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Abstract Introduction: The goal of European Ultrahigh-Field Imaging Network in Neurodegenerative Dis-

eases (EUFIND) is to identify opportunities and challenges of 7 Tesla (7T) MRI for clinical and
research applications in neurodegeneration. EUFIND comprises 22 European and one US site,
including over 50 MRI and dementia experts as well as neuroscientists.
Methods: EUFIND combined consensus workshops and data sharing for multisite analysis, focusing
on 7 core topics: clinical applications/clinical research, highest resolution anatomy, functional imag-
ing, vascular systems/vascular pathology, iron mapping and neuropathology detection, spectroscopy,
and quality assurance. Across these topics, EUFIND considered standard operating procedures,
safety, and multivendor harmonization.
Results: The clinical and research opportunities and challenges of 7T MRI in each subtopic are set
out as a roadmap. Specific MRI sequences for each subtopic were implemented in a pilot study pre-
sented in this report. Results show that a large multisite 7T imaging network with highly advanced
and harmonized imaging sequences is feasible and may enable future multicentre ultrahigh-field
MRI studies and clinical trials.
Discussion: The EUFIND network can be a major driver for advancing clinical neuroimaging
research using 7T and for identifying use-cases for clinical applications in neurodegeneration.
� 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Keywords: Magnetic resonance imaging (MRI); Ultrahigh-fieldMRI; Alzheimer’s disease (AD); Subjective cognitive decline
(SCD); Mild cognitive impairment (MCI); Parkinson’s disease (PD); Vascular dementia
1. Background

Magnetic resonance imaging (MRI) measures of brain
structure and function are important pillars in the assessment
of dementias, both in clinical practice and for research.
There is a pressing need for more sensitive and specific bio-
markers of neurodegeneration, and for new approaches to
study pathology and its functional consequences. MRI at
ultrahigh-field strengths (at 7 Tesla, 7T) is potentially ideal
in this context—it is safe, quick, and can improve sensitivity
and specificity (compared with 3T MRI). With a view to
realize the full potential of ultrahigh-field MRI at 7T for
neurodegenerative disease research, a new working group
was established in 2016: the European Ultrahigh-Field Im-
aging Network in Neurodegenerative Diseases (EUFIND)
(Fig. 1A). It comprises imaging and dementia experts repre-
senting 22 sites across Europe, including all scanner ven-
dors, to work together to identify opportunities and
challenges of 7TMRI and draw a roadmap for implementing
and harmonizing ultrahigh-fieldMRImethods for the in vivo
assessment of neurodegenerative diseases.

The initial focus of EUFIND was Alzheimer’s disease
(AD), but with the inclusion of several Parkinson’s disease
(PD) specialists,EUFINDhas extended the scopeof this initia-
tive to optimizing and harmonizing protocols with a focus on
these two most common neurodegenerative disorders. EU-
FIND also interacts with the JPND (EU Joint Programme—
Neurodegenerative Disease Research) working group for
harmonizing MRI in vascular dementia (HARNESS) through
members participating in both initiatives.

EUFIND’s scope includes clinical applications and
research using 7T MRI to (1) help disseminate knowledge
across centers, (2) enable large ultrahigh-field, multisite,
and multivendor studies in a harmonized network, (3) facil-
itate identification of clinical use-cases for 7T, and (4) cali-
brate methods for mapping tissue structure, function,
vascularization, molecular, and metabolic status.
2. Methods

The EUFIND working group has conducted two interna-
tional meetings, several telephone conferences and
continued its efforts beyond the JPND funding with a third
meeting in early 2018 (Fig. 1B).

During the first EUFIND meeting in Magdeburg, the
working group identified 7 core subtopics and elected sub-
topic coordinators. A steering committee (see Appendix)
was appointed comprising EUFIND coordinators, subgroup
coordinators, and country representatives. Subgroup coordi-
nators (see Appendix), together with EUFIND members
interested in that subgroup (see Appendix), defined topics
of interest, drafted a roadmap for addressing these topics,
and optimized a scanning protocol.

During the second meeting in Leiden, subgroup coordina-
tors presented their progress, and on the basis of each sub-
group’s recommendations, the first EUFIND scanning
protocol was agreed. Subsequently, all site representatives
expressed their interest to participate in a multicentre pilot
study to test the proposed protocol, hence exceeding the
original JPND project plan.
3. Results

3.1. The EUFIND network

EUFIND includes 14 sites operating Siemens 7T MRI
systems, whereas 6 sites operate Philips scanners and 2 Gen-
eral Electric (GE). All sites, except one, are equipped with

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. (A) Structure of EUFIND. (B) Timeline of EUFIND working group meetings and milestones. Abbreviations: EUFIND, European Ultrahigh-Field Im-

aging Network in Neurodegenerative Diseases.
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the same RF head-coil with 32 receiver channels (1 site uses
a 24-channel version, Nova Medical coil). We identified
several differences on the transmit side between Siemens
and Philips/GE systems. Our survey also revealed gradient
strengths ranging from 38 to 80 mT/m. Such hardware dif-
ferences were considered when harmonizing the imaging
protocols.

3.2. Subtopic results and recommendations

3.2.1. Clinical application/clinical research
The utilization of 7T in clinical practice is in its infancy.

This may soon change, however, in light of the approval
of the first 7T systems for clinical use (in the US and
in the EU) (https://www.fda.gov/NewsEvents/Newsroom/
PressAnnouncements/ucm580154.htm).

Ultra-fast acquisition: The increased signal-to-noise ra-
tio provided by 7T MRI can be exploited for speeding-up
acquisitions with image resolutions commonly used at clin-
ical field strength (3T), thereby improving motion robust-
ness and/or shortening the time required for imaging
patients.

Clinical research: High-resolution structural imaging
with 7T MRI is ideally placed to complement molecular
measures of tau and amyloid pathology by providing unique
information on disease staging, as suggested by the research
framework for AD [1]. We have specifically identified the
following topics for future clinical research:

� Disease modeling: Taking advantage of the superior
spatial resolution of 7T MRI, longitudinal multipara-
metric high-resolution imaging could better inform
mathematical models of disease progression and offer
a safe and quick tool for repeat use in treatment trials.

� Functional assessment: Functional 7T MRI can reach
submillimeter resolution [2,3], thereby allowing to
functionally probe and assess the integrity of small
anatomical structures, such as entorhinal cortex
subregions, hippocampus subfields, locus coeruleus,
and basal ganglia circuits. Such information would
facilitate understanding of disease effect on brain
functions from the earliest stages of AD and PD and
to probe target engagement in drug trials.

� Nonamyloid/non–tau-pathology: High-resolution
angiography at 7T can aid the detection of disease co-
morbidities such as vascular pathology.

� Differential diagnosis: Iron mapping with 7T MRI
could help improve the differential diagnosis of neuro-
degenerative diseases, for example, across parkinso-
nian disorders.

https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm580154.htm
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm580154.htm


Table 1

Sequence parameters of the high-resolution anatomical imaging protocol

3D-MPRAGE 2D-TSE

Siemens GE Philips Siemens GE Philips

Spatial resolution mm 0.65 iso 0.7 iso 0.65 iso 0.4 ! 0.4 ! 1.0 0.4 ! 0.4 ! 1.1 0.44 ! 0.45 ! 1.0

Nr. of slices 256 240 256 55 28 ! 2 55

Repetition time ms 2500 2500 2500 8020 15,000 8000

Echo time ms 2.92 3 3.1 76 75 121

Magn. preparation Non-sel IR Non-sel IR Non-sel IR No No No

TI 1100 ms 600 ms 1100 ms N.A. N.A. N.A.

Flip angle 7 deg 7 deg 8 deg n/a n/a n/a

Acceleration factor GRAPPA 2 ASSEST 2 SENSE 1.6 (AP) None 2 None

Acquisition time min 8:14 6:29 8:12 7:13 6:30 ! 2 8:48

Abbreviations: GE, General Electric; GRAPPA, generalized autocalibrated partially parallel acquisition; 3D-MPRAGE, 3-dimensional magnetization pre-

pared rapid acquisition with gradient echo; 2D-TSE, 2-dimensional turbo spin echo.
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� End-point markers for clinical trials: Increased sensi-
tivity to quantify neurodegeneration could offer a vali-
dated readout for use in controlled designs.

Diagnostic imaging: EUFIND is the ideal framework to
identify the most promising applications of 7T MRI in clin-
ical neurology; with most participating sites embedded in a
clinical setting, direct comparisons with routine 3T assess-
ments are feasible. We do not expect 7T MRI to replace es-
tablished molecular imaging, that is, positron emission
tomography, or cerebrospinal fluid biomarkers, of neurode-
generative diseases. However, existing evidence suggests
that 7T MRI could (1) be more sensitive to early neurode-
generation in prodromal/preclinical states of neurodegener-
ative diseases, (2) offer a highly sensitive tool for the
detection of vascular pathology, and (3) improve target
placement for noninvasive brain stimulation techniques. EU-
FIND could also help identify in epilepsy more subtle le-
sions than 3T MR even though this latter topic is not in the
immediate scope of EUFIND.
3.2.2. Highest resolution anatomy
7T MRI offers superior anatomical resolution over lower

field strengths. To illustrate this, we imaged and segmented
medial temporal lobe regions. As illustrated in recently
developed 7T segmentations protocols for the medial tempo-
ral lobe [4], certain key landmarks that are difficult to iden-
tify at 3T, such as the endfolial pathway distinguishing
dentate gyrus from hippocampal subfield CA3, can be reli-
ably identified in 7T scans. Two high-resolution anatomical
sequences were successfully implemented and analyzed at
13 EUFIND sites: a T1-weighted sequence for whole-brain
anatomy (3-dimensional magnetization prepared rapid
acquisition with gradient echo, 0.65-mm isotropic resolu-
tion), and a T2-weighted acquisition centered on the medial
temporal lobe (2D Turbo-Spin Echo, 0.4 ! 0.4 ! 1.0 mm
resolution, orthogonal to the hippocampus’ longest axis).
Table 1 summarizes the acquisition details for each of the se-
quences. Protocols for different vendors were largely analo-
gous—but minor differences existed. We have not used
dielectric pads to improve signal from the medial temporal
lobes because these were not available at all sites, are not
approved for clinical use and raise safety concerns because
of their considerable effects on the local specific adsorption
rate. Data were acquired from 22 healthy volunteers,
scanned across all 13 sites.

Whole-brain T1 scans were bias-corrected [5] before seg-
mentation using Freesurfer’s “recon-all” pipeline [6]. Hip-
pocampal subfield segmentation was undertaken using the
automated segmentation of hippocampal subfields protocol
package (https://sites.google.com/site/hipposubfields/) in
combination with the Magdeburg 7T atlas, which was
created using a recently published subfield segmentation
protocol [4]. Fig. 2A highlights the importance of bias-
field correction to provide spatially homogenous images
for whole-brain segmentation (Fig. 2B). Fig. 3 illustrates
the interscanner consistency of hippocampal segmentation
from T2-weighted images.

In conclusion, whole-brain T1-weighted and high-
resolution T2-weighted sequences were successfully imple-
mented and analyzed across sites and vendors. These initial
efforts revealed two acquisition problems, namely excessive
head motion and signal loss in the inferior temporal lobe on
T2-weighted scans. Future solutions could include prospec-
tive motion correction [7] and utilization of parallel trans-
mission to homogenize the transmit field [8].

3.2.3. Functional imaging
The main advantages of higher field strength for fMRI are

the increased nuclearmagnetization and susceptibility effects,
leading to increased blood oxygenation level-dependent
contrast [9,10]. However, acquisition of fMRI data suffers
from physiology- and hardware-related challenges that may
impair the generalization of fMRI studies across imaging plat-
forms [11].We thus evaluated the feasibility of a standardized
protocol across several 7T sites for resting-state fMRI in
neurodegenerative diseases. In the preclinical course of AD,
tau-pathology spreads from perirhinal and entorhinal cortex
to hippocampal subfields and amygdala and later to other
cortical temporal regions, to frontal and midline parietal

https://sites.google.com/site/hipposubfields/


Fig. 2. Sample T1-weighted scans and Freesurfer segmentation across sites. (A) Sample T1-weighted scans from two different sites (top: Pisa [GE], bottom:

Bonn [Siemens]). Left: original data; right: after bias-field correction. (B) Sample Freesurfer segmentation results from four sites (top left: Bonn, top right:

Essen, bottom left: Magdeburg, bottom right: Paris).
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regions [12–14]. Therefore, tools to assess the detailed
functional connectivity profile of the perirhinal cortex
(PRC) in preclinical AD would be valuable. We assessed
whether PRC functional connectivity with the entorhinal
cortex, hippocampal subfields, and cortical regions could be
reliably delineated in multisite resting-state data and could
be distinguished from connectivity patterns of the parahippo-
campal cortex. This comparison is relevant because the para-
hippocampal cortex (PHC) is affected in later stages of tau-
progression than the PRC [15]. PHC and PRC seed regions
were selected to analyze resting-state data as used to investi-
gate the integrity of entorhinal and hippocampal subregional
connectivity [16]. fMRI data were acquired at five different
imaging sites for a total of eight subjects (see sequence pa-
rameters in Table 2 and Figs. 4 and 5). Seed-to-voxel correla-
tional analyses using PRC or PHC seeds were performed on
the distortion and motion corrected fMRI data using the
Fig. 3. Sample T2-weighted coronalMRI scans through the body of the hippocamp

hippocampal head (uncal apex). Scans acquired from Leipzig (left), Magdeburg (c

36—dark blue, area 35—turquoise, entorhinal cortex—brown, subiculum—mauve

tation is based on a new protocol by Berron et al. [4].
CONN toolbox [17]. As covariates, white matter and cerebro-
spinal fluid time series and subjects’ realignment parameters
were included to account for physiological noise and motion,
respectively. For group analysis, correlation maps were regis-
tered to the MNI atlas and averaged across subjects.

For all subjects, the seed ROI’s could be reliably obtained
and analyzed. Although both seed-regions are located in
close proximity, the observed correlation maps exhibited
clearly distinct patterns in agreement with earlier studies
[16], with no large differences across sites and subjects,
demonstrating the feasibility of functional connectivity mul-
ticentre studies using 7T fMRI.

Because this proof-of-concept study focused on feasi-
bility, we used an anatomically narrow acquisition protocol
limited to the medial temporal lobe. It would be meaningful
to include cortical regions such as parietal and midline re-
gions in future protocols.
us and adjacent medial temporal lobe structures, immediately posterior to the

enter), and Paris (right). Color legend of segmented regions: Brodmann area

, CA1—red, CA2—green, CA3—yellow, dentate gyrus—blue. The segmen-



Table 2

Sequence parameters of the resting-state fMRI protocol

Resting-state fMRI

Siemens GE Philips

Spatial resolution mm 1.1 iso 1.1 iso 1.1 iso

Nr. of slices 40 40 40

Nr. of volumes 250 240 200 1 4 dummies

Repetition time ms 2400 3000 3000

Echo time ms 22 22.5 22

Partial Fourier 6/8 Off Off

Acceleration factor GRAPPA 4 ASSET 3 GRAPPA 4

References lines 64 64 64

Acquisition time min 10:27 12:12 10:12

Abbreviations: GE, General Electric; GRAPPA, generalized autocali-

brated partially parallel acquisition.

E. D€uzel et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 11 (2019) 538-549 543
3.2.4. Vascular system/vascular pathology
7T MRI offers several unique opportunities to further our

understanding of vascular contributions to neurodegenera-
tive diseases. This includes both functional and structural
assessment of the brain vasculature and parenchyma, as
well as perfusion [18,19].

7TMRI allows for high-resolution imaging of both the ar-
teries [18,20] (time of flight) and the veins [19,21] (T2*
weighted imaging/susceptibility weighted imaging).
Postprocessing techniques are being developed for
quantitative measures of vessel density, length, tortuosity,
and branching patterns. In addition, structural features of
the wall of intracranial vessels can be assessed (reviews:
[18,22]), although this is currently still limited to larger
vessels (circle of Willis and a few major branches) [e.g.,
[23]]. Apart from measures of vessel structure, different as-
Fig. 4. Overview of subjects’ me
pects of vascular function, including blood flow, pulsatility
of flow in small penetrating arteries—a possible indicator
of vascular stiffness—[24,25], vascular reactivity to
vasoactive agents (e.g., carbon dioxide) or neuronal
stimulation (i.e., fMRI), can be assessed with 7T MRI at a
level of spatial and temporal resolution that markedly
exceeds lower field strength MRI [18,26]. Finally, 7T also
offers new perspectives on the consequences of vascular
disease in the parenchyma. Methods have been developed
to detect cortical microinfarcts [27,28], and to improve
detection of microbleeds [29,30] and secondary
neurodegeneration [31].

We attempted to harmonize a recently published 2D
phase-contrast sequence to measure pulsatility in perfo-
rating arteries of the white matter in the semioval center
[25]. We found, however, large sensitivity differences
across scanner platforms in detecting perforating arteries.
Such performance inconsistencies warrant future study,
and illustrate in exemplary fashion the challenges of
harmonization. The method was thus applied to the larger
perforating arteries in the basal ganglia. Eleven 2D
phase-contrast scans were available from 7 sites (all three
scanner vendors included) and were successfully analyzed.
The results (data not shown) confirmed the values from the
first publication [25].

3.2.5. Iron mapping and neuropathology detection
Iron dysregulation is thought to play a significant role in

the pathogenesis of neurodegenerative diseases such as AD
[32], PD [33], and amyotrophic lateral sclerosis [34]. Large
numbers of iron-laden glial cells are commonly found in
the vicinity of pathological aggregates in these disorders
an EPI from different sites.



Fig. 5. Average functional correlation coefficient maps. Each seed region is color-coded (left hemisphere perirhinal cortex and parahippocampal region: red and

blue, respectively, and green and yellow for the right hemisphere, respectively).
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[35–40]. Quantitative susceptibility mapping (QSM) [41]
and apparent transverse relaxation rate (R2*)—both related
to brain iron levels in vivo—revealed differential patterns of
involvement in aging [42–46] and AD [47–49], PD [50–52],
and amyotrophic lateral sclerosis [53–55]. In light of this,
EUFIND has carried out a systematic calibration study of
QSM and R2* measurements from multiple sites using
scanners from all three vendors (see Table 3 for Siemens
scanners).

Single- and multi-echo data sets, scanned at six different
sites, were preliminarily investigated [54]. QSM and R2* re-
constructions were performed successfully from all data
Table 3

Sequence parameters for QSM

QSM

Siemens GE Philips

Spatial

resolution mm

0.3 !

0.3 ! 1.25

0.4 !

0.4 ! 1.2

0.35 !

.035 ! 1.25

Nr. of slices 120 136 120

Repetition time ms 18 18.5 18

Echo time ms 10 10 10

Phase—Partial Fourier 7/8 OFF OFF

Slice—Partial Fourier 7/8 OFF OFF

Acceleration factor GRAPPA 2 ASSET 2 SENSE 2.1

Acquisition time min 8:46 9:08 7:50

Abbreviations: GE, General Electric; GRAPPA, generalized autocali-

brated partially parallel acquisition; QSM, quantitative susceptibility map-

ping.
sets. Moderate subject motion was observed in one-third
of scans. However, a subsequent experiment focusing on
the striatum, with the prediction that magnetic susceptibility
must increase as a function of age, returned a qualitatively
positive result (Fig. 6).

In conclusion, multisite and multi-vendor QSM and R2*
were reliably reconstructed at 7T. Despite the presence of
motion artifacts in some data sets [56], aging effects were
detectable visually.

3.2.6. Spectroscopy
In vivoMR spectroscopy (MRS) [57] and CEST spectros-

copy [58] can noninvasively quantify a portion of the
biochemical composition of living tissue. Preclinical MRS
markers for neurodegenerative disease may complement
structural and functional imaging readouts [59]. Proton
(1H) MRS has reached the arena of clinical research both
because of its ability to detect and quantify several human
metabolites in vivo, with sequences in principle available
on all clinical MRI systems. A recent multicentre proton
MRS reproducibility study using four 7T systems has re-
ported an acceptable reproducibility level for MRS data
across centers and vendors [60]. We hereby present addi-
tional normative MRS data across three of the participating
sites (single vendor). Data were acquired from a 2! 2! 2
cm3 volume centered on the posterior cingulate cortex using
the sameMRS pulse sequence across all three sites. The data
returned a high level of reproducibility for a broad range of
metabolites (Fig. 7).



Fig. 6. Axial cuts through the corpus striatum illustrating visually tractable QSM-age dependencies. QSM from all scanner vendors were included. The QSM

windowing range was (20.1, 0.1) in parts per million [M: Male, F: Female]. Abbreviation: QSM, quantitative susceptibility mapping.

Fig. 7. Left: average and standard deviations of metabolite concentrations acquired at the three 7T MR scanners; right: scatter plot of all individual data (8

subjects) presented as ratios to total creatine.

E. D€uzel et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 11 (2019) 538-549 545



Table 4

The EUFIND multisite protocol

Resolution

(mm3)

Acquisition

time (min:sec)

T1 MPRAGE 0.65 isotropic 8:14

2D phase-contrast .3 ! .3 ! 2 w5:00

Resting-state fMRI - inverted

phase encoding

1.1 isotropic 0:24

Resting-state fMRI 1.1 isotropic 10:27

Quantitative susceptibility mapping .35 ! .35 ! 1.25 8:46

T2 TSE hippocampal angulated .4 ! .4 ! 1 7:47

Abbreviation: MPRAGE, magnetization prepared rapid acquisition with

gradient echo.
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3.2.7. Quality assurance (QA), standard operating
procedures (SOPs), safety, and multivendor harmonization

Harmonization of imaging protocols, SOPs, and common
quality assessment are key to enable 7T MRI for future use
in multicentre trials. The main challenges working toward
these goals are the following:

1. Working across institutions: The implementation of
SOPs relies heavily on how these interface with the
working practices of the individual institution. SOPs
need to be sufficiently detailed to enable consistency,
whereas sufficiently flexible to allow local working
practices to be implemented without significant extra
resource.

2. Working across vendors: Attempts to standardize proto-
cols for imaging and quality assurance need to consider
the limitations of each vendor’s image acquisition and
reconstruction frameworks, without necessarily accept-
ing a “lowest common denominator” solution.

3. Working across regulatory bodies: Scanning at 7T
poses some safety concerns where the potential risks
are not always known. Because safety is overseen by
different regulatory bodies in different institutions, re-
gions, and countries, a common policy is not easy to
achieve.

Work in addressing these has already begun within spe-
cific national networks, and EUFIND closely collaborates
with these national networks and enhances communication
between them. This is enabled by shared PIs across these
networks within EUFIND.

3.2.8. German Ultrahigh-Field Imaging (GUFI) network
The GUFI network was founded at the end of 2013 sup-

ported by the German Research Foundation. System repro-
ducibility in human subjects has been compared within the
network to validate multicentre brain imaging at 7T, known
as the “traveling heads” study [61]. High reproducibility was
found across all sites, but differences in intersite versus intra-
site reproducibility were identified and assigned to hardware
differences.

GUFI has implemented a common QA protocol to assess
system performance based on signal-to-noise ratio, B11,
noise, and stability measures. High agreement was found be-
tween sites, but the protocol also revealed hardware and cali-
bration faults at some sites that were previously undetected.

GUFI partners have tried to clarify ethical, regulatory, li-
ability, and safety issues common to all 7TMR sites. To date,
very few medical implants have been certified as MR-
conditional at 7T. GUFI partners defined and published a
consensus recommendation for dealing with passive im-
plants, including a standardized decision-making process
regarding whether a measurement at 7T can be performed
safely [62]. The network is currently establishing a database
with information on implant safety to share knowledge and
experience on this topic. In addition, online safety training
accepted by all sites has been implemented.
3.2.9. UK7T network
Established in 2015 and funded by the UK Medical

Research Council, this network aims to develop a platform
for multicentre trials at 7T, enable multivendor studies and
produce “work-horse” protocols. In a similar way to
GUFI, the UK7T network has carried out a “traveling
head” study with 10 participants across 5 sites, using a range
of harmonized protocols including structural and functional
measures. Initial data show that, as well as matching proto-
col parameters as much as possible, it is essential to stan-
dardize the various calibration steps (transmit power, B0
shim), to improve uniformity [63]. At present, QA proced-
ures and a common phantom are also being disseminated
among the UK7T partners.

3.2.10. Future directions: the EUFIND protocol
On the basis of the available hardware and the recommen-

dations from each subtopic, we developed a EUFIND 7T
high-resolution imaging protocol. This protocol combines
structural imaging sequences for morphometric information
(structural T1 and T2 sequences), a sequence to image
vascular pulsatility (2D phase), a resting-state fMRI
sequence, and an iron-sensitive 3D gradient echo sequence
for QSM. The details of the protocol are given in Table 4.

The results from the pilot study showed overall good im-
age quality across sites and vendors but also revealed that
protocol harmonization needs further improvements, espe-
cially regarding transmitter calibration.
4. Discussion

The EUFIND subgroups were ambitious in exploring the
capabilities of 7T MRI technology. Indeed, the protocol re-
sulting from subgroup recommendations goes beyond what
can be achieved by 3T MRI. The group identified and
focused on methods with the highest potential for use in
neurodegenerative diseases and agreed not to focus on areas
where the benefit of high field strength is currently less
certain, for example, diffusion MRI.

From the subgroup reports, it became apparent that each
MRI modality posed a different set of challenges in multi-
vendor harmonization. Whereas high-resolution anatomical
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imaging and QSM sequences were relatively straightforward
to translate across vendors, unforeseen limitations precluded
full harmonization of vessel pulsatility measurements and
spectroscopy. Solutions may require additional contribu-
tions and developments by scanner vendors.

Thirteen 7T sites implemented the recommended proto-
col (Table 4 for acquisition details) and provided healthy
volunteer data within the very short time frame of the
JPND project. For the first time, 7T MRI data acquired on
scanners from all vendors across multiple countries were as-
sessed in a single study. We consider this alone to be a suc-
cess given that conducting such a study went far beyond the
original scope of the working group, and several sites had
only recently received their scanner hardware or had a major
focus on other organ systems. These sites have nonetheless
made substantial progress in adopting the joint protocol,
and expect that the full network will soon be able to join
the EUFIND roadmap implementation.

The pilot study demonstrated that harmonizing 7T MRI
data acquisition protocols across institutions, system ven-
dors, and regulatory bodies is viable. It was also successful
in revealing specific problems and challenges of multisite
7T imaging, which can now be effectively addressed. To
that end, it also helped to establish data exchange and
communication channels across sites, and identified
subgroup-specific expertise in sequence implementation
and data analysis. We believe that this will enable EUFIND
to advance the implementation of technology for addressing
challenges of 7T imaging such as reducing movement-
related artifacts at high resolution.

EUFIND has thus laid the foundation to apply 7T in
multisite research studies in Europe. One of the obvious
questions to address in the near term is how much added
benefit 7T technology provides in a head-to-head compari-
son with 3T technology for improving research and clini-
cally relevant personalized medicine approaches. For AD,
one hypotheses would be that ultrahigh resolution imaging
at 7T improves on current 3T imaging of brain structure,
function, and vasculature for individualized precision medi-
cine for early assessment and prevention of AD. Addressing
this hypothesis will require (1) to identify the added sensi-
tivity of ultrahigh resolution structural imaging at 7T for de-
tecting and quantifying progressive neurodegeneration in
aging and preclinical/prodromal AD as compared with
currently available protocols at 3T, (2) to determine whether
the trajectory of cognitive change is explained better by ul-
trahigh resolution measures of atrophy than the current 3T
standard, (3) to identify neural dysfunction in small brain
networks that are affected early in disease (i.e., subregions
of the entorhinal cortex, the locus coeruleus), (4) to deter-
mine to what extent brain dysfunction is related to neurode-
generation, (5) to identify the contribution of small-vessel
related vascular risk factors to neurodegeneration and brain
dysfunction.

With EUFIND, we have established a network that en-
ables addressing these topics in the near future. We empha-
size that the increased signal-to-noise ratio provided by 7T
MRI can also be exploited for speeding-up acquisitions
with image resolutions commonly used at clinical field
strength (3T), thereby improving motion robustness and/or
shortening the time required for imaging patients, as
opposed to improving resolution.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using traditional (e.g., PubMed) sources and
meeting abstracts and presentations. Ultrahigh-field
imaging at 7 Tesla in neurodegenerative diseases is
an emerging field and considerable advances have
recently been made concerning various 7T imaging
modalities and in multisite harmonization, quality
control, and safety recommendations. These relevant
studies are appropriately cited.

2. Interpretation: Our work indicates that a large con-
sortium of 7T sites to address clinically and scientif-
ically relevant questions in neurovegetative diseases
with advanced and harmonized imaging sequences is
feasible.

3. Future directions: We propose a roadmap for the
future of 7T imaging in neurodegenerative disease
covering clinical and research topics. The increasing
number of 7T sites with access to clinical populations
also makes it feasible that 7T imaging can be used in
multicenter clinical trials.
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