Maâlej, A.J., Lahami, M., Krichen, M., Jmäıel, M.: Distributed and resource-aware
load testing of WS-BPEL compositions. In: ICEIS (2), SciTePress (2018) 29–38

26. Mahmud, R., Ramamohanarao, K., Buyya, R.: Latency-aware application module
management for fog computing environments. ACM Trans. Internet Technol. 19(1)
(November 2018) 9:1–9:21

27. Ottenwälder, B., Koldehofe, B., Rothermel, K., Ramachandran, U.: Migcep: Op-
erator migration for mobility driven distributed complex event processing. In:
Proceedings of the 7th ACM International Conference on Distributed Event-based
Systems. DEBS ’13, New York, NY, USA, ACM (2013) 183–194

28. Rahbari, D., Nickray, M.: Scheduling of fog networks with optimized knapsack
by symbiotic organisms search. In: 2017 21st Conference of Open Innovations
Association (FRUCT). (Nov 2017) 278–283

29. Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M., Leitner, P.: Optimized iot
service placement in the fog. Service Oriented Computing and Applications 11(4)
(Dec 2017) 427–443

30. Souza, V.B., Masip-Bruin, X., Marin-Tordera, E., Ramirez, W., Sanchez, S.: To-
wards distributed service allocation in fog-to-cloud (f2c) scenarios. In: 2016 IEEE
Global Communications Conference (GLOBECOM). (Dec 2016) 1–6

31. Souza, V.B.C., Ramı́rez, W., Masip-Bruin, X., Maŕın-Tordera, E., Ren, G.,
Tashakor, G.: Handling service allocation in combined fog-cloud scenarios. In:
2016 IEEE International Conference on Communications (ICC). (May 2016) 1–5

32. Taneja, M., Davy, A.: Resource aware placement of iot application modules in
fog-cloud computing paradigm. In: 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM). (May 2017) 1222–1228

33. Tang, Z., Zhou, X., Zhang, F., Jia, W., Zhao, W.: Migration modeling and learn-
ing algorithms for containers in fog computing. IEEE Transactions on Services
Computing (2018) 1–1

34. Venticinque, S., Amato, A.: A methodology for deployment of iot application in
fog. Journal of Ambient Intelligence and Humanized Computing 10(5) (May 2019)
1955–1976

35. Wang, S., Zafer, M., Leung, K.K.: Online placement of multi-component applica-
tions in edge computing environments. IEEE Access 5 (2017) 2514–2533

36. Wen, Z., Yang, R., Garraghan, P., Lin, T., Xu, J., Rovatsos, M.: Fog orchestration
for internet of things services. IEEE Internet Computing 21(2) (Mar 2017) 16–24

37. Xia, Y., Etchevers, X., Letondeur, L., Coupaye, T., Desprez, F.: Combining hard-
ware nodes and software components ordering-based heuristics for optimizing the
placement of distributed iot applications in the fog. In: Proceedings of the 33rd
Annual ACM Symposium on Applied Computing. SAC ’18, New York, NY, USA,
ACM (2018) 751–760

38. Yang, L., Cao, J., Liang, G., Han, X.: Cost aware service placement and load
dispatching in mobile cloud systems. IEEE Transactions on Computers 65(5)
(May 2016) 1440–1452

39. Zeng, D., Gu, L., Guo, S., Cheng, Z., Yu, S.: Joint optimization of task schedul-
ing and image placement in fog computing supported software-defined embedded
system. IEEE Transactions on Computers 65(12) (Dec 2016) 3702–3712

40. Zhang, H., Xiao, Y., Bu, S., Niyato, D., Yu, F.R., Han, Z.: Computing resource
allocation in three-tier iot fog networks: A joint optimization approach combining
stackelberg game and matching. IEEE Internet of Things Journal 4(5) (Oct 2017)
1204–1215


