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Abstract

There are many measures of dissimilarity that, depending on the application, do not

always have optimal behavior. In this paper, we present a qualitative analysis of the sim-

ilarity measures most used in the literature and the Earth Mover’s Distance (EMD). The

EMD is a metric based on the theory of optimal transport with interesting geometrical

properties for the comparison of distributions. However, the use of this measure is lim-

ited in comparison with other similarity measures. The main reason was, until recently,

the computational complexity. We show the superiority of the EMD through three differ-

ent experiments. First, analyzing the response of the measures in the simplest of cases;

one-dimension synthetic distributions. Second, with two image retrieval systems; using

colour and texture features. Finally, using a dimensional reduction technique for a visual

representation of the textures. We show that today the EMD is a measure that better

reflects the similarity between two distributions.

1 Introduction

In image processing and computer vision, the comparison of distributions is a frequently

used technique. Some applications where we use these measures are image retrieval, clas-

sification, and matching systems [24]. For these, the distributions could represent low-level

features like pixel’s intensity level, colour, texture or higher-level features like objects. The

comparison could be done using a unique feature, for example, the texture [1, 15], or combin-

ing features in a multi-dimensional distribution as the fusion of colour and texture features

[18]. In the field of medical imaging, comparing distributions are useful to achieve image

registration [25]. More general applications such as object tracking [12, 19] and saliency

modeling [5], also use the comparison of distributions. Regarding the number of computer

vision applications that make use of the comparison of distributions, the choice of the correct

metric to measure the similarity between distributions is crucial.

c© 2019. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.
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The Earth Mover’s Distance (EMD) [23] is a dissimilarity measure inspired by the opti-

mal transport theory. This measure is considered as true distance because it complies with

the constraints of non-negativity, symmetry, identity of indiscernibles, and triangle inequal-

ity [20]. The superiority of the EMD over other measures has been demonstrated in several

comparative analysis (see for example [22, 23]). Despite this superiority in theory, in prac-

tice, this distance continues to be underused for the benefit of other measures. The main

reason is the high computational cost due to its iterative optimization process. However,

nowadays this should not be a problem thanks to the algorithmic advances to computing ef-

ficiently the EMD (see “Notes about EMD computation complexity” in section 4) and the

progress of computer processors. Although there are comparative studies (image retrieval

scores, for example), in this paper, we illustrate how other similarity measures dramatically

fail even on very simple tasks. We use a set of 1D synthetic distributions and two simple

image databases (colour and texture-based) to compare a set of similarity measures through

two image retrieval systems and a visual representation in low-dimensional spaces. We show

that, surprisingly, no metric but the EMD yields to classify and give a coherent visual repre-

sentation of the images of the databases (see Figs. S2 and S1 in the supplementary material

file). In this paper, we want to emphasize the importance of having a true metric to measure

the similarity between distributions.

In this article, we present a new qualitative study of some popular similarity measures.

Our primary objective is to show that not all measures express the difference between distri-

butions adequately. Also, we show that today the EMD is a competitive measure concerning

computing time. Among the similarity measures that we compare are some of the most used

bin-to-bin class methods; the histogram intersection and correlation [19], the Bhattacharya

distance [25], the χ2 statistic and, the Kullback-Leibler divergence [12].

This paper is organized as follows: in section 2, we describe and discuss some prop-

erties of the bin-to-bin measures and we expose the geometrical properties of the EMD.

Then, in section 3, we show the performance of the different similarity measures with a

one-dimensional test, with two image classifiers; one based on colour (3D case) and other

based on texture (2D case) information and, with a dimensionality reduction using the mul-

tidimensional scaling (MDS) technique. Finally, in section 4, we close this work with some

reflections about EMD and optimal transport in the field of image processing and computer

vision.

2 Similarity Measures Review

Similarity Measures Notation. In many different science fields, there is a substantial

number of ways to define the proximity between distributions. In abuse of language, the

use of synonyms such as similarity, dissimilarity, divergence and, distance, complicates the

interpretation of such a measure. Here we recall a coherent notation, used throughout this

work.

A distance, from the physical point of view, is defined as a quantitative measurement of

how far apart two entities are. Mathematically, a distance is a function d : M×M →R
+. We

say that d is a true distance if ∀(x,y) ∈ M×M it fulfills the following properties.

1. Non-negativity: d(x,y)≥ 0

2. Identity of indiscernibles: d(x,y) = 0 if and only if x = y
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3. Symmetry: d(x,y) = d(y,x)

4. Triangle inequality: d(x,y)≤ d(x,z)+d(z,y)

From this definition, we can define other distances depending on which properties are (or

not) fulfilled. For example, pseudo-distances do not fulfill the identity of indiscernibles crite-

rion; quasi-distances do not satisfy the symmetry property; semi-distances do not fulfill the

triangle inequality condition; and divergences do not comply with the last two criteria [11].

According to the measure, the numerical result could represent the similarity or the dis-

similarity between two distributions. The similarity and the dissimilarity represent, respec-

tively, how alike or how different two distributions are. Namely, a similarity value is higher

when the distributions are more alike while a dissimilarity value is lower when the distribu-

tions are more alike. In this paper we use the term similarity to refer either how similar or

how dissimilar two distributions are. If distributions are close, they will have high similarity

and if distributions are far, they have low similarity.

2.1 Bin-to-Bin Similarity Measures

In computer vision, distributions describe and summarize different features of an image.

These distributions are discretized by dividing their underlying support into consecutive and

non-overlapping bins pi to generate histograms. Let p be a histogram which represents some

data distribution. In the histogram, each bin represents the mass of the distribution that falls

into a certain range; the values of the bins are non-negative reals numbers.

The bin-to-bin measures compare only the corresponding bins of two histograms. Namely,

to compare the histograms p = {pi} and q = {qi}, these techniques only measure the dif-

ference between the bins that are in the same interval of the feature space, that is, they only

compare bins pi and qi ∀i = {1, . . . ,n}, where i is the histogram bin number and n is total

number of bins. The Table 1 summarizes the bin-to-bin measures we compare.

The histogram intersection [26] is expressed by a min function that returns the smallest

mass of two input bins (see Eq. 1). As a result, the measure gives the number of samples of

q that have corresponding samples in the p distribution. According to the notation defined at

the beginning of section 2, the histogram intersection is a similarity measure.

The histogram correlation gives a single coefficient which indicates the degree of re-

lationship between two variables. Derived from the Pearson’s correlation coefficient, this

measure is the covariance of the two variables divided by the product of their standard devi-

ations. In Eq. 2, p and q are the histogram means. Since this measure is a pseudo-distance

(the resulting coefficient is between -1 and 1), it expresses the similarity of the distributions.

The χ2 statistic measure comes from the Pearson’s statistical test for comparing discrete

probability distributions. The calculation of this measure is quite straightforward and intu-

itive. As depicted in Eq. 3, the measure is based on the difference between what is actually

observed and what would be expected if there was truly no relationship between the distri-

butions. From a practical point of view, it gives the dissimilarity between two distributions.

The Bhattacharyya distance [2] is a pseudo-distance which is closely related to the

Bhattacharyya coefficient. This coefficient, represented by ∑i

√
piqi in Eq. 4, gives a geo-

metric interpretation as the cosine of the angle between the distributions. We normalize the

values of this measure between 0 and 1 to express the dissimilarity between two distributions.

The Kullback-Leibler divergence [14] measures the difference between two histograms

from the information theory point of view. It gives the relative entropy of p with respect to q
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Histogram Intersection:

d∩(p,q) = 1− ∑i min(pi,qi)

∑i qi

(1)

Histogram Correlation:

dC(p,q) =
∑i(pi −p)(qi −q)

√

∑i(pi −p)2 ∑i(qi −q)2
(2)

χ2 Statistic:

dχ2(p,q) = ∑i

(pi −qi)
2

qi

(3)

Bhattacharyya distance:

dB(p,q) =

√

1− 1
√

pqn2
∑i

√
piqi (4)

Kullback-Leibler divergence:

dKL(p,q) = ∑i
pi log

pi

qi

(5)

Total Variation distance:

dTV (p,q) =
1

2
∑i

|pi −qi| (6)

Table 1: Mathematical representation of bin-to-bin measures

(see Eq. 5). Although this measure is one of the most used to compare two distributions, it is

not a true metric since it does not fulfill the symmetry and the triangle inequality properties

described in section 2.

We can find other measures in the literature that represent the similarity between distri-

butions, for example, the Lévy–Prokhorov metric [21] and the total variation distance [4].

The first one defines the distance between two probability measures on a metric space with

its Borel sigma-algebra. However, the use of this is not very frequent in the area of computer

vision because of the implementation complexity [4]. The second one equals the optimal

transport distance [7] in the simplified setup when the cost function is c(x,y) = 1,x 6= y. For

countable sets, it is equal to the L1 norm. Taking this into account, we only use the first five

bin-to-bin measures defined in the following experiments.

2.2 The Earth Mover’s Distance

Earth Mover’s Distance is the term used in the image processing community for the optimal

transport; in other areas, we also find this measure referred to as the Wasserstein distance

[9] or the Monge-Kantorovich problem [4, 10]. This concept lays in the study of the trans-

portation theory which aims for the optimal transportation and allocation of resources. The

main idea behind the optimal transport is simple and very natural for the comparison of dis-

tributions. Let α = ∑
n
i=1 αiδxi

and β = ∑
m
j=1 β jδy j

be two discrete measures supported in

{x1, . . . ,xn} ∈ X and {y1, . . . ,yn} ∈ Y , where αi and β j are the weights of the histograms

bins α and β ; δxi
and δy j

are the Dirac functions at position x and y, respectively. Intuitively,

the Dirac function represents a unit of mass which is concentrated at location x. This nota-

tion is equivalent to the one proposed in [23] where δxi
is the central value in bin i while αi

represents the number of samples of the distribution that fall in the interval indexed by i.

The key elements to compute the optimal transport are the cost matrix C ∈R
n×m
+ , which

define all pairwise costs between points in the discrete measures α and β , and the flow matrix

(optimal transport matrix) F ∈ R
n×m
+ , where fi j describes the amount of mass flowing from

bin i (or point xi) towards bin j (or point x j). Then the optimal transport problem consists in

finding a total flow F that minimizes the overall cost defined as

WC(α,β ) = min〈C,F〉= ∑i j
ci j fi j (7)

Placing the optimal transport problem in terms of suppliers and consumers; for a supplier

i, at some location δxi
, the objective is to supply αi quantity of goods. On the other hand, a
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consumer j, at some location δy j
, expects to recieve at most β j quantity of goods. Then, the

optimal transport problem is subject to three constraints, ∀i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m}

1. Mass transportation (positivity constraint): fi j ≥ 0 : i → j.

2. Mass conservation (equality constraint): ∑ j fi j = αi and ∑i fi j = β j.

3. Optimization constraint: ∑i j fi j = min
(

∑i αi,∑ j β j

)

.

Then, we define the Earth Mover’s Distance as the work WC normalized by the total flow

dEMD(α,β ) =
∑i j ci j fi j

∑i j fi j

(8)

The importance of the EMD is that it represents the distance between two discrete mea-

sures (distributions) in a natural way. Moreover, when we use a ground distance as the cost

matrix C, the EMD is a true distance. Peyré and Cuturi [20] show the metric properties of

the EMD. To show these advantages, we developed a series of experiments described in the

next section.

3 Comparative Analysis of Similarity Measures

3.1 One-Dimensional Case Study

To compare the measures described in section 2 in the simplest scenario, we use a set of one-

dimensional synthetic distributions. We create a source distribution and a series of target

distributions (see Fig. 1). Both, source and target distributions, has 1000 samples and are

random normal distributions. The unique difference between them is that the mean of the

target distributions (µ) is increasing five units with respect to the previous distribution.

(a) Source distribution (b) Target distributions

Figure 1: Source and target synthetic distributions

Since the distributions’ mean value increases linearly, we expect that the similarity mea-

sure has an equivalent response, i.e., that the similarity decreases when the difference of

the source and target means increases. In Fig. 2, we can see the response of the bin-to-bin

measures and the EMD. Among the bin-to-bin measures, those that give a coefficient of dis-

similarity (χ2 statistic, Bhattacharyya pseudo-distance and K-L divergence) rapidly saturate

and stick to a maximum value; while for those that give a coefficient of similarity (histogram

correlation and intersection), their value falls rapidly to zero. We can interpret these be-

haviors as follows. When the bins pi, qi do not have any mass in common, the bin-to-bin

measures fail in taking into account the mutual distance of the bins. They could consider that
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(a) Histogram intersection (b) Histogram correlation (c) χ2 Statistic

(d) Bhattacharyya (e) Kullback-Leibler (f) EMD

Figure 2: Distances between the source and target distributions

the distributions are precisely at the same distance (there is no difference between them), or

that the distributions are entirely dissimilar. The only measure that presents a convenient

behavior with the increasing difference of the means is the EMD. This is due to taking into

account the ground distance C of the matching bins (see above, Eq. 8). One can argue that

for applications like image retrieval finding the most similar distribution is sufficient to find

the alike image, or texture, whereas the ordering on the other ones is irrelevant. In the fol-

lowing experiment, we show that this intuition is incorrect and that even in an overly simple

case the bin-to-bin measures are not the best choice.

3.2 Image Retrieval Systems

We develop two image retrieval systems as a second comparison test, one based on colour

information and the other based on texture information. For the classifiers, we use different

databases. The first one contains 24 different colour images of superhero toys1. It has 12

classes with two samples per class. The two first rows in Fig. 3 show some examples

of the superhero toys and their variations (change of the angle of the toy or the addition

of accessories). The second database [16] is composed of images belonging to different

surfaces and materials (see the last two rows in Fig. 3). The database contains 28 different

classes; it contains different patches per class.

We compare the performance of six out of the eight measures described in section 2

in the following way. First, we divide the database samples into model images and query

images; each class only has one model and one query image. We take an image of the query

set and compare its colour/texture distribution (source distribution) with the colour/texture

distribution of all model images (target distributions). Then, we order the images from the

most similar to the most dissimilar image. We repeat this process for all the images in the

query set2.

Image colour distribution. We use 3D histograms to represent the distribution of colour

pixels. Since the superhero images are very simple and do not present significant challenges,

1CC superheros images courtesy of Christopher Chong on Flickr
2The image classification systems (colour-based and texture-based) and the datasets used for this work are

available at https://github.com/CVMethods/image_clasifier.git
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Figure 3: Some samples from the colour and texture databases

i.e., the images possess a very distinctive colour palette and do not present textures or im-

portant changes in lighting, any similarity measure should be sufficient to perform the image

retrieval. However, image retrieval systems are sensitive to the representation and quan-

tification of the colour image pixels. We show this effect by varying the colour space and

the colour quantization level in the image classifier. For the colour space, we represent the

images in the RGB, HSL, and LAB colour spaces. For the colour quantization level, we

represent the colour space in histograms of 8, 16 and 32 bins per channel.

Image texture distribution. We use a family of Gabor filters as texture descriptors

to obtain a distribution (2D histograms) that models the texture of the images. This type

of filters models the behavior of the human visual cortex [8], so they are very useful in

computer vision applications to represent textures. [17]. The family of Gabor descriptors is

represented by the mother wavelet

G(x,y,ω,θ) =
ω2

4πκ2
e
− ω2

8κ2 (4x̂2+ŷ2) · [eiκ x̂ − e
κ2

2 ] (9)

where x̂ = xcosθ + ysinθ and ŷ = −xsinθ + ycosθ . The 2D texture histograms are a

function of the energies of the Gabor responses according to the frequency ω , the orientation

θ and the constant κ in the Gabor wavelet. For example, a histogram with κ ≈ π and 6 bins

means that there are 6 different frequencies to a bandwidth of one octave and 6 different

orientations. The energy of a Gabor response is given by,

Eω,θ = ∑x,y
|Wx,y,ω,θ |2 (10)

where Wx,y,ω,θ is the response of the convolution of a 2D wavelet with frequency ω and

orientation θ with an image.

3.2.1 Image Retrieval Systems Evaluation

We create a comparison benchmark for the six similarity measures. First, we normalize the

distances given by the different methods between 0 and 1, where a value close to 0 means

the distribution the most similar to the source distribution and 1 the most dissimilar. Then

we transform the normalized distances into probabilities using a softmax function SM(d) =
ed

∑i edi
. The vector d= {di}, ∀i= {1, . . . ,m}, represents the distances between the query image
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to the m images in the database. Considering the softmax function of the distances vector

as a classification probability SM(d) = ŷ, we compute the cross-entropy [3] considering the

classification ground truth y.

H(y, ŷ) =−∑i
yi log ŷi (11)

We can interpret the cross-entropy value as the confidence level of the image classifier for

some given metric, feature space (colour or texture) and histogram size. When this value

is very close to zero, it indicates a perfect classification of the query image. In Fig. 4, we

note the superiority of the EMD over the other measures in both colour and texture-based

classifiers.

(a) RGB colour space (b) HLS colour space

(c) LAB colour space (d) Texture Gabor energy space (Eq. 10)

Figure 4: Cross entropy value of image retrieval systems (colour and texture) using different

similarity measures

With the image retrieval systems, we can highlight interesting aspects of the EMD and the

use of bin-to-bin measures in the comparison of distributions. First, we see the importance

of the selection of the colour space and the compression level of the feature space (histogram

size). The effect of discretization in the bin-to-bin measures is counter-intuitive by the fact

that the error increases slightly when the number of bins increases. The explanation could

be a poorer intersection of mass distributions. In the case of EMD, increasing the number

of bins improves the classification result. Besides, as expected, in the colour-based classifier

the calculation of the EMD in the LAB colour space is better than in the HLS or the RGB.

This effect is because the LAB colour space models the colour human perception in the

Euclidean space, therefore, the ground distance between two colours is easily calculated

with the L2 norm. On the other hand, in the texture-based classifier, we see that increase

the number of bins beyond 8 bins does not improve the classification considerably. This is

because the histograms with 8 frequencies and 8 orientations represent sufficiently well the

image textures.

3.3 Texture Projection Quality Evaluation

We use the multidimensional scaling (MDS) technique [13] as the last evaluation test for

the similarity measures on the texture dataset. The MDS allows to geometrically represent
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n textures by a set of n points {x1, . . . ,xn} in a reduced Euclidean space R
d , so that the

distances between the points d̂i j = ||xi − x j||2 correspond as much as possible to the values

of dissimilarity di j between the texture distributions. To evaluate the quality of the projection,

we use the stress value proposed in [13].

S =

√

√

√

√

∑i j(d̂i j −di j)2

∑i j d̂2
i j

(12)

The stress coeficient is a positive value that indicates how well the distances given by the

measures are preserved in the new low-dimensional space, i.e. the lower the level of S, the

better the representation of texture in a low-dimensional space (2D in our case). The figure 5

shows how the lowest stress is obtained using the EMD. This is because the MDS technique

interprets the distances of the entrance towards distances in a space of low dimension. Given

that the EMD is the only measure that is a true metric, not only is the stress level low, but

the visual projection is in accordance with the frequency ω and orientation θ used in the

Gabor filters (Eq. 9) that model the distribution of the textures (see Fig. S8 in supplemental

materials file).

Figure 5: Stress value of the MDS projections using the six principal similarity measures

4 Conclusion

In this work, we compare some of the so-popular bin-to-bin similarity measures with the

EMD. We measure their performance in three tests: a one-dimensional analysis with syn-

thetic distributions, with two image classifiers (colour and texture-based) and a visual pro-

jection using the MDS technique and the stress as the comparison value. The objective is to

show that such measures highly used in the literature to develop complex tasks are not the

best choice since they fail even in the most straightforward conditions. We illustrate that the

EMD is a true metric [20] that expresses the dissimilarity between distributions naturally.

Results. The experiments of the previous sections show the superiority of the EMD to

represent the similarity between distributions. First, the one-dimensional case shows how

the bin-to-bin measures saturate (or fall to zero) as soon as the probabilities have empty

intersection (see Fig. 1). As for the image retrieval systems, we can see that by correctly

choosing the feature image space and a good compression resolution of the distributions

(LAB color space with 32 bins in the colour-based system and the Gabor energy with 8 bins

in the texture-based system), the EMD performs a perfect classification. However, this is

not the case of the other measures because they are not a true distance. Representing the

textures in the Euclidean space using the MDS technique, shows another advantage of the

EMD. The use of the ground distance C in the calculation of the optimal transport, making
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it possible to transfer 2D texture histograms to a logarithmic-polar space, making the stress

value relatively low. To see some examples of the colour-based image retrieval system and

the 2D texture projections consult the file with supplementary material.

Notes about EMD computation complexity. We believe that EMD is a depreciated

metric only because of excessive calculation time. In the examples developed before, we

calculate the EMD using the iterative process of linear programming. Despite this, the cal-

culation is fast enough to develop the image classifier. In comparison with the first EMD

algorithm [23], the progress of the computer processors allows to use the same algorithm

and be competitive with the bin-to-bin measures. Moreover, a solution to the excessive com-

plexity time and memory consumption are the regularized distances, also called Sinkhorn

distances [6]. This entropy-based regularization accelerates the computing time giving a

close approximation of the EMD. The regularization of distances allows for creating paral-

lelizable algorithms.
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Supplementary Material: Quantitative Analysis of
Similarity Measures of Distributions

1 Colour-based Image Retrieval

The figures S1 and S2 present the result of the classification of the images of two superhero

toys. The query image is displayed in the upper left. The rows of the image arrangement

represent the different measurements used in the retrieval while the columns show the most

similar image from left to right in descending order. The numerical values of the distances

are below each image; these values are not normalized nor are they on the same scale.

The two examples here show how, under certain disturbances in color distribution, bin-to-

bin measurements are not able to identify the correct result. In the case of the wonderwoman

toy, the fact that the query image has an extra accessory modifies the color signature of the

figure, while in the case of the superman toy the color signature is very close to those toys

that contain red and blue colors. These two images were obtained using the LAB colour

space and 32 bins for the pixels colour distribution.

Figure S1: Wonderwoman toy image retrieval example
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Figure S2: Superman toy image retrieval example

2 Texture Projection Visual Evaluation

The following images serve as a visual tool for the comparative evaluation of the different

measures analyzed in the main article. As we described in section 3.3, the MDS technique

allows to projecting the textures in a low dimensional space using the distances given by the

similarity measures. This representation is carried out in a two-dimensional Euclidean space

in our case. In the figures, we can notice that the MDS technique has problems to represent

coherently the textures when the input measures are not a metric, i.e., for the bin-to-bin

measures. The axis in Figs. S3 to S7 do not correspond with the input space of the textures.

However, in the case of EMD, we can observe that since this measure uses a ground

distance to calculate the similarity, we can define the cost matrix Ci j = c(xi,y j) of Eq. 7 to

be the L1-distance as

c(xi,yi) = d((ωi,θi),(ω j,θ j)) = α|∆ω|+ |∆θ | (S1)

where |∆ω|=ωi−ω j, ∆θ =min(|θi−θ j|,θmax−|θi−θ j|), and α is a constant that regulates

the importence between the orientation and the coarsness of textures. In such a way that it

represents the 2D texture distributions into a log-polar space. In the image S8, we can

distinguish this effect because the textures are organized concerning their orientation and

frequency into a log-polar coordinate space forming a circle. The orientation of texture is

represented along the circle while the frequency follows the axis that goes from the outside of

the circle to the center, where the lower frequency images remain at the edge of the circle and

those with high frequency (and low directionality) are grouped in the center. This behavior is

not shown with any of the other measures and is reflected in the stress value of the figure 5.
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Figure S3: MDS texture projection using the histogram intersection

Figure S4: MDS texture projection using the histogram correlation
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Figure S5: MDS texture projection using the χ2 statistic

Figure S6: MDS texture projection using the Bhattacharyya distance
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Figure S7: MDS texture projection using the Kullback-Leibler divergence

Figure S8: MDS texture projection using the Earth Mover’s Distance


