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J. Introduction 

In agricultural production processes pesticides represent a private input which only indirectly 

contributes to the productivity of other inputs. Further, the role of pesticides is conditional upon the 

presence of pests and the potential for or actual of damage. Within this context, pesticides are 

appropriately classified as damage contrai inputs which may be useful either in precautionary or 

preventive applications. The usefulness of pesticides does not extend to restoration of pest damage. 

While these characteristics of the private benefits of use of pesticides rnotivates their distinction frorn 

other private inputs which directly contribute to production, another aspect of their activity rnotivates 

further bases for their distinction. While the agricultural production process has traditionally been 

viewed as a closed process in which private inputs are coordinated to produce private outputs, in fact, 

the process is more accurately viewed as an open process jointly involving public good inputs and 

outputs, Weaver and Harper (1994), Weaver et al. (1995). From this perspective, pest infestations can 

be viewed as quasi-public inputs which are exogenous to the firm and pest treatments can be viewed as 

contributing to private output productivity as well as public good outputs which include environmental, 

human health, biodiversity, and pest resistance effects. To the extent that these public outputs are not 

adjusted to social optima, a role for public policy is rnotivated both in the short and long-run. In the 

short-run, a public interest exists in ensuring socially optimal utilization of ail privately controllable 

inputs which result in private and public outputs. As is clear frorn the nonpoint pollution literature, 

determination of optimal policies necessary to induce such socially desirable input vectors depends upon 

knowledge of the marginal contributions of inputs such as pesticides to productivity. In the long-run, 

public research policy can play an important role in inducing technologies that alter public good 

productivity. Such options include either direct provision of public research or induction of private 

research through design of patent life and the scope of performance covered by patents, Weaver (1994). 

The focus of this paper is the reconsideration of the marginal productivity of inputs which may 

contribute to the public good outputs associated with pesticide use. Here, past studies have reported 

estimates of pesticide expected marginal productivity that are of substantial magnitude (see Table 1). 

The credibility of these estirnates is initially questionable under a simple theory of the firm of profit 

maxirnization. In particular, these estirnates typically exceed zero suggesting that pesticides may be 

underused. Clearly, under alternative theories of the finn or production choices, reported results rnay 

be consistent with firm level equilibrium 1• Lichtenberg and Zilbennan ( 1986) hypothesized that these 

estirnates of marginal productivity of pesticides, based on usual econornetric production functions, were 

biased. They argued for use of a specification where pesticides play an asymmetric role as a damage 

contrai agent following specifications used in normative and biological studies. While applications of 

1For example, if finns are risk averse, or if production and conswnption decisions of fann households are integrated by preference 

valuation of persona! health effects of pesticide use by the operator, past results may be consistent with finn level equilibrium. 
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their functional fonn to single crop and pest situations (e.g. Babcock et al., 1992) produced results that 

are consistent with the Lichtenberg and Zilbennan ( 1986) specifications, results based on geographical 

and crop aggregates or multipest exposure (Carrasco-Tauber and Moffitt, 1992; Ramos, 1993; 

Crissman et al., 1994) have not supported these specifications. These results suggest that the 

asymmetric specification for the role of pesticides may not lie at the root of past estimates of marginal 

productivity that exceed marginal costs. 

Table 1. Marginal retum value of pesticide expenditure estimates (US or Can.$) found in the literature• 
Reference Sample Characteristics Year of Indicator ofEconomic 

Headley (1968) 

Fischer (1970) 

Campbell (1976) 

Carrasco-Tauber and Moffitt (1992) 

States of the US 
(Aggregated production) 

Canadian producers of 
apples 

Canadian producers of fruits 

States of the US 
(Aggregated production) 

the data Efficiency in Use of 
set Pesticidesc 

1963 Between 2.90 and 4.66 

1966 Between 1.34 and 12.80 

1970 Between 10.90 and 11.78 

1987 4.94 

Babcock et al. (1992) North Carolina producers of 1976-1978 
a les 

a These estimates rely on Cobb-Douglas production function estimations. 
b Computed from the infonnation contained in Babcock et al. (1992). 
c Under Cobb-Douglas technology,an expected maximizing firm would set its production elasticity equal to the 
expenditure share of revenue. Equivalently, the marginal revenue product with respect to pesticide expenditure would be 
unity. We define the indicator of econonùc efficiency as that marginal revenue product minus unity implying econonùc 
efficiency is indicated by zero. 

Similarly, the presence of significant levels of risk aversion have not been established for 

agriculture. To the contrary, past studies have consistently found estimates that generally indicate small 

degrees of risk aversion (e.g. Pannell (1991) and, Saha et al. (1994)). Together these results leave in 

question the credibility ofpast estimates of the marginal productivity of pesticides. 

The objective of this paper is to present evidence concerning the existence of a further basis for 

bias in past estimates of pesticide productivity: heterogeneity bias. To proceed, we will first review the 

extent and structure of heterogeneity found in agriculture by considering evidence for a panel of French 

crop fanners. Simple descriptive statistics suffice to illustrate that persistent heterogeneity exists across 

these finns. Next, we review the well known implication of such heterogeneity that econometric 

estimates will be biased when based on models which do not explicitly account for variation across 

finns. The implications of heterogeneity bias are explicitly considered and illustrated within the context 
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of a simple direct estimation of a production function. Here, the approach proposed by Chamberlain 

(1982,1984) is exploited to produce asymptotically unbiased estimates as well as to statistically test for 

the existence of fixed finn effects. Results confinn that substantial heterogeneity exists and, further, 

that the structure of such heterogeneity is correlated with pesticide and fertilizers choices. The 

implication ofthis result is that estimates would be biased if based on a specification which ignores the 

dependence between fixed effect measures ofheterogeneity and the regressors. To close, we reconsider 

the role and nature of appropriate pesticide policy. 

2. Heterogeneity in production technologies: Origins and evidencefor the French crop sector 

The neoclassical theory of the finn is often exploited under the maintained assumptions that 

finns face perfect and instantaneous infonnation, as well as instantaneous and costless adjustment 

opportunities. Under such hypotheses, firms would immediately be forced by competitive market forces 

to adjust to exploit new technologies, leaving them each on the same production surface. If they a11 

face the same price vector, then they could each be assumed to find an identical point on the production 

surface as optimal. Under such circumstances, the firms can safely be viewed as homogeneous. Wbere 

technology is also characterized by constant returns-to-scale, the finns are exactly replicable and a 

single finn may used to represent an industry composed of more numerous identical finns. Suppose, 

instead, that firms jointly face a common technology though quasi-fixity of factors exists due to 

adjustment costs across an identical subvector of inputs. ln this case, a distribution of heterogeneous 

firms would be induced by common underlying technology and prices. The finns would be 

heterogeneous and differentiable with respect to their positions on the common production surface, their 

positions being different due to differences in quasi-fixed factors. This point will be in a related paper. 

ln this case, the firms may be viewed as heterogeneous in the sense that they are operating on technical 

surfaces which are differentiated by homothetic displacement of common surface as quasi-fixed factor 

levels vary. 

We consider evidence concerning the extent of such heterogeneity among crop fanners 10 

France. First, the importance of pesticides in crop production is illustrated by their 75% share of the 

market for pesticides in France. More than 40% of the sales of pesticides, including 21 % of the market 

share of fungicides, were used to grow cereals (Brouwer et al., 1994). We first assess heterogeneity 

using simple descriptive statistics based on data drawn from the European Accountancy Data Network 

for 496 fanners in France for the years 1988 to 1990 (SCEES, 1989~ Ivaldi et al., 1994). The sample 

includes fanns from three regions of France : Ile-de-France, Centre and Champagne. These represent a 

homogeneous area within the Paris basin. Agriculture in this region is dominated by cereals and 

oilseeds produced using intensive cropping technology. The revenue distribution for major crops in 

1990 was as follows: wheat (41.8%), corn (14.1%), barley (9.2%), sunflower (7.8%), rapeseed (6.6%), 
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and leguminous peas (4.4%). In Table 2, swnmary data of the output and input data are presented
2 

based on a disaggregation of the input vector used by past studies, e.g. Headley (1968) and Carrasco

Tauber and Moffitt (1992). Here, other inputs includes energy, seeds, crop services. Several 

conclusions can be drawn from Table 2. First, chemical input expenses individually account for large 

percentages of revenue suggesting substantial intensity in land use exists through the application of 

chemical. Second, the standard deviations indicate variation by year within the cross-sectional 

dimension. By comparison with the means, it is clear substantial variation exists within the cross

sectional dimension of this data. If input expenditure shares of revenue are interpreted as indicators of 

production characteristics3, this variation implies substantial variation in production across the cross

section dimension. The stability of this variation relative to the means suggests that in the temporal 

dimension the scale of cross-sectional variation is persistent. 

Table 2. Summruy statistics of the data set of 4% French fàrmers from 1988 to 1990 
Variable means (and standard deviations) 

1988 1989 1990 Total 

Output (French Francs 87 /ha) 8053.9 7943.3 80%.3 8031.2 
(2315.3) (2259.1) (2373.1) (2315.7) 

Pesticides (French Francs 87/ha) 811.4 892.5 920.2 874.7 
(260.6) (285.2) (288.0) (281.8) 

Fertiliz.ers (French Francs 87/ha) 1008.0 1012.7 1013.2 1011.3 
(248.8) (264.6) (247.5) (253.6) 

Other variable inputs (French 1116.6 1100.8 1119.3 1112.2 
Francs 87/ha) (520.0) (550.3) (570.0) (546.8) 

Planted area (ha) 79.1 80.8 82.8 80.9 
(44.9) (46.8) (48.7) (47.2) 

To better understand the structure of the variation in the data, we decompose the total variation 

into variation across individuals (between variation) and across time (within variation). For a variable 

zit (i=J, ... ,N; t=l , ... ,1), define total variation as VAR1o, (zit ), between individual (i) variation as 

VARbei(zit), and within individual variation as VAR...,;i{z;i). The three are related by decomposition : 

(1) VAR«,J z;,) = VARi,.J zit) + VAR...,;J z;) 

2Data were deflated to 1987 French francs and areas were nonnalized to hectares. 
3 For exarnple, if the produciton function were Cobb-Douglas in form, and iffums could be asmuned to be profit maximizers, then 

the expenditure shares could be interpreted as production elasticities. 
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where: 

N T 

(2a) VARic,Jz;1) = (NT-J)V1o/z;1) = LL(zit -z .. / 
i=l t= l 

N 

(2a) VARi,eJzit) = (N -J)I'Vt,e1(zit) = r"''J:Jz;.-z .. / 
i = l 

N T 

(2c) VA~lzit)=N(T-J)Vwii(z;,)= L2/zit -z;./ 
i=l t=l 

and z;. and z .. represent respectively the individual means (i=l, ... ,N) and the total mean of zit: 

] T 

Z;·=-LZit 
T t=l 

(3a) 

(3b) 
] N T 

z .. = NTLLzit 
i= l t=l 

Results of such a decomposition of variation are reported in Table 3 for yield and the variable inputs. 

These results further substantiate that between variation dominates within variation and accounts for 

over 70% of the total variation. From Table 2, the extent of total variability was shown to be large and 

persistent over tirne. Here, we see that a large proportion of that total variation is interpretable as 

originating from between variation. Again, this result is robust across yield and different inputs. These 

statistics motivate the need for further modeling of the variation to understand the origins of persistence 

of substantial between variation while within variation is small. 

Table 3. Variation decornposition of the data set variables. 
Variables 

Yield Pesticides Fertilizers Other variable 
in uts 

VAR1o, 797.9xl03 ll.8xl03 9.6xl03 44.5x103 

Share of VAR.,il in VAR1o1 (%) 23.3% 19.6% 26.8% 14.4% 

Share of VAR,,., in VAR1o, (%) 76.7% 80.4% 73.2% 85.6% 

Before considering such a structural explanation of the data, is useful to consider the extent and 

structure of covariation in the data. The total covariation , COV1o1 (zw ,z2it ), is decomposable into 

within individual covariation COVwidzw,z2it) and between individual covariation COV,,.,(zw,Z2it) as 

follows for any two covariates (zw,z2iJ : 
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N T 

(4a) COV1olzJit,z2;,)= (NT-2)êov"'Jzu,.zw) = Z:z/zu, -z1 .. )(zw -z2 • .) 

i= I t = l 

N 

(4a) COJ7i.eJzu,.zw)= T(N-2)êovb.JzJit,z2;1)= TL(zu--z1 •• )(z2i.-z2 •• ) 

i=I 

N T 

(4c) COV,..JzJit,z2it)= N(T-2)êovwi,(zJit,z2it)= LL(zlit -Zu-Hz2it -z21.) 

i=l t=I 

Table 4 presents results for this decomposition. Results confirm the importance of between covariation 

which is found to account for more than 85% of total covariation for each variable pair. Further, total 

covariation of inputs and yield is dominated by between variation. Within variation accounts for Jess 

than 12% of the total covariation. Differences in particular input use is indicated by covariation of 

input pairs. Here, total covariation is also predominantly accounted for by between rather than within 

variation. These conclusions are consistent with all input pairs. The general conclusion that producers 

operate at different positions in production space appears warranted by these results. Signs of 

covariations of inputs and yield are consistent with nonnegative marginal productivity of inputs. 

Table 4. Covariation decomposition of each pair of the data set variables. 

Pesticides 

COV1o, 48.5 x103 

Yield Share of COV,.il in COV1o, (%) 8.6% 

Share ofCOVi,.1 in COVtot (%) 91.4% 

COV1o1 

Pesticides Share ofCOV,.i/ in COV1o1 (%) 

Share ofCOV,,d in COV1o1 (%) 

COV1o1 

Fertilizers Share ofCOV,.il in COV1o1 (%) 

Share ofCOV1,e, in COV,0 , (%) 

7 

F ertilizers 

30.4xl03 

9.6% 

90.4% 

2.5xl03 

12.8% 

87.2% 

Other variable 
in uts 

64.3xl03 

11.2% 

88.8% 

5.lxl03 

8.0% 

92.0% 

5.4xl03 

5.8% 

94.2% 



3. Heterogeneity and econometric productivity measures 

The existence and structure of variation of input and output combinations across individual 

farmers and across time was established in the previous section. In this section, we review the 

econometric implications of the between variation observed in the French panel data. Mundlak (1961) 

provided an early consideration of the implications of cross-sectional variation in product vectors for 

estimation of production functions. In particular, where such variation can be interpretable as 

originating from homothetic displacements of individual production surfaces, Mundlak noted that 

estimation of marginal productivities of inputs using a specification which ignores such individual 

displacement would result in inconsistent estimates and what he labeled as heterogeneity bias. Begin by 

considering a generally specified homothetic production function such as the Cobb-Douglas function: 

(5a) yit=rit+ Lakitxkit+uit; t=l, ... ,T; i=I, ... ,N 
k= p.e.d 

where Yit is the natural logarithm of yield, Xp;t is the natural logarithm of pesticide use, X,;t is the natural 

logarithm of fertilizer use, Xdit is the natural logarithm of other variable input use, and U;t is a random 

disturbance. In general, this specification adroits nonhomothetic displacements of individual production 

functions over individuals and over time. Where displacement is homothetic, the a kit would be constant 

over i and t, though variation in Y ;t over each dimension would be consistent with homotheticity. 

Suppose homothetic displacements over time are purely random white those over the cross-sectional 

dimension are constant over individuals. Our motivation of such displacements by reference to 

differences in quasi-fixed factor endowments is consistent with those of Mundlak (1961, 1990), and 

Chamberlain (1982, 1984)4. In this case, we may simplify (5a) as: 

(5b) Y;r =Y;+ Lakxkit +u;1 ; t = l, ... ,T; i = l, ... ,N 
k=p,e,d 

(5c) E(uil)=O 

We elaborate this traditional specification by noting that the disturbance is typically unknown to the 

farmer implying (5c) can be augmented by: 

(6) E(u;, /x;) = 0 

where xit = ( x pit, x eit, x dit)' . From the perspective of observed data which reflects economic choices, 

if the disturbance is interpreted as reflecting random homothetic shifts in the production surface, then 

4 It is often the case that many quasi-fixed inputs are llllobservable even in the richest data sets, e.g. soil quality, management 

quality, climatic characteristics that are site specific to the fann. In ail cases, Y; may be interpreted as detemûned by the quasi

fixed factors. This type of interpretation is feasible for Cobb-Douglas functional fonns. In this spirit, we are free to interpret 

r 
1 

= L r te kt where 0 u is a time invariant quasi-fixed factor, see e.g. Hausman and Taylor(l981). 
k 
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(6) is interpretable as implying that the origins of all such shifts are independent of economic choices of 

xu. An important implication of this condition is that if condition (6) could be imposed as a constraint 

on the estimation of (5b), then the inconsistency in estimation induced by the simultaneity of choices of 

Xu and yit could be circumvented. Further, white the parameters of a production function may be 

presumed to be known to the decision maker, they are unknown to the econometrician. This observation 

motivates a further restriction on the expectation of u;,, i.e.: 

(7) E(yit/xit.r;:a)=r;+ Lakxa, <=> (5a)and E(uit/xit,Y;:a)=O 
k=p,e,d 

Estimation of (5) clearly calls for cross-sectional and temporal variation to allow estimation of 

the firm specific effects indicated by y;. Use of only cross-sectional data would result in inconsistent 

estimators, Chamberlain (1982, 1984). The logic ofthis argument follows directly from consideration 

of estimation of (5) subject to r; =y, allowing (5a) to be written : 

(8) Y;,= f + Lakxku +e;, 
k=p,e,d 

where e;, =uit +(r; -f} and E(e;Jx;1)=0. If, instead, (7) were true, the associated disturbances 

and resulting residuals would be correlated with the regressors and result in asymptotically biased 

estimated of a = ( a P, a., ad)' . Most important, estimation of the misspecification using a single 

cross-section would preclude detection of such bias, Roch (1955), Mundlak (1961) and Chamberlain 

(1982, 1984)5. 

Within the context of a linear function such the production function, the intuition of this 

argument is illustrated in Figure 1. Consistent with results of tables discussed above, a positive 

response of the conditional expectation of Yil to xu, is presented, however, it is also presumed the xm 

and r; are positively correlated. 6 The thick lines represent the observed data distributions for a set of 

individuals over a time series. Estimated individual regressions based on (7) are indicated by the solid 

Iines. In contrast, a regression based on (7) restricted by E(y;/x;)= E(y1)= f. Estimation of this 

mode! would result in the dotted lines. 

The dependence of the bias on the correlation between xr;, and Y; is apparent by decomposing 

the homothetic shift represented by r; into a deviation representing the heterogeneity bias and the mean, 

e.g. (7) can be written: 

(9) E(y;,/xit)=E(r;/xit)+ Lakxkit =f + Lakxkit +E[{ri -f)/x1,]-
k=p,e,d k=p,e,d 

5 Campbell ( 1976) also notes this possibility. 
6 Similar figures can be found in Mundlak (1961), Hsiao(l986)or Hsiao etaL (1994). 
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Where the bias and the regressors are postively correlated, the conditional expectation of the 

heterogeneity bias will also be positive. 

i=l 

i=2 

i=3 

i=4 

Figure 1. Response of the conditional expectation of Yu to x,u. 
(y; and x,u are positively correlated, Y 1 > Y 2 > Y 3 > Y") 

4. Jnference on the French crop production technology using panel daJa 

To allow assessment of the importance of the panel estimation approach presented here, we 

adopt the Cobb-Douglas form used by past studies. To begin, consider a less restrictive specification of 

(5b) in which temporal fixed effects are allowed as well as time varying regressor parameters: 

(lOa) Yit =r, +r; + Laktxki, +u;, 
k= p,e,d 

As noted by Carpentier and Weaver (1995a and b), this specification allows for jointness in pest 

treatrnent processes and private input processes. In contrast, Lichtenberg and Zilberman (1986) argued 

for a separable fonn between these processes resulting in a functionally asymmetric specification of role 

of pesticides in agricultural production. Carpentier and Weaver argue that such a specification is both 

unnecessary and inappropriate where multiple pests occur and where the processes may be joint. 

Within the context of homothetic shifts, the parameter r, is interpretable reflecting disembodied, Hicks 

neutral technological progress or other temporally correlated effects. The parameters ~ may be 
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interpreted as resulting from nonhomotheticity. Restating (7) for the generaliz.ation in (10a), we have 

the condition of exogeneity of input choices x;, conditionally on a 1 = ( a pt, a et , a dt)', r, and y; : 

(10b) E(yu/Y,,Y;,at'xil)=r, +r; + Laktxki, 
k=p,e,d 

This assumption excludes the possible endogeneity of fanners' input choices with respect to U;1• lt relies 

on the fact that fanners are assumed not to use the information generated during the production process, 

except possibly time effects common to ail farmers such as some climate elements and/or new inputs 

which are easily observable and known by farmers when they chose their input quantities. Assurnption 

(10b) is consistent with opinions of French agricultural scientists and previous studies on the sarne data 

set (Carpentier, 1995; Carpentier and Weaver, 1995a; 1995b). 

In this paper, consistent estimation of equations (10) results from application of Charnberlain's 

(1982, 1984) II matrix frarnework. The approach also allows specification tests of the model and 

provides a basis for robust inference on a, and r, (t=l, .. ,1) using panel data sets where N tends to 

infinity, yet T is small. Estimation of this type of specification is complicated by an apparent lack of 

degrees of freedom. While cross-sectional variation would typically accommodate a small number of 

fixed time effects and time varying slopes as implied by small T, the presence of N individual effects 

challenges the data substantially. The pedestrian approach of introducing dummy variables for N-1 

firm effects is infeasible since only NT observations are available. To proceed, we assume that the 

vectors (x; , y; ) defined where x; is T x K and y; is T x 1 are independent and identically distributed 

across individuals (i=J, ... ,N) with finite fourth moments and E(x;X;Ï nonsingular. Details on estimation 

are available from the authors. In brief, the approach taken is to break the estimation into several steps. 

To proceed, a set to T reduced forms in parameters is defined that describe the relationship 

between y and the elements of x . That is, suppose y; is a latent variable unknown by the econometrician 

which does not condition the expectation of y , i.e. : 

(11) E(y;Jr,,a, ,x)= r, + E(y; Ir, ,a,,x) + Laktxki, + E(uu/rl'a,,x;) 
k=p,e,d 

where : x; = ( x;
1

, ••• , x;r )'. Identification and consistent estimation requires further specification of 

E(uu/r1 ,a1,x). To start, suppose that: 

(12) E(uit/y,,a,,x;)=O 

where x; = ( x;
1

, ... , x,~ )' . Condition ( 12) requires that input choices are strictly exogenous to output 

conditionally on time and farm effects (Chamberlain, 1982~ 1984). In the absence of specific priors, a 

linear approximation is assumed allowing use of a general linear predictor of y; given X; : 
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T 

(13) EL(r;/y,,al'x;)= L LÂksxkis 
•=l lc=p.e.d 

This approach is motivated by interpretation of y; as a latent variable, the conditional expectation of 

which can be written as a linear function of ail past, current, and future period elements of Xt • Under 

assumptions (11), (12) and (13), the correlation between y; and fanners' choices of input k, that is the 

potential source ofheterogeneity bias on a1ct, can be detected by a test of Â.ks = 0, 'vs= 1, ... ,T. 

The problem is now the estimation of the parameters of (11) and (13) . These reduced forms can 

be estimated using a two step procedure. 

To proceed, we first estimate the simple linear forms interpretable as reduced forms m 

parameters based on (l l), (12) and (13) : 

T 

(14) EL(y;/cx;}=tr01 +~ Ltrktsxkit• t=l, ... ,T 
s=l lc=p,e,d 

provide a basis for determining the structural parameters of interest : ac , Yt and 

Â, = ( Â, pl• ).el• ).dl•·· · •). pT• ).eT ,).dJ" )' · 

Tuen, we estimate the parameters of (11) and (13) using Classical Minimum Distance 

(Chamberlain, 1982 and 1984; Newey and McFadden, 1995) or Asymptotic Least Squares estimators 

(Gouriéroux, Monfort and Trognon, 1985; Trognon, 1994). These estimators make use of the existing 

relationships between the vector of auxiliary parameters : ,c = ( ,c~, .•. , ,c~ )' and the vector of parameters 

ofinterest: P=(r1, •• • ,y7 ,a~ .... ,a~.Â')' 

(15) nkts='\s (t,;:.s) "i/t,s=l, ... ,T; Vk=p,e,d 

,c1ctt =a1ct +Âia 

Our estimators of ,c and P are consistent and asymptotically normal. Furthermore, our inference 

framework uses estimators of the asymptotic variance-covariance matrix of our parameter estimators 

that are robust to any form of autocorrelation (given i) or heteroskedasticity on &;1• This is an attractive 

property given our use of a linear predictor of y; to approximate its conditional expectation 

(Chamberlain, 1982; 1984), and the possibility that inputs such as pesticides or fertilizers affect yield 

variance (Just and Pope, 1978). 
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5. The resu/ts and their implications on pesticide policy design 

Before presenting results, specification tests based on nested restrictions of ,r are reported to 

resolve specification. To proceed, we first present unrestricted estimates of /1 Next, we restrict P = Pa 
to eliminate tune varying marginal effects by unposing what bas been labeled the Chamberlain 

restriction : 

(16) Vt=l, ... ,T; Vk=p,e,d 

Of further interest is the conditionality of firm effects which may be tested as the restriction that /FPJ. a 

sufficient condition for which is simply: 

(17) -\i =0 Vt=l, .. . ,T; Vk=p,e,d 

Testing of this restriction is unportant to final estimation. Rejection unplies that finn effects are 

correlated and unplies that estimation must circumvent heterogeneity bias. Estimation subject to the 

restriction results in estimates corresponding to those resulting from use of only a single cross-section 

data. Finally, we jointly restrict p t:o p;.a where (16) and (17) are Îinposed. This restricted estimator 

can be compared to the conventional error component estimator (Hsiao, 1986). 

Results are summarized in Table 5. Restrictions (16) and (17) are each rejected for our sample, 

while restriction (15) can not be rejected. These results unply three main conclusions. First, the results 

are consistent (fait to reject) with the specification presented in equations (10a) and (12). Second, the 

results of these hypothesis tests fail to reject the hypothesis that the mean productivity elasticities of 

inputs are tÎine-varying. Third, results indicate the existence in the sample analyzed of statistically 

significant correlations between the firm specific effects and farmers' input choices. 

This fast conclusion unplies that heterogeneity bias would result if estimation were based on 

only one cross-section would be substantial. We estimate this bias to be in the range of 0.20 for 

pesticides, 0.10 for fertilizers, 0.07 for the other variable inputs for our sample. We conclude that 

omission of correlated firm effects would result, for this sample, in substantial overestunation of the 

marginal expected productivity estimates of these inputs. The marginal expected productivity fosses 

associated with a reduction of the use of these inputs would be overestimated by factors of 3 for 

pesticides, 2 for fertilizers, and 1.5 for the other variable inputs. 

If producers were profit maxunizers, omission of the correlated firm specific effects would also 

unply substantial underestunation (in absolute value) of the own price elasticities of the demand of these 

inputs (in the short run). These results, however, are not supportable given results reported in 

Carpentier and Weaver (1995a). The positive and rather strong correlation between the firm effects 

and, fertilizer and pesticides use suggests that the firm effect latent variable can be interpreted as an 

intensification level measure. If this hypothesis were true it would mean that the own price elasticities 

of the variable input demands would be substantial in magnitude in the long run. For example, if an ad 

va/orem tax were unposed on pesticide price, fanners would certainly be incitated to adopt less 
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intensive technologies and, as a consequence, reduce drastically their pesticide uses. Similar remarks 

hold in the case of the output price decrease implemented by the 1992 CAP. 

Table 5. Estimates of the four restricted n-vectors (and asymptotic standard deviation estimates). 
Fixed time Expected productivity elasticities of Correlation coefficients of input 

Year effects inputs choices with the firm effects 
(t) (2,) (~) (-4t) 

Pesticides Fertilizers Other Pesticides Fertilizers Other 
inputs inputs 

Estimates of p (Test value: 10.99; Prob(fest value< X,2(9))= 0.723) 

1988 2.314 0.063 0.107 0.159 0.275 0.031 0.079 
(0.131) (0.039) (0.041) (0.032) (0.063) (0.057) (0.049) 

1989 2.496 0.036 0.065 0.139 -0.009 0.113 0.020 
(0.124) (0.038) (0.037) (0.030) (0.065) (0.065) (0.050) 

1990 2.478 0.157 0.035 0.068 0.101 0.084 -0.093 
(0.118) (0.040) (0.041) (0.031) (0.054) (0.063) (0.048) 

Estimates of Pa (Test value : 47.28; Prob(fest value< x.2(15))= 0.999) 

1988 2.393 0.096 0.081 0.116 0.247 0.072 0.114 
(0.108) (0.345) (0.032) (0.028) (0.061) (0.056) (0.048) 

1989 2.371 0.096 0.081 0.116 -0.014 0.092 -0.025 
(0.109) (0.345) (0.032) (0.028) (0.064) (0.065) (0.049) 

1990 2.386 0.096 0.081 0.116 0.104 0.088 -0.076 
(0.108) (0.345) (0.032) (0.028) (0.053) (0.061) (0.047) 

Estimates of PA- (Test value : 123.67 ; Prob(fest value< X,2(18))= 0.999) 

1988 2.952 0.267 0.187 0.190 0 0 0 
(0.098) (0.030) (0.034) (0.022) 

1989 3.070 0.223 0.157 0.196 0 0 0 
(0.089) (0.027) (0.032) (0.020) 

1990 2.956 0.369 0.127 0.134 0 0 0 
(0.092) (0.029) (0.035) (0.020) 

Estimates of PaA. (Test value: 158.75; Prob(Test value < X,2(24))= 0.999) 

1988 0.299 0.282 0.171 0.171 0 0 0 
(0.073) (0.023) (0.025) (0.017) 

1989 0.297 0.282 0.171 0.171 0 0 0 
(0.074) (0.023) (0.025) (0.017) 

1990 2.962 0.282 0.171 0.171 0 0 0 
!O.o752 !0,0232 !0,0252 !0,01;!2 
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Before considering estimated production elasticities it remains of interest to verify the statistical 

significance oftheir variation over tune periods. To proceed, we test the hypotheses : 

(18) H0k .- a1ct=at, 'vt=l, ... ,T; k=p,e,d 

Results indicated that Ha. could not be rejected at the 5% level, that is that the expected productivity 

elasticities of pesticides and of the other variable inputs rnay be accepted as varying over time. These 

results are also consistent with evidence presented in the opening of the paper that supported the 

hypothesis that individual producer choices are relatively static over tune7
• The temporal variation in 

production elasticities for pesticides verifies that our empirical framework based on Cobb-Douglas 

production functions with tune varying parameters is able to describe the rote of these protective inputs 

in pest damage control. 

Figure 2. Estimates of the expected productivity elasticities of pesticides and estimates of potential fungi 
damages on wheat and barley in Bretagne (Moquet, 1994), in 1988, 1989 and 1990 
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Tiùs point is further illustrated by the consistency of the estiinated elasticities with observed 

temporal variation of pest damage. The production of our sample farmers is dominated by cereals, 

especially wheat and barley (on average, they represent respectively 41.8% and 9.2% of the farmers' 

7 Carpentier and Weaver (1995a, 1995b) and Carpentier (1995) provide other proofs of (12). 
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revenue in 1990). In the context of intensive cropping technology, fungi infestation is one of the major 

source of damage on these crops. Fungicides accounted for 48% of the market of cereal pesticides in 

France in 1986 (Brouwer et al, 1994). 

Figure 2 compares our estimates of the expected productivity elasticities of pesticides in 1988, 

1989 and 1990 and the estimated potential fungi damages for wheat and barley in Bretagne (Moquet, 

1994). It shows that potential fungi damages and estimates of the expected marginal productivity 

elasticity of pesticides are positively linked in this case. Although further investigation of this linkage 

must be pursued, this graphie indicates that our framework is consistent with the protective 

characteristics of pesticides. 

To further consider the point, in Table 6 we compare our estimated elasticities with observed 

expenditure shares of revenue to assess the extent of ex post economic inefficiency implied. 

Table 6. Sample mean point estimates of the expected productivity elasticities of the considered inputs and the 
shares of their cost in gross value of output (by yeart. 

Pesticides 

Expected productivity elasticity estimate 
(Asymptotic standard deviation estimate) 

Cost share in gross value of output 

Fertilizers 

Expected productivity elasticity estimate 
(Asymptotic standard deviation estimate) 

Cost share in gross value of output 

Other variable inputs 

Expected productivity elasticity estimate 
(Asymptotic standard deviation estimate) 

Cost share in gross value of output 

1988 

0.068 
(0.039) 

0.107 

0.070b 
(0.032) 

0.137 

0.167 
(0.032) 

0.151 

Year 

1989 

0.036b 
(0.038) 

0.111 

0.070b 
(0.032) 

0.134 

0.140 
(0.030) 

0.148 

a The reported estirnates correspond to estimates of ftwhere the restriction a.1 = a.1 = a.J is imposed. 

1990 

0.150 
(0.040) 

0.123 

0.070b 
(0.032) 

0.140 

0.067b 
(0.031) 

0.156 

b Significantly (at the 5% level) different from its associated cost share in gross value of output at the mean point of the 

considered year. 
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Table 6 presents sample means of estirnated production elasticities and compares them to input 

expenditure shares in gross value of output. Under profit maximization and under the hypothesis that 

the production function is Cobb-Douglas, the production elasticity would equal the expenditure share 

for each input and each year. Where the former exceeds (is less than) the latter the input use is sub or 

super optimal relative to its expected profit maximizing level. Here, we find that fertilizers are overused 

by substantial degrees at the sample mean points. Pesticides are significantly overused in 1989, that is 

when the estirnated potential fungi damages are relatively low. This result stands in striking contrast to 

results of previous studies which have consistently found estirnated marginal productivities of 

pesticides to imply under-utilization (see Table 1.). Furthermore, this result suggests that farmers 

systematically use pesticides based on expectations of relatively high potential damages. This attitude 

would be consistent with farmers' risk aversion or prudence if pesticides were actually risk-reducing 

inputs. However, in every case, our results indicate that farmers' do not use the information generated 

during the production process to update their beliefs conceming pest infestations and, as a consequence, 

to adapt their pesticide use to the actual conditions prevailing in their fields. 
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Appendix : Estimation Details 

Suppose y; is a latent variable unknown by the econometrician which does not condition the expectation 

of y, i.e. 

(Al) E(Y11lr,,a,,x,)=r, +E(rJy,,a,,xj)+ Laktxh', +E(u11lr,,a, ,x;) 
k=p.•,d 

where : x; = ( x;1 , • • • , x,~ )'. Identification and consistent estimation requires further specification of 

E(uit Ir, ,a, ,x1). To start, suppose that: 

(A2) E(uitlr, ,a,,x)=O 

As noted in discussion of (7), equation (A2) represents an restriction implied by our interpretation of the 

model. Further, while (1 Ob) required contemporaneous independence of input choices and u;, at time t 

for each firm, condition (A2) requires that input choices are strictly exogenous to output conditionally 

on time and farm effects (Chamberlain, 1982; 1984). That is, at time t, (x;,, ... ,xiJ) and (yi/.J,.,.,y;1 ) are 

known to the firm, and (A2) rules out feed back between past levels of output and contemporaneous and 

future input choices. Intuitively, this condition rules out the presence of intertemporal constraints as a 

constraint on choices at time t . Equivalently, condition (A2) implies that x,s>t incorporates no 

information on Yit, or uit (Chamberlain, 1982, 1984; Hall and Mairesse, 1995) allowing (Al) to be 

written: 

(A3) E(yitlr,,a,,x)= y,+ E(r1 Ir, ,a,,x1) + Laktxa, 
k=p,•.d 

Specification of the conditional mean function for y; given x1 is difficult to motivate. In the absence of 

specific priors, a linear approximation is asswned allowing use of a general linear predictor of y; given 

X; : 

T 

(A4) EL(yJy,,a,,x;) = L LÂ-trxw 
•= l k=p.•,d 

allowing (A3} to be written: 

T 

(A5) EL(yitlr1,a,.x1)=r, + L L-'\sxw + La1ctxki1 , t=l, ... ,T 
s= J k=p,e,d k= p.•.d 

For identification, we restrict the unconditional mean of y; : E(y;)=O. The parameters Ât.r are simply the 

coefficients associated with xiks in the linear regression of y; on x1• Under (10a) and (A2), these 

parameters provide a basis for consistent estimation of a, and r, as well as for testing for the 

correlation firm effects. 

In addition to (AS) we may specify for each time period what can be interpreted as a reduced 

form relation between y and x. That is, define unrestricted linear predictors of yit using on 
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T 

(A6) EL(yJcx;)=1r01 + L L!rktsXkit, t=l, ... ,T 
s=J k=p,e,d 

These reduced fonns provide T equations which reflect the structure of covariance among y and x. In 

the spirit of structural covariance analysis, estirnated parameters from each these T equations : 

,r 
1 
= ( ,r 

0
,.1r ptl, 1r ,,11 , 1r dt 1 , •• • , 1r pff, 1r err, 1r dtT )' provide a sufficient basis for identification of the 

(A7) ;rkts =-\.. (t*s) 

,.ktt =akt +Àirt 

or more compactly in conventional notation: 

(A8) 1r = RP 

Vt,s=l, ... ,T; '<ik=p,e,d 

h _ ( , , )' p _ ( , , 11;, d R · · · · w ere 1r = 1! I' ... , 1r r , = y 1 , ••• , y r, a I' ... , a r- /1, an 1s a restnction matnx. 

Next consider estimation of p and explicit testing of the restrictions (A8) to allow inference 

concerning validity of (10a) and (A2) (Chamberlain, 1982, 1984). In addition, we will test three other 

restrictions of particular interest. We follow the inference method proposed by Chamberlain (1982, 

1984). In the first step, OLS is used to compute a .JN -consistent estimator of ;r: .i . Next, 

Asyrnptotic Least Squares (ALS) (Gouriéroux, Monfort and Trognon, 1985~ Trognon, 1994)
8 

is used 

along with the first step estimator to compute a ✓N -consistent estimator of P : /Î and test its 

associated restriction. Noting X=(x1 , ... ,CxN)' and Y, =(y11 , ••. ,yNT)' , OLS is applied to (A6) 

resulting in the ✓N -consistent estimator of ;r: 

(A9) i =[~
1 

]=[( XX );

1 

X'Y
1

] 

iT (XXF1 X'YT 

This estimator is strongly consistent and asyrnptotically normal : 

(AlO) ✓N(i-1r)-N-➔+«>--4N(O,D.) 

where: 

(A12) <I> = E(cx. C x') 
:r 1 1 

8 Tiûs second step can receive various interpretations. Chamberlain (1982, 1984) uses the one developped within the Minimum 

Distance Estimation framework ( see e.g. Newey and McFadden, 1995). Here we have chosen to consider this second step as the 

second step of an ALS estimation for ease of presentation. 
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(A13) &; =(Eil, ... ,&;r)' and &it =Yit -;r;cx; . 

A consistent estimator of the asymptotic variance of 1Î is given by (White, 1980) : 

(A14) ;... _ 1 ~(A Al),0,. :i,-/(C C 1;:i.-J 
:1,,11 = - L..J E;E; 'Ol 'Vx X; X; -vx 

N i=I 

(Al5) <Î>x = ~ ±tx/x:) 
i=I 

(Al6) i; =(&;p••·,i,7 )' and iit =Yil -itx;. 
It is important to note that the consistency property of tlùs estimator is robust to any fonn of 

autocorrelation (given i) or heteroskedasticity on &;,. This is an attractive property given our use of a 

linear predictor of y; to approximate its conditional expectation (Chamberlain, 1982; 1984), and the 

possibility that inputs such as pesticides or fertilizers affect yield variance (Just and Pope, 1978). 

The second step can easily be developed is the ALS framework (Trognon, 1994). In tlùs step we 

use the auxiliary parameter estimates 1Î and the estimating constraint (A8) to build an ALS estimator of 

our parameter of interest p. Given (A8) and (Al 0) we can write : 

{Al7) i=RP+µ where ✓Nµ N • +«> N(O,Q) 

This equation can be interpreted of a linear mode! where the error vector µ is approximately distributed 

as N (0, n/ N). An optimal ALS estimator of the parameter of interest p can be constructed as the 

vector b tbat rninimizes (Gouriéroux, Monfort et Trognon, 1994): 

(Al8) ( 1Î - Rb ) 16.-1 
( 1Î - Rb) 

that is, the GLS estimator based on (27) (Trognon, 1994): 

(Al9) p = ( R'Ô.-1 RF1 R'Ô.-1 fi 

This estimator is ✓N -consistent : 

A consistent estimator of its asymptotic variance is easily constructed as follow : 

(A21) qJ = ( R'Ô.-1 RF1 

where 6. is given by (Al4). 

Given i , p and 6. a test of (A8) can be constructed by noting that (Chamberlain, 1982; 

1984; Trognon, 1994) : 

(A22) f(RJ= N(fi-RP ;•6.-1 (i-RP J N • - x 2 
(qJ 

where q is the nwnber of constraints imposed on ;rto get P, that is the nwnber of lines of ,rrninus the nwnber 

of lines of P: T(l + 3T)-(J' + 3T + 3T) in our case. 
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