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Introduction Several mathematicians have contributed to a calculus that today is known as the q-calculus [START_REF] Ernst | A Comprehensive Treatment of q-Calculus[END_REF][START_REF] Annaby | q-Fractional Calculus and Equations[END_REF][START_REF] Ernst | The History of q-calculus and a New Method[END_REF][START_REF] Aral | Applications of q-Calculus in Operator Theory[END_REF][START_REF] Ernst | The different tongues of q-calculus[END_REF][START_REF] Kac | Quantum Calculus[END_REF]. As a consequence of the many contributions, we find that it is known as "quantum calculus," or "time-scale calculus", or "calculus of partitions" too [START_REF] Ernst | The different tongues of q-calculus[END_REF]. It is also called the "calculus without limits", because it is equivalent to the traditional infinitesimal calculus without the notion of limits. Besides being known with different names, the q-calculus is expressed by means of different notations or, as told in [START_REF] Ernst | The different tongues of q-calculus[END_REF], by different "dialects". Here we will use the approach and the notation given in the book by Kac and Cheung [START_REF] Kac | Quantum Calculus[END_REF].

The first aim of the work here proposed is that of showing the following fact. The q-integers, the q-analogue of the integers that we can find in the q-calculus, are forming a group having a generalized sum which is similar to sum of the Tsallis q-entropies of independent systems. After, we will see that the symmetric form of q-integers is linked to the Kaniadakis calculus. We will conclude the discussion considering the Mersenne numbers and their link to the q-integers.

Let us stress that, besides the discussion of the previously mentioned numbers, the general aim of the paper is that of popularizing the existence of the q-calculus.

The q-integers

Let us start defining the q-integers.

In the q-calculus, the q-difference is simply given by:

d q f =f (qx )-f ( x )
Sparavigna, A. C. The q-Integers and the Mersenne Numbers ( May 23, 2018). SSRN Electronic Journal. DOI 10.2139/ssrn.3183800 From this difference, the q-derivative is given as:

(1) D q f = f ( qx )-f ( x ) qx-x
The q-derivative reduces to the Newton's derivative in the limit q →1 . ( 1) is also known as the Jackson derivative, after Frank Hilton Jackson (1870 -1960), the English clergyman and mathematician who worked at the beginning of the XXth century on the q-calculus.

Let us consider the function f ( x )=x

n . If we calculate its q-derivative, we obtain:

(2)

D q x n = ( qx ) n -x n qx-x = q n -1 q-1 x n-1
Comparing the ordinary calculus, which is giving ( x n ) '=n x n-1 , to Equation (2), we can define the "q-integer" [n] by:

( 3) [n]= q n -1 q-1 =1+q +q 2 +.. .+q n-1

Therefore Equation (2) turns out to be:

D q x n =[ n] x n-1
As a consequence, the n-th q-derivative of f ( x )=x n , which is obtained by repeating n times the q-derivative, generates the q-factorial:

[n ] !=[ n ][n-1 ]. . .[ 3 ][2 ][ 1]
Form the q-factorials, we can define q-binomial coefficients:

[n ]! [ m] ![ n-m]!
This means that we can use the usual Taylor formula, replacing the derivatives by the qderivatives and the factorials by q-factorials (in a previous work, we have discussed the qexponential and q-trigonometric functions [START_REF] Sparavigna | Graphs of q-exponentials and q-trigonometric functions[END_REF]). Then, in the q-calculus, the q-integer [n] acts as the integer in the ordinary calculus.

The group of q-integers

We known that the set of integers consisting of the numbers ..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ..., having as operation the addition, is a group. Therefore, let us consider the set of q-integers given by (3) and investigate its group. In particular, we have to determine its operation of addition.

Let us remember that a group is a set A having an operation • which is combining the elements Therefore, to qualify a group as an Abelian group, the set and operation must satisfy five requirements which are known as the Abelian group axioms. A group having a noncommutative operation is called a "non-abelian group" or "non-commutative group". For an Abelian group, one may choose to denote the group operation by + and the identity element by 0 (neutral element) and the inverse element as -a (opposite element). In this case, the group is called an additive group.

First, we have to define the operation of addition. It is not the sum that we use for the integers, but it is a generalized sum which obeys the axioms of the group.

Let us start from the q-integer [m+n ] :

[m+n ]= q m +n -1 q-1 = 1 q-1 ( q m q n -1+ q m -q m )= 1 q-1 (q m (q n -1)+q m -1) [m+n ]= 1 q-1 (q m (q n -1)+(q m -1)+(q n -1)+(1-q n ))= 1 q-1
((q m -1)( q n -1)+(q m -1)+(q n -1))

Therefore, we have:

(4) [m+n ]=[m]+[n]+( q-1)[m][n]
Then, we can define the generalized "sum" of the group as: (5) 

[m]⊕[ n]=[m]+[n ]+(q-1)[m][n ]
(for other examples of generalized sums see [START_REF] Sparavigna | Generalized Sums Based on Transcendental Functions[END_REF]).

If we use [START_REF] Ernst | The different tongues of q-calculus[END_REF] as the sum, we have the closure of it, because the result of the sum is a qinteger. Moreover, this sum is commutative.

The neutral element is: (6) [0]= q 0 -1 q-1 =0

Let us determine the opposite element [o] , so that:

[o]⊕[n]=0 0=[0]=[o]⊕[n]=[o ]+[n]+(q-1)[o ][n] -[n]=[o ]+( q-1)[o][n] (7) [o]=- [n] 1+(q-1)[ n] =- q n -1 ( q-1) q n = q -n -1 q-1 =[-n]
The opposite element of q-integer [n] is the q-integer of -n , that is [-n]

Let us discuss the associativity of the sum.

It is necessary to have:

[m]⊕([n]⊕[l])=([m]⊕[n])⊕[l]
Let us calculate:

[m]⊕([n]⊕[l])=[m]⊕([n]+[l]+(q-1) [n][l]) [m]⊕([n]⊕[l])=[m]+[n]+[l]+(q-1)[n ][l]+(q-1)[m][n ]+(q-1)[m][l]+(q-1) 2 [m][n][l]
And also:

([m]⊕[n])⊕[l]=([m]+[n]+(q-1)[m][n])⊕[l ] ([m]⊕[n])⊕[l]=[ m]+[n]+(q-1)[m][n]+[l]+(q-1)[m][l]+(q-1)[n ][l]+(q-1) 2 [m][n][l]
It is also easy to see that:

[m]⊕[n]⊕[l ]=[m+ n+l]
As we have shown, the five axioms of an Abelian group are satisfied. In this manner, using the generalized sum given by ( 5), we have the Abelian group of the q-integers.

The link to Tsallis calculus

Let us also note that the generalized sum ( 5) is similar to the sum that we find in the approach to entropy proposed by Constantino Tsallis.

In 1948 [START_REF] Shannon | A Mathematical Theory of Communication[END_REF], Claude Shannon defined the entropy S of a discrete random variable Ξ as the expected value of the information content: S= ∑ i p i I i =-∑ i p i log b p i [10]. In this expression, I is the information content of Ξ, the probability of i-event is p i and b is the base of the used logarithm. Common values of the base are 2, the Euler's number e, and 10.

Constantino Tsallis generalized the Shannon entropy in the following manner [START_REF] Tsallis | Possible Generalization of Boltzmann-Gibbs Statistics[END_REF]:

S q = 1 q-1 ( 1-∑ i p i q )
Given two independent systems A and B, for which the joint probability density satisfies:

p( A , B)= p( A) p( B)

the Tsallis entropy gives: (8) S q ( A , B)=S q ( A)+ S q (B)+(1-q)S q ( A) S q (B)

The sum of more than two terms of Tsallis entropies is discussed in [START_REF] Sparavigna | On the generalized additivity of Kaniadakis entropy[END_REF].

The parameter (1-q) , in a certain manner, measures the departure from the ordinary additivity, which is recovered in the limit q →1 . Actually the group on which is based the Tsallis entropy, and therefore Equation ( 8), is known as the "multiplicative group" [START_REF] Sparavigna | Graphs of q-exponentials and q-trigonometric functions[END_REF][START_REF] Sicuro | Groups, information theory, and Einstein's likelihood principle[END_REF][START_REF] Tempesta | Groups, generalized entropies and L-series[END_REF]. As stressed in [START_REF] Curado | A new entropy based on a group-theoretical structure[END_REF], the use of a group structure allows to determine a class of generalized entropies. Let us note the group of the q-integers, with addition (5), can be considered a "multiplicative group" too.

Let us stress that we have a link of the multiplicative group to the Tsallis entropy. The group of the n-integers had been studied in [START_REF] Nathanson | Additive number theory and the ring of quantum integers[END_REF][START_REF] Kontorovich | Quadratic addition rules for quantum integers[END_REF] too, but in these articles, a quite different expression for the generalized sum had been proposed. It is given as the "quantum sum"

[x ]⊕[ y ]=[x ]+ q x [ y ]
, where the link to the Tsallis calculus is less evident.

Symmetric q-numbers

In the previous discussion we have considered the group of the q-integers as defined by qcalculus. In [START_REF] Kac | Quantum Calculus[END_REF] it is also defined the symmetric q-integer in the following form (here we use a notation different from that given in the Ref.6): (9) [n] s = q n -q

-n q-q -1
Repeating the approach previously given, we can determine the group of the symmetric qintegers.

Let us start from the q-integer [m+ n ] s , which is according to ( 9):

[m+ n ] s = q m+ n -q -( m+ n) q-q -1
and try to find it as a generalized sum of the q-integers [m] s and [n] s .

By writing q=exp(log q) , the q-integer turns out into a hyperbolic sine:

(10) [n] s = q n -q -n q-q -1 = e n log q -e -nlog q q-q -1 =2 sinh (n log q) (q-q -1 )
Apart from a numerical factor, this is the form of the generalized numbers proposed by G.

Kaniadakis in his k-calculus [18][START_REF] Kaniadakis | Non-linear kinetics underlying generalized statistics[END_REF][START_REF] Kaniadakis | Statistical mechanics in the context of special relativity[END_REF][START_REF] Kaniadakis | Statistical mechanics in the context of special relativity II[END_REF][START_REF] Kaniadakis | Theoretical Foundations and Mathematical Formalism of the Power-Law Tailed Statistical Distributions[END_REF].

From [START_REF] Borda | Fundamentals in Information Theory and Coding[END_REF], we can write also:

1 2 (q-q -1
)[n ] s =sinh (n log q)

Therefore:

[m+n ] s = q m+n -q -(m +n) q-q -1 =2 sinh((m+ n)logq) (q-q -1
)

Using the properties:

sinh( x + y )=sinh x cosh y +cosh x sinh x ; cosh x=√1+sinh 2 x
we obtain:

[m+n ] s = 2 ( q-q -1
)

[ sinh(mlog q)cosh (n log q)+sinh( n log q)cosh (mlog q)]

[m+n ] s =[m] s cosh( n log q)+[n] s cosh ( mlog q) [m+n ] s =[m] s √ 1+sinh 2 (n log q)+[ n] s √ 1+sinh 2 (m log q)
Let us define: k =(q-q -1 )/2 and then: k [n] s =sinh (n log q) . As a consequence, we have the generalized sum of the symmetric q-integers as:

(11) [m] s ⊕[n ] s =[m] s √ 1+k 2 [n] s 2 +[n] s √ 1+ k 2 [m] s 2
Let us stress that ( 11) is also the generalized sum proposed by G. Kaniadakis in the framework of a calculus [START_REF] Kaniadakis | Non-linear kinetics underlying generalized statistics[END_REF][START_REF] Kaniadakis | Statistical mechanics in the context of special relativity[END_REF][START_REF] Kaniadakis | Statistical mechanics in the context of special relativity II[END_REF][START_REF] Kaniadakis | Theoretical Foundations and Mathematical Formalism of the Power-Law Tailed Statistical Distributions[END_REF], the details of which are given in [START_REF] Kaniadakis | Theoretical Foundations and Mathematical Formalism of the Power-Law Tailed Statistical Distributions[END_REF].

By means of ( 11), we can repeat the approach given previously for q-numbers (3) and study of the group of the symmetric q-integers.

The Mersenne numbers

In the case that q=2 , we have:

[n]= 2 n -1 2-1 =2 n -1
These are the Mersenne Numbers. About these numbers, a large literature exists (see for instance that given in [START_REF] Weisstein | Mersenne Number[END_REF]). Among these numbers we find the Mersenne primes.

The numbers are named after Marin Mersenne (1588 -1648), a French Minim friar, who studied them in the early 17th century.

Mersenne numbers are written as [START_REF] Weisstein | Mersenne Number[END_REF]:

M n =2 n -1
Of course, because they are q-integers for q=2 , we have the generalized sum given in (5):

(5') [m]⊕[ n]=[m]+[n ]+(2-1)[m][n]=[m]+[n]+[m][n]
But we can repeat the calculus as an exercise.

We can start from the number M m+n and calculate.

M m+n =2 m+n -1 M m+n =2 m+n -1=2 m 2 n -1-2 m +2 m -2 n +2 n -1+1=2 m ( 2 n -1)-1+ 2 m -2 n +1+2 n -1 M m+n =(2 m -1)(2 n -1)+2 m -1+2 n - 1 
Therefore, we can write the following generalized sum:

M m+n =M m ⊕M n =(2 m -1)(2 n -1)+(2 m -1)+(2 n -1)
or:

(12) M m+n =M m ⊕M n =M m + M n + M m M n ( 12 
) the same as (5'). Let us stress once more that this is a generalized sum that we can find in the case of the multiplicative groups [START_REF] Sparavigna | Generalized Sums Based on Transcendental Functions[END_REF].

Using [START_REF] Sparavigna | On the generalized additivity of Kaniadakis entropy[END_REF], we can imagine for the Mersenne numbers the following recursive relation:

M n+1 =M n ⊕M 1 =M n + M 1 + M n M 1
We can verify as follow:

2 n+1 -1=(2 n -1)+(2 1 -1)+(2 n -1)(2 1 -1)=2 n + 2 n+1 -2 n -2+ 1=2 n+1 - 1 
The sum ( 12) is associative, so that:

M m ⊕M n ⊕M l =M m + M n + M l + M m M n + M n M l + M m M l + M m M n M l
We cannot have a group of the Mersenne numbers, without considering also the opposites of them, so that:

0=M n ⊕Opposite(M n ) Therefore: Opposite(M n )=- M n M n +1 =M -n Explicitly: Opposite(2 n -1)=- (2 n -1) (2 n -1)+1 = (-2 n +1) 2 n =2 -n -1
These numbers are the Mersenne numbers with a negative exponent. So we have:

M n-n =M n ⊕M -n =M n + M -n + M n M -n 0=2 0 -1=(2 n -1)+(2 -n -1)+(2 n -1)(2 -n -1)=2 n +2 -n -2+ 2 n 2 -n -2 -n -2 n +1=0

Symmetric Mersenne

Let us consider the symmetric q-integer in the case of q=2 .

We can define the symmetric in the following manner: (13) M n s

=[n] s = 2 n -2 -n 2-2 -1
By writing 2=exp (log 2) , ( 13) turns out into a hyperbolic sine: )/2 ; we have the generalized sum of the symmetric Mersenne as: Of course, we have again the generalized sum proposed by G. Kaniadakis.

As a conclusion we can note that, by means of the generalized sums, we have found a different approach to the Mersenne numbers too. In my opinion, it is also possible that it was the form of the Mersenne numbers that inspired the Reverend Jackson to modify the usual derivative into the definition (1) of the q-calculus.
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