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Generalized Mertens sums∗

Gérald Tenenbaum

To Krishna Alladi, half-way,
as a token of a life-long friendship.

Let

Sk(x) :=
∑

p1···pk6x

1

p1 · · · pk
(x > 2),

where pj denotes a prime number. It is a well known result of Mertens that

S1(x) = log2 x+ c1 +O
( 1

log x

)
(x > 3),

with (see, e.g., [3], p. 18)

(1) c1 := γ −
∑
p

{
log
( 1

1− 1/p

)
− 1

p

}
≈ 0.261497.

Here and in the sequel, γ is Euler’s constant, p stands for a prime number and log2 denotes the two-fold
iterated logarithm. The number c1 is called Mertens’ constant, also known as the Meissel-Mertens, or
the Kronecker, or the Hadamard-La Vallée-Poussin constant.

In [1], [2], Popa used elementary techniques to derive similar asymptotic formulae in the cases
k = 2 and 3, with a main term equal to a polynomial of degree k in log2 x and a remainder term
� (log2 x)k/ log x. In this note we investigate the general case. We define classically Γ as the Euler
gamma function.

Theorem 1. Let k > 1. We have

Sk(x) = Pk

(
log2 x

)
+O

(
(log2 x)k−1

log x

)
(x > 3),

where Pk(X) :=
∑

06j6k λj,kX
j , and

λj,k :=
∑

06m6k−j

(
k

m, j, k −m− j

)
(c1 − γ)k−m−j

( 1

Γ

)(m)

(1) (0 6 j 6 k).

Proof. Write P (s) :=
∑

p 1/ps, so that we have

P (s) = log ζ(s)− g(s), g(s) :=
∑
m>2

1

m

∑
p

1

pms

in any simply connected zero and pole-free region of the zeta function where the series g(s) converges.
(Here log ζ(s) is the branch that is real for real s > 1.) Moreover, for s+1 in the same region, we have

P (s+ 1) = log(1/s) + h(s),

∗ We include here some corrections with respect to the published version.
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with h(s) = log{sζ(s+ 1)} − g(s+ 1) and where log(1/s) is understood as the principal branch. The
function h(s) is clearly holomorphic in a disk around s = 0.

Now, for any c > 0, we have

(2) Sk(x) =
1

2πi

∫
c+iR

P (s+ 1)kxs
ds

s
(x ∈ R+ rN).

By following, mutatis mutandis, the argument of the Selberg-Delange method (see [3], ch. II.5 & II.6)
we readily obtain

Sk(x) =
1

2πi

∫
H

{
log
(1

s

)
+ h(0)

}k

xs
ds

s
+O

( (log2 x)k−1

log x

)
(x > 2), (1)

where H is a Hankel contour around R−, positively oriented.
We also observe that, by (1), we have

h(0) = −
∑
p

{
log
( 1

1− 1/p

)
− 1

p

}
= c1 − γ.

It remains to compute

Im(x) :=
1

2πi

∫
H

{
log

1

s

}m

xs
ds

s
(m > 0).

To this end, we consider Hankel’s formula (see, e.g., [3], th. II.0.17)

1

2πi

∫
H

xs

s1+z
ds =

(log x)z

Γ(z + 1)
(z ∈ C)

and derive

Im(x) =
∑

06j6m

(
m

j

)
(log2 x)j

( 1

Γ

)(m−j)

(1).

Rearranging the terms, we arrive at the announced formula for Pk(X). ut
Specialization. Noting that (1/Γ)′(1) = γ, (1/Γ)′′(1) = γ2 − 1

6π
2, (1/Γ)′′′(1) = 2ζ(3) − 1

2π
2γ + γ3,

(1/Γ)(4)(1) = 1
60π

4 +8γζ(3)+π2γ2 +γ4, as may be deduced from classical formulae for the logarithmic
derivative of the Euler function (see, e.g., [3], chap. II.0), we find

P1(X) = X + c1, P2(X) = (X + c1)2 − 1
6π

2, P3(X) = (X + c1)3 − 1
2π

2(X + c1) + 2ζ(3),

P4(X) = (X + c1)4 − π2(X + c1)2 + 8ζ(3)(X + c1) + 1
60π

4.

Remark. By retaining, in the integrand of (2), the first N + 1 terms of the Taylor expansion of h(s)
at the origin, the above method readily yields, for arbitrary integer N > 0, an asymptotic formula of
the type

Sk(x) =
∑

06j6N

Pj,k(log2 x)

(log x)j
+O

(
(log2 x)k−1

(log x)N+1

)
where Pj,k is an explicit polynomial of degree 6 k − 1.
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1. Due to an oversight, the exponent of log2 x has been set to k instead of k − 1 in the published version of
this work.


