
HAL Id: hal-02299550
https://hal.science/hal-02299550v1

Submitted on 27 Sep 2019 (v1), last revised 3 Jun 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pharo with Style
Stéphane Ducasse

To cite this version:

Stéphane Ducasse. Pharo with Style. Square Bracket Associates, 2019. �hal-02299550v1�

https://hal.science/hal-02299550v1
https://hal.archives-ouvertes.fr

Pharo with Style

Stéphane Ducasse

August 12, 2019

Copyright 2018 by Stéphane Ducasse.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: copy and redistribute the material in any medium or format,

• to Adapt: remix, transform, and build upon the material for any purpose, even
commercially.

Under the following conditions:

Attribution. You must give appropriate credit, provide a link to the license, and indi-
cate if changes were made. You may do so in any reasonable manner, but not
in any way that suggests the licensor endorses you or your use.

Share Alike. If you remix, transform, or build upon the material, you must distribute
your contributions under the same license as the original.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
https://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

https://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations iii

1 General naming conventions 3

1.1 Guideline: Favor simple direct meaning 3

1.2 Guideline: Avoid underscores and favor camel case 3

1.3 Guideline: Use camel case . 4

1.4 Guideline: Use descriptive names . 5

1.5 Guideline: Pay attention to meaning . 5

1.6 Guideline: Method selectors start with lowercase 6

1.7 Guideline: Follow domain . 6

1.8 Guideline: Shared variables start with uppercase 7

1.9 Guideline: Private variables start with lowercase 7

1.10 Guideline: Avoid underscore in variable identifiers 7

1.11 Guideline: Favor unique meaning and pronunciation 8

1.12 Guideline: Class names should indicate the class’ parent 8

1.13 Guideline: Avoid name collisions . 9

2 About variable names 11

2.1 Guideline: Favor semantic variables . 11

2.2 Guideline: Use typed variables to indicate API 12

2.3 Guideline: Get the best from semantic and type variable 13

2.4 Guideline: Use semantics for state variable 13

2.5 Guideline: Use predicate for Boolean . 14

2.6 Guideline: Use common nouns and phrases 14

3 Selectors 15

3.1 Guideline: Choose selectors to form short sentences 15

3.2 Guideline: Use imperative verbs for actions 15

3.3 Guideline: Prefix with as for conversion . 16

3.4 Guideline: Indicate flow with preposition 16

3.5 Guideline: Indicate return types . 17

3.6 Guideline: Use interrogative form for testing 18

3.7 Guideline: Avoid using parameter and variable name type 18

3.8 Guideline: Use accessors or not . 19

3.9 Guideline: Name accessors following variable name 19

3.10 Guideline: Avoid prefixing with set public accessors 20

i

Contents

3.11 Guideline: Use basic or raw to access low-level 20

3.12 Guideline: Follow conventions and idioms 21

3.13 Guideline: Distinguish class vs. instance selectors 21

3.14 Guidelines: Follow existing protocols . 23

4 Comments 25

4.1 Guideline: Method comments . 25

4.2 Guideline: Avoid relying on a comment to explain what can be reflected

in code . 26

4.3 Guideline: Use active voice and short sentences 27

4.4 Guideline: Include executable comments 27

4.5 Guideline: Use CRC-driven class comments 28

4.6 Guideline: Comment the unusual . 28

5 About code formatting 29

5.1 Guideline: Be consistent . 29

5.2 Guideline: Use the general method template 29

5.3 Guideline: Indent method body . 30

5.4 Guideline: Separate signature and comments from method body 31

5.5 Guideline: Use space to give breath to code 31

5.6 Guideline: Align properly . 32

5.7 Guideline: Use tabs not spaces to indent and use spaces to help reading . . 32

5.8 Guideline: Do not break lines randomly . 33

5.9 Guideline: Highlight control flow . 34

6 Powerful coding idioms 35

6.1 Guideline: Do not query twice for the same object 35

6.2 Guideline: Move returns outside branches 35

7 Potential traps 37

7.1 Guideline: Use parentheses to disambiguate messages with the same priority 37

7.2 Guideline: no need for extra parentheses 38

7.3 Guideline: receiver of ifTrue:ifFalse: is a boolean 40

7.4 Guideline: receiver of whileTrue: is a block 40

7.5 Guideline: Use a Block when you do not know execution time 41

8 Conclusion 43

Bibliography 45

ii

Illustrations

iii

Illustrations

Programming is a lot more than just writing algorithms or programs. Pro-
gramming is all about communication. Communication with others: the
other programmers that will participate to your development effort but also
with yourself. Indeed finding good names is a really important task because
using the right name often opens the door to new spaces where your design
can bloom and expand.

The purpose of a programming style guide such as this book is to provide a
simple vehicle for addressing the needs of a good communication. The goal is
to make source code clear, easy to read, and easy to understand and extend.

These conventions are not cast in stone but they set the foundation of a com-
mon culture. Culture is important when programming.

We got influenced by the excellent little book called Smalltalk with Style. We
hope that you will enjoy this one and that it will help you to become a better
communicating designer.

Feedback and suggestions are welcome at stephane.ducasse@inria.fr. PullRe-
quests on https://github.com/SquareBracketAssociates/Booklet-PharoWithStyle

are also welcome.

Special thank to Christopher Furhman, Benoit St Jean and Masashi Fujita,
Nathan Reilly, Esteban Maringolo for their feedback. S. Ducasse - 12 August
2019.

1

https://github.com/SquareBracketAssociates/Booklet-PharoWithStyle

CHA P T E R 1
General naming conventions

Names are important. We will never repeat it enough. A good name is often
driven by a domain.

1.1 Guideline: Favor simple direct meaning

Some native English writers use often more precise but less common terms.
Consider that your software may be read by people from different cultures.
So use simple, mainstream, and common terms. Avoid hidden or implied
meanings that can only be understood by a limited group of people. Make
information explicit.

1.2 Guideline: Avoid underscores and favor camel case

Prefer

timeOfDay

over

Not timeofday
Not time_of_day

Prefer

GnatXmlNode

over

Not GNAT_XML_Object

Prefer

3

General naming conventions

releasedX

over

released_X

When creating private low-level methods that bind to external C-libraries,
you may wan to use underscores to follow C conventions to ease tracing back
the communication between libraries. In such a case, limit your use to care-
fully thought cases.

1.3 Guideline: Use camel case

Remember MaxLimit, maxLimit, maxlimit, and MAXLIMIT are all different
identifiers in Pharo.

| MaxLimit maxLimit |
MaxLimit := 10.
maxLimit := 20.
MaxLimit
>>> 10

Still, Pharo favors camel case, so use it systematically for words. Wikipedia
defines camel case as: Camel case (stylized as camelCase) is the practice of
writing phrases such that each word or abbreviation in the middle of the
phrase begins with a capital letter, with no intervening spaces or punctua-
tion.

For local variables, method parameters and instance variables, use

maxLimit

instead of

Not maxlimit
Not MAXLIMIT

For classes, or shared variables, use

OrderedCollection
MaxLimit

instead of

Not ORDEREDCOLLECTION
Not MAXLIMIT

Note In a compound word, do not confuse a prefix or suffix with a word
when trying to determine which words should begin with an upper case
letter. For example, some readers may think that the ”c” in subclass
should be upper case, but sub is a prefix, not a word. When in doubt about
prefixes and suffixes, check a dictionary.

4

1.4 Guideline: Use descriptive names

Prefer

superclass

over

Not superClass

1.4 Guideline: Use descriptive names

Choose descriptive names that capture domain entities unambiguously.

Prefer

timeOfDay

over

Not tod

Prefer

milliseconds

over

not mil

Prefer

editMenu

over

not eMenu

1.5 Guideline: Pay attention to meaning

Non-English native speakers often misplace word qualifiers. In English the
qualifier is often before the word it qualifies.

Prefer

DateParser

over

Not ParserForDate

Prefer

userAssociation

(an association of users)

over

5

General naming conventions

Not associationUser

Compare the three following variables:

sizeToRead
sizeJustRead
readSize

In this situation, avoid homographs (https://en.wiktionary.org/wiki/homograph).
That is, words that are written the same way but can have different mean-
ings or pronunciations. For example, Did you read that book? ... Yes, I read it
yesterday. About readSize: does this mean that the size was just read (red)
or it is the size to read (reed)? Favor words with unique pronunciation.

1.6 Guideline: Method selectors start with lowercase

Prefer

getMethodsNamesFromAClass: aClass
| methodsNames |
methodsNames := aClass selectors.
methodsNames do: [:each | names add: each]

over

GetMethodsNamesFromAClass: aClass
| methodsNames |
methodsNames := aClass selectors.
methodsNames do: [:each | names add: each]

Also, in this example the method selector is not good because method names
are called selectors in Pharo. In addition in English methodsNames should be
written methodNames. It should be gatherSelectorsFrom: or something
similar.

1.7 Guideline: Follow domain

Follow the domain concepts and culture of the project. Do not invent your
own terms because you think they are better. Favor regularity (consistency)
over preciseness.

Prefer

GnatXmlNode

over

not GNAT_XML_Object

When representing the XML Ada abstract syntax tree in Pharo, we should not
follow Ada naming conventions. The name should convey that the class is an

6

https://en.wiktionary.org/wiki/homograph

1.8 Guideline: Shared variables start with uppercase

abstract syntax tree node. Hence GnatXmlNode is much better than GnatXm-
lObject.

Another example is the following: In Moose, an importer is an object cre-
ating FAMIX entities (classes, methods, etc.) from the data structure repre-
senting a language element, usually an Abstract Syntax Tree (AST). There-
fore GNATInstaller, which creates entities from an AST, should be renamed
GnatImporter and GNATImporter, which loads an AST in memory should be
renamed GnatASTLoader.

1.8 Guideline: Shared variables start with uppercase

Begin class names, global variables, pool variables, and class variables with
an uppercase letter. If the word is compound, then use use camel case for the
rest.

Point "Class"
Transcript "global variable"
PackageGlobalOrganizer "class variables"

1.9 Guideline: Private variables start with lowercase

Begin instance variables, temporary variables, method parameters, and method
selectors with lower case. If the word is compound, then use camel case for
the rest.

address
classExtensionSelectors
classTags

Prefer

| dataset f xMatrix scale x |

over

| dataset f Xmatrix scale X |

1.10 Guideline: Avoid underscore in variable identifiers

In Pharo variables are using camelCase, just follow this convention.

Prefer

| dataset pca scaledX reducedX |

over

| dataset pca scaled_X reduced_X |

7

General naming conventions

1.11 Guideline: Favor unique meaning and pronunciation

Choose names that have a unique meaning. Avoid homographs.

Prefer

sizeToRead
sizeJustRead

Not readSize

Does this mean that the size was just read (red) or is it the size to read (reed)?

1.12 Guideline: Class names should indicate the class’ par-

ent

Suffix class names with the root class to convey the kind of object we are
talking about.

For example, without the Morph suffix, the reader is forced to check the su-
perclass to understand if the class is about a graphical object or not.

Prefer

ClyBrowserButtonMorph

over

Not ClyBrowserButton

Prefer

ClyQueryViewMorph

over

Not ClyQueryView

In the following, not mentioning the Presenter suffix makes it unclear to
the reader that it is a Presenter object as opposed to a Model object.

Prefer

ApplicationWithToolBarPresenter

over

Not ApplicationWithToolbar

In the next example, DynamicWidgetChange does not convey that this is not
a domain object representing a change, but a Presenter object in the Model-
View-Presenter triad:

DynamicWidgetChangePresenter

over

8

1.13 Guideline: Avoid name collisions

Not DynamicWidgetChange

1.13 Guideline: Avoid name collisions

To avoid name space collisions, add a prefix indicative of the project to the
name of the class.

PRDocument
CmdMessage

Note You may find that Pharo is lacking a namespace. If you have a
couple hundred thousands euros, we can fix that!

Note, however, that even with a namespace you will have to pay attention
that your namespace name does not collide with another one.

9

CHA P T E R2
About variable names

When choosing an appropriate name for a variable, the developer is faced
with the decision: Should I choose a name that conveys semantic meaning to tell
the user how to use the variable, or should I choose a name that indicates the type of
object the variable is storing? There are good arguments for both styles. Let us
see what are the guidelines that can help us find the right balance.

2.1 Guideline: Favor semantic variables

A semantic name is less restrictive than a type name. When modifying code,
it is possible that a variable may change type. But unless one redefines the
method, the semantics of it will not change. We recommend using semanti-
cally meaningful names wherever possible.

In the example below, the typed variable does not indicate how it will be
used whereas the semantic variable does.

Prefer

"Semantic variable"
newSizeOfArray := numberOfAdults size max: numberOfChildren size

over

"Typed variable"
anInteger := numberOfAdults size max: numberOfChildren size

Note that semantic name can convey variable roles. Having more informa-
tion is definitively useful for clients of the code.

Prefer

11

About variable names

"Semantic variable"
selectFrom: aBeginningDate to: anEndDate

over

"Type variable"
selectFrom: aDate to: anotherDate

Finding a semantic name is not always as obvious as demonstrated above.
There are cases in which choosing a descriptive semantic name is difficult.

2.2 Guideline: Use typed variables to indicate API

Using type variable is interesting to convey the API (set of messages) that the
object held in the variable responds to.

Below aDictionary conveys that the argument should have the same API as
a Dictionary (at:,at:put:)

Prefer

properties: aDictionary

over

Not properties: map

You may also want to stress specific types in an API referencing to interface
that the object implements.

Prefer

properties: aPuttable

over

Not properties: aCollection

Suppose a String, a Symbol, and nil are valid for a parameter. A developer
may be tempted to use the name aStringOrSymbolOrNil.

You may be tempted to aString or anObject. anObject is not really helping
the developer that will have to use such variables. At the minimum such a
use should be accompanied with a comment that says, ”anObject can be a
String or aSymbol”

Some developers may argue that type variables should not refer to classes
that do not exist. We disagree. As shown in the following guideline it is a
lot better to indicate that an argument is block expecting two arguments
(hence a binary block) than to just mention a block. And this even if there is
no binary block class in the system.

Prefer

inject: anObject into: aBinaryBlock

12

2.3 Guideline: Get the best from semantic and type variable

over

inject: anObject into: aBlock

Note that for inject:into: the best naming is to mix semantic ant type
naming as in

inject: initialValue into: aBinaryBlock

2.3 Guideline: Get the best from semantic and type vari-

able

A good practice is to use a mixture of both semantic and typed variable names.
Method parameter names are usually named after their type. Instance, class,
and temporary variables usually use a semantic name. In some cases, a com-
bination of both can be given in the names.

Prefer

ifTrue: trueBlock ifFalse: falseBlock

over

Not ifTrue: block1 ifFalse: block2
Not ifTrue: action1 ifFalse: action2

The following are other examples of good names.

inject: initialValue into: aBinaryBlock
copyFrom: start to: stop
findFirst: aBlock ifNone: errorBlock
paddedTo: newLength with: anObject

2.4 Guideline: Use semantics for state variable

State variable names (instance variables, class variables, or class instance
variables) are usually semantic-based. A combination of semantic and type
information can be really powerful, too.

Prefer

"In class PhoneBook"
phoneNumber
name

over

Not number
Not labelForPerson

13

About variable names

2.5 Guideline: Use predicate for Boolean

Use predicate clauses or adjectives for Boolean objects or states. Do not use
predicate clauses for non-Boolean states.

alarmEnabled

2.6 Guideline: Use common nouns and phrases

Use common nouns and phrases for objects that are not Boolean.

"In class Vehicle..."
numberOfTires
numberOfDoors

"In class AlarmClock..."
time
alarmTime

"In class TypeSetter..."
page
font
outputDevice

Note that you can also use count instead of numberOf as in the following ex-
ample:

numberOfTires
tireCount

14

CHA P T E R3
Selectors

Method names in Pharo are called selectors. They are used in messages and
are the main vehicle to convey adequate meaning. The correct use of words
and design of selectors is important.

3.1 Guideline: Choose selectors to form short sentences

Choose method names so that someone reading the message can read the
expression as if it were a sentence.

Prefer

FileDescriptor seekTo: word from: self position

Not FileDescriptor lseek: word at: self position

Write the test first, and make sure that your test scenario reads well.

3.2 Guideline: Use imperative verbs for actions

Use imperative verbs for message which perform an action.

transform
selectors do: [:each | self pushDown: each].
selectors do: [:each | class removeMethod: each]

Prefer

aReadStream peek

over

Not aReadStream word

15

Selectors

Prefer

aFace lookSurprised
aFace beSurprised

over

Not aFace surprised

skipSeparators

Pay attention that some words can be interpreted as interrogative, whereas
you want to give them an imperative meaning.

For example, compare:

optimized

and

triggerOptimization

This is why using beOptimized would be better than a simple optimized
and why isOptimized is better for the interrogative form.

3.3 Guideline: Prefix with as for conversion

When converting an object to another one, the convention is to prefix the
class name of the target with as.

anArray asOrderedCollection

Favor the use of existing classes.

3.4 Guideline: Indicate flow with preposition

When a process state is going from one object to another, indicate the direc-
tion using meaningful names.

For example flattenProperties: is not a good name because it does not
convey where the properties will be flattened.

aConfiguration flattenProperties: aDictionary

Better names such as flattenPropertiesFrom: and flattenPropertiesInto:
are much better because there are no ambiguities.

aConfiguration flattenPropertiesFrom: aDictionary
aConfiguration flattenPropertiesInto: aDictionary

Here are more examples

changeField: anInteger to: anObject

16

3.5 Guideline: Indicate return types

Prefer

ReadWriteStream on: aCollection.

over

Not ReadWriteStream for: aCollection.

Prefer

File openOn: stream

over

Not File with: stream

Prefer

display: anObject on: aMedium

over

Not display: anObject using: aMedium

3.5 Guideline: Indicate return types

When a method is returning an object (different from the receiver) and that
this object is not polymorphic with the receiver it is important to mention it.
Since Pharo is not statically typed, we can use the selector name to give such
information to the sender of the message.

For example, the method characterSeparatorMethodSignatureFor: of
the pretty printer did not return a character but a block as shown below:

characterSeparatorMethodSignatureFor: aMethodNode
^ [
(self needsMethodSignatureOnMultipleLinesFor: aMethodNode)

ifTrue: [self newLine]
ifFalse: [self space]]

Favor characterSeparatorMethodSignatureBlockFor: over charac-
terSeparatorMethodSignatureFor: when the method returns block and
not a character as characterSeparatorMethodSignatureFor: indicates.

A much better design is to rewrite this method and its users to use a charac-
ter. Returning a block in such situation is overkill and it hampers reusing the
method without being forced to send a message.

The following method is corresponding to its name.

characterSeparatorMethodSignatureFor: aMethodNode
^ (self needsMethodSignatureOnMultipleLinesFor: aMethodNode)

ifTrue: [self newLine]
ifFalse: [self space]

17

Selectors

A good example is the API of the FileReference class. The message path-
String indicates clearly that it returns the path as a string while to access
the path object the message path should be used.

3.6 Guideline: Use interrogative form for testing

When interrogating the state of an object, use a selector beginning with a
verb such as has, is, does,...

Prefer

isAtLineEnd

over

Not atLineEnd

aVehicle hasFourWheels

over

Not aVehicle fourWheels

3.7 Guideline: Avoid using parameter and variable name

type

Avoid the parameter type or name in the method name if you are using typed
parameter names.

Prefer

fileSystem at: aKey put: aFile

over

Not fileSystem atKey: aKey putFiIe: aFile

"for semantic-based parameter names"
fileSystem atKey: index putFile: pathName

"useful when your class has several #at:put: methods"
fileSystem definitionAt: aKey put: definition

Prefer

aFace changeTo: expression

over

Not aFace changeExpressionTo: expression

18

3.8 Guideline: Use accessors or not

3.8 Guideline: Use accessors or not

There are different schools about whether to use accessors. In his seminal
book Kent Beck discusses it in depth. Here we give a list of arguments for and
against and you should decide and follow the conventions of the project you
work on. In any case, if you use accessors or not, be consistent.

Arguments in favor of accessors:

• Accessors abstract from the exact state internal representation.

• Accessors may hide that values are derived or not.

• Subclasses may freely redefine the way accessors are implemented.

Arguments against accessor use:

• Accessors expose the internal state of an object.

• When the class is small, using accessors may blow up the number of
methods.

• Using refactorings, we can always easily introduce accessors.

3.9 Guideline: Name accessors following variable name

When you use accessors, name them consistently: The getter is name as the
variable it refers to. The setter is the same but with an extra terminating
colon :.

For getter, prefer

tiles
^ tiles

over

getTiles
^ tiles

Do not use get or set in accessor selectors!

Watch out.

Pay attention a Setter is just setting a value and just returning (implicitly)
the receiver. The following setter definition is not correct.

BinaryNode >> root: rootNode
"Set a root node"
^ root := rootNode

Favor the following one instead:

19

Selectors

BinaryNode >> root: rootNode

root := rootNode

Note that we do not need to comment a basic setter.

For lazy initialization:

tiles
^ tiles ifNil: [tiles := OrderedCollection new]

For setters

tiles: aCollection
tiles := aCollection

Put accessors in the 'accessing' protocols. When you have accessors doing
extra work place them in a separate protocols to stress their difference.

3.10 Guideline: Avoid prefixing with set public accessors

Some developers may be tempted to name setter methods by prefixing the
variable name

Prefer

tiles: aCollection
tiles := aCollection

over

setTiles: aCollection
tiles := aCollection

Following K. Beck’s advice, use setTitles: only for private messages to ini-
tialize objects from class side methods.

3.11 Guideline: Use basic or raw to access low-level

When two methods are needed for the same state variable, e.g., one return-
ing the actual object stored and one returning and raising an event, prefix
the one returning the actual object with the word basic or raw.

method: aCompiledMethod
self basicMethod: aCompiledMethod.
self signal: MethodChanged

basicMethod: aCompiledMethod
method := aCompiledMethod

When you have a getter that returns an object and a getter than return a dif-
ferent representation of the same object add a suffix

20

3.12 Guideline: Follow conventions and idioms

path
^ path

pathString
^ self path asString

3.12 Guideline: Follow conventions and idioms

When designing new objects, you may mimic some practices that the system
uses already with for example dictionaries, sets, etc.

Example. Since a style sheet acts as a dictionary of properties it is much bet-
ter to use at: instead of get:, especially if you define the message to set a
value to a property as at:put: and not set:.

Prefer

stylesheet at: #fontColor

over

stylesheet get: #fontColor

Prefer

aCollection groupedBy: [:each | each odd]

over

Not aCollection groupBy: [:each | each odd]

Prefer

series at: #k3 put: 'x'.

over

Not series atKey: #k3 put: 'x'

Prefer

aCollection at: #toto

over

Not aCollection atKey: #toto

3.13 Guideline: Distinguish class vs. instance selectors

When defining a class method, we may name it the same way as an accessor
of the class. Such practice hampers code readability in the sense that it is
difficult to identify rapidly class methods. The senders will report both the
instance and class usage. You may think that you will identify the message
because the receiver is a class or an instance but there are many situations

21

Selectors

were this is not the case. So it’s better to enrich the class method with a dis-
tinct word.

Example

In Pillar, annotations have parameters and the accessor method parame-
ters:. Now, in some version, an instance creation method with the same
name than the accessor method.

Reading the code of the parser, it is not clear whether array second is a class
or an instance.

annotation
^ super annotation
==>

[:array | array second parameters: (array third ifNil: [
SmallDictionary new])]

To create an instance, it is better to name the method withParameter:. This
way we can immediately spot that the second element is a class.

annotation
^ super annotation
==>

[:array | array second withParameters: (array third ifNil: [
SmallDictionary new])]

PRAbstractAnnotation class >> withParameters: aCollection

| parameters |
parameters := self checkKeysOf: aCollection.
^ self new
hadAllKeys: aCollection = parameters;
parameters: parameters;
yourself

is better than

PRAbstractAnnotation class >> parameters: aCollection
| parameters |
parameters := self checkKeysOf: aCollection.
^ self new
hadAllKeys: aCollection = parameters;
parameters: parameters;
yourself

Now if you favor a fluid interface with many parameters, using withParame-
ters: may not be good.

22

3.14 Guidelines: Follow existing protocols

3.14 Guidelines: Follow existing protocols

Protocols are ways to sort methods. It is important to place your methods in
adequate protocols since it will ease future exploration of your class.

Pharo provides auto categorisation of protocol for the common methods. So
use it as much as possible. When you override your specific methods, place
them in similar protocols.

23

CHA P T E R4
Comments

Comments are important. Comments tell readers that they are smart guys
and that they correctly guessed your intentions or your code. Do not believe
people that say that methods do not need comments. Obviously here is what
they mean:

1. obvious methods such as accessors do not need comments,

2. a good comment is not describing in English how the code executes,

3. it is better to split long methods into smaller ones with a single respon-
sibility,

4. but a good comment is always welcome because it reinforces the un-
derstanding of the reader.

A comment should be adapted to the level of granularity (i.e., package, class,
method) to which it applies.

4.1 Guideline: Method comments

Method comments should contain sufficient information for a user to know
exactly how to use the method, what the method does including any side ef-
fects, and what it answers without having to look at the source code. Imag-
ine that the source code is not available.

The main method comment is not about its implementation. Do not rephrase
the implementation. The second level comments can include information
about the implementation. Insert a new line to separate method comments
from the method body.

25

Comments

Collection >> asCommaString
"Return collection printed as 'a, b, c' "
"#('a' 'b' 'c') asCommaString >>> 'a, b, c'"

^ String streamContents: [:s | self asStringOn: s delimiter: ',
']

The comments of a method should typically include:

1. the method purpose (even if implemented or supplemented by a sub-
class)

2. the parameters and their types

3. the possible return values and their types

4. complex or tricky implementation details

5. example usage, if applicable, as a separate comment

Finally accessors do not need comments; the only comment that accessor
could have is the purpose of the instance variable.

day
"Answer number of days (an instance of Integer) from
the receiver to January 1, 1901."

^ day

4.2 Guideline: Avoid relying on a comment to explain what

can be reflected in code

Good Pharo source code is self-documenting, often making comments on
statements redundant. Statements need only be commented to draw the
reader’s attention. If the source code implements an algorithm that requires
explanation, then the steps of the algorithm should be commented as needed.

Do not comment an obvious fact that is expressed simply as plain code.

Prefer

| result |
result := self employees
collect: [:employee | employee salary > amount].

over

| result |
"Store the employees who have a salary greater than in result."
result := self employees
collect: [:employee | employee salary > amount].

26

4.3 Guideline: Use active voice and short sentences

4.3 Guideline: Use active voice and short sentences

When writing comments, use active voice and avoid long and convoluted
sentences. A method comment should state what the method does, its argu-
ments, its effects and output.

"Active voice"
createShell

"Create the receiver's shell. Hook the focus callback."

Not "Passive voice"
createShell

"The receiver's shell is created. The focus callback is hooked."

4.4 Guideline: Include executable comments

Pharo offers executable examples in comment using the message >>>. Exe-
cutable examples in comments are super cool because as the reader you can
execute the code and understand the parameters. In addition the documen-
tation is always synchronized because tools such as the test runner can check
that examples are correct.

ProtoObject >> ifNil: nilBlock ifNotNil: ifNotNilBlock
"If the receiver is not nil, pass it as argument to the

ifNotNilBlock block
else execute the nilBlock block "

"(nil ifNil: [42] ifNotNil: [:o | o + 3]) >>> 42"
"(3 ifNil: [42] ifNotNil: [:o | o + 3]) >>> 6"

^ ifNotNilBlock cull: self

Object >> split: aSequenceableCollection
"Split the argument using the receiver as a separator."
"optimized version for single delimiters"
"($/ split: '/foo/bar')>>>#('' 'foo' 'bar') asOrderedCollection"
"([:c| c isSeparator] split: 'aa bb cc dd') >>> #('aa' 'bb' 'cc'

'dd') asOrderedCollection"

| result |
result := OrderedCollection new: (aSequenceableCollection size /

2) asInteger.
self split: aSequenceableCollection do: [:item |
result add: item].

^ result

27

Comments

4.5 Guideline: Use CRC-driven class comments

A class is not in isolation, but implements responsibilities (mainly one) and
collaborates with other entities. Therefore a class comment should be com-
posed of at least 3 parts: the class, its responsibilities and how it uses its col-
laborators. The Class Responsibility Collaboration (CRC) pattern is powerful
to design but also to comment classes. Use it for commenting class.

Knowing the instance variables is the least importance! Follow the template
given by Pharo that is shown below.

Please comment me using the following template inspired by Class
Responsibility Collaborator (CRC) design:

For the Class part:
State a one line summary. For example, "I represent a paragraph of

text".

For the Responsibility part:
Three sentences about my main responsibilities - what I do, what I

know.

For the Collaborators Part:
State my main collaborators and one line about how I interact with

them.

Public API and Key Messages
- message one
- message two
- (for bonus points) how to create instances.

One simple example is simply gorgeous.

Internal Representation and Key Implementation Points.

Implementation Points

4.6 Guideline: Comment the unusual

When a behavior is unusual, performing unexpected actions or using an
unexpected algorithm, it is important to comment it. In general comments
should make irregular and unusual aspects clearer. You may want to include
implementation-dependent, or platform specific idiosyncrasies.

28

CHA P T E R5
About code formatting

Code formatting improves code comprehension. Again follow the conven-
tions.

5.1 Guideline: Be consistent

One important guideline when writing code is to follow conventions and in
addition to be consistent. Systematically apply a formatting style. Keep the
violations to conventions to a minimum.

5.2 Guideline: Use the general method template

• Separate method signature and comments from method body with an
empty line.

• Add an extra tab to the comments.

• Add an extra line to stress the beginning of the method body.

• Use a tab to separate the method body from the left margin.

message selector and argument names
"A comment following the guidelines."

| temporary variables |
statements

For example:

29

About code formatting

addLast: newObject
"Add newObject to the end of the receiver. Answer newObject."

lastIndex = array size ifTrue: [self makeRoomAtLast].
lastIndex := lastIndex + 1.
array at: lastIndex put: newObject.
^ newObject

Do not let space before the first word of the comment, align comment with
method body, make sure that the reader can identify the beginning of the
method body by using an empty line.

Prefer the following

collectionNotIncluded
"Return a collection for wich each element is not included in

'nonEmpty'"

^ collectionWithoutNil

over:

collectionNotIncluded
" return a collection for wich each element is not included in

'nonEmpty' "
^ collectionWithoutNil

and over:

collectionWithoutEqualElements

" return a collection not including equal elements "
^collectionWithoutEqualElements

5.3 Guideline: Indent method body

Use indentation to convey structure! Do not glue everything on the left mar-
gin.

Don’t indent your method like this:

initialize
super initialize.
symbols := Bag new.
names := Set new

Prefer

initialize

super initialize.
symbols := Bag new.
names := Set new

30

5.4 Guideline: Separate signature and comments from method body

5.4 Guideline: Separate signature and comments from

method body

Separating method comments from the method implementation favor fo-
cusing our understanding to the right level. When we want to understand
what the method does, we just have to read the comments. When we want to
understand how the method is implemented, we just read the method body.

Prefer

performCrawling: aName
"Takes the last word in uppercase as a symbol and eventually add

it to the bag symbols"

name := aName copy.
self getUpperCase.
self stemSymbolFrom: aName.
self toUpperCase.
^ symbol

over

performCrawling: aName
"Takes the last word in uppercase as a symbol and eventually add

it to the bag symbols"
name := aName copy.
self getUpperCase.
self stemSymbolFrom: aName.
self toUpperCase.
^ symbol

5.5 Guideline: Use space to give breath to code

Gluing all the characters together slows down reading. The reader needs to
separate expressions. Gluing characters also hampers the identification of
logical groups such as conditional branches.

Put horizontal space to make it easier to read code and clearly identify vari-
ables, arguments, assignments, block delimiters and returns.

Prefer

stemSymbolFrom: aName

| stemmer symbol |
stemmer := SymbolStemmer new.
symbol := stemmer performCrawling: aName.
^ symbol

Over

31

About code formatting

stemSymbolFrom:aName

|stemmer symbol|
stemmer:=SymbolStemmer new.
symbol:=stemmer performCrawling:aName.
^symbol

Parentheses do not need spaces (after (and before)) since they show that
an expression fits together. But favor space for [and], since they may con-
tain complex expressions.

drawOnAthensCanvas: aCanvas bounds: aRectangle color: aColor

(self canDrawDecoratorsOn: aCanvas) ifFalse: [^ self].
self drawOnAthensCanvas: aCanvas.
next drawOnAthensCanvas: aCanvas bounds: aRectangle color: aColor

5.6 Guideline: Align properly

Understanding that a piece of code is a coherent expression eases under-
standing of more complex expressions.

Make sure that your indentation reinforce the identification of block of func-
tionality.

Prefer

self phoneBook add:
(Person new
name: 'Robin';
city: 'Ottawa';
country: 'Canada').

Over

self phoneBook add:
(Person new
name: 'Robin';
city: 'Ottawa';
country: 'Canada').

5.7 Guideline: Use tabs not spaces to indent and use spaces

to help reading

When navigating from one element to the next one, spaces and tabs are the
same. Since they do not have a visual representation the reader cannot know
in advance if the white space in front of word is a tab or multiple spaces. It is
then annoying to handle spaces manually.

32

5.8 Guideline: Do not break lines randomly

• Avoid extra spaces at the beginning and use tabs to indent.

• Use one space to separate instructions.

• Avoid extra spaces everywhere: one is enough!

• Avoid extra spaces at the end of the line.

Prefer

stemSymbolFrom: aName

| stemmer symbol |
stemmer := SymbolStemmer new.
symbol := stemmer performCrawling: aName.
^ symbol

over

stemSymbolFrom: aName
|stemmer symbol|

stemmer:=SymbolStemmer new.
symbol:=stemmer performCrawling: aName.
^symbol

5.8 Guideline: Do not break lines randomly

White lines attract the eyes and force the reader to ask himself why the code
is separated that way. Only separate method signature and comment from
method body with a new line.

Prefer

paragraph
"this method is here to find the paragraph in the chain, instead

of relying on implementing #doesNotUnderstand: !!!"

| p |
p := next.
[p isNotNil and: [p isKindOf: RubParagraph]]
whileFalse: [p := p next].

^ p

Over

paragraph
"this method is here to find the paragraph in the chain, instead

of relying on implementing #doesNotUnderstand: !!!"

| p |

p := next.

33

About code formatting

[p isNotNil and: [p isKindOf: RubParagraph]] whileFalse: [
p := p next.

].

^p

5.9 Guideline: Highlight control flow

Help the reader to understand control flow logic of your code by using inden-
tation.

size
"Returns size of a tree - number of nodes in a tree"
self root isNil
ifTrue: [^0].

^ self size: self root

Over

size
"Returns size of a tree - number of nodes in a tree"
self root isNil
ifTrue: [^0].
^self size: self root.

depth:aNode
"Returns depth of a tree starting from the given node"
| leftDepth rightDepth |
leftDepth := -1.
aNode leftChild isNotNil
ifTrue: [leftDepth := self depth: aNode leftChild].
rightDepth := -1.
aNode rightChild isNotNil
ifTrue: [rightDepth := self depth: aNode rightChild].

(leftDepth > rightDepth)
ifTrue: [^ (1 + leftDepth)]
ifFalse: [^ (1 + rightDepth)].

34

CHA P T E R6
Powerful coding idioms

Some coding idioms will make your code a lot clearer. Knowing them is also
good because you will code faster.

6.1 Guideline: Do not query twice for the same object

The message ifNotNil: expects a block with one argument. This argument
is the object that is not nil.

For example,

self doThat ifNotNil: [:that | self doSomethingWith: that]

is better than:

| that |
that := self doThat.
that ifNotNil: [self doSomethingWith: that]

Similarly have a look at the messages containing the ifPresent: variations.

aCol at: key ifPresent: [:present | self doSomethingWith: present]

6.2 Guideline: Move returns outside branches

When two branches of a condition are returning a value, better move the
return out of the blocks.

Prefer

35

Powerful coding idioms

depth: aNode
"Returns depth of a tree starting from the given node"
...
^ leftDepth > rightDepth
ifTrue: [1 + leftDepth]
ifFalse: [1 + rightDepth]

over

depth:aNode
"Returns depth of a tree starting from the given node"

^ leftDepth > rightDepth
ifTrue: [1 + leftDepth]
ifFalse: [1 + rightDepth]

36

CHA P T E R7
Potential traps

Understanding possible mistakes is a nice way to avoid them or to spot er-
rors made in your code. Here are some common mistakes.

7.1 Guideline: Use parentheses to disambiguate messages

with the same priority

For keyword-messages

The Pharo compiler does not know where to cut an expression composed
on multiple keyword-based messages. For example, assert:includes: in the
expression self assert: uUMLClass variables includes: 'name' can
be a message that the object self can understand. For example testcases
understand the message assert:equals: and the following expression is
fully valid: self assert: uUMLClass variables equals: 'name'.

Therefore, this is the programmer responsibility to use parenthese to sepa-
rate correctly the messages having the same priority. The following example
illustrates this point.

testDefineASimpleClass

| uUMLClass |
uUMLClass := UMLClass named: 'ComixSerie'.
uUMLClass instVar: 'name'.
self assert: uUMLClass variables includes: 'name'

There is no message assert:includes:. The expression uUMLClass vari-
ables includes: 'name' should be parenthesized, because this is the re-

37

Potential traps

sult of the execution of this expression that should be passed as argument of
the message assert:.

testDefineASimpleClass

| uUMLClass |
uUMLClass := UMLClass named: 'ComixSerie'.
uUMLClass instVar: 'name'.
self assert: (uUMLClass variables includes: 'name')

Between binary messages

Pharo does not make any assumption about the possible mathematical mean-
ing of messages. As a programmer you cannot describe the weight of a bi-
nary messages. It means that in an expression composed of multiple binary
messages, they will be executed from left to right.

For example 1 + 2 * 3 returns 9 since first the message plus is resolved and
its result is the receiver of the message *.

1 + 2 * 3
>>> 9

To get the correct mathematical behavior, one should use parentheses.

1 + (2 * 3)
>>> 7

7.2 Guideline: no need for extra parentheses

There is no need for parentheses surrounding unary message. There is not
much benefit to add parentheses around unaray messages. In Pharo unary
messages are the messages that have the highest priority. They are executed
first.

Prefer

xMatrix := PMMatrix rows: x asArrayOfRows.

over

xMatrix := PMMatrix rows: (x asArrayOfRows).

No parentheses around message with higher priority

In the similar way, there is no need to put parentheses around binary mes-
sages involved in keyword-based expressions. Binary messages are executed
prior to keyword-messages. In the following = is executed before ifTrue:.

Prefer

38

7.2 Guideline: no need for extra parentheses

reducedX do: [:row |
(row at: 'target') = 'Iris-setosa'
ifTrue: [a add: row asArray]].

over

reducedX do: [:row |
((row at: 'target') = 'Iris-setosa')
ifTrue: [a add: (row asArray)]].

Prefer

depth: aNode
"Returns depth of a tree starting from the given node"

| leftDepth rightDepth |
leftDepth := -1.
aNode leftChild isNotNil
ifTrue: [leftDepth := self depth: aNode leftChild].

rightDepth := -1.
aNode rightChild isNotNil
ifTrue: [rightDepth := self depth: aNode rightChild].

^ leftDepth > rightDepth
ifTrue: [1 + leftDepth]
ifFalse: [1 + rightDepth]

over

depth:aNode
"Returns depth of a tree starting from the given node"
| leftDepth rightDepth |
leftDepth := -1.
aNode leftChild isNotNil
ifTrue: [leftDepth := self depth: (aNode leftChild)].
rightDepth := -1.
aNode rightChild isNotNil
ifTrue: [rightDepth := self depth: (aNode rightChild)].

(leftDepth > rightDepth)
ifTrue: [^ (1 + leftDepth)]
ifFalse: [^ (1 + rightDepth)].

No parentheses around variable

Putting parentheses around a variable does not produce an array, it has no
effect. Do not confuse parentheses and curly braces. Curly braces is a short-
cut to produce an array with the elements they surround: { a } produces
an array with one element whose value is the value held by the variable a as
shown by the examples below.

TIn this code snippet, {} creates an array.

39

Potential traps

| a |
a := 12.
{a} printString
>>> #(12)

In this snippet, the parentheses do not do anything.

| a |
a := 12.
(a) printString
>>> 12

No parentheses around single message

There is no need to put extra parentheses over a single message. It has no
effect. Parentheses make sense to disambiguate one message over a set of
messages composing an expression.

Prefer

m := pca transform: xMatrix

over

m := (pca transform: xMatrix)

7.3 Guideline: receiver of ifTrue:ifFalse: is a boolean

Do not use a block as receiver of a ifTrue:, ifFalse:, ifTrue:ifFalse: or
ifFalse:ifTrue: messages.

The following expressions does not work

[lastNode =0] value
ifTrue:[lastNode := curNode]
ifFalse:[lastNode next: curNode]

[lastNode =0]
ifTrue:[lastNode := curNode]
ifFalse:[lastNode next: curNode]

The correct is the following

lastNode = 0
ifTrue:[lastNode := curNode]
ifFalse:[lastNode next: curNode]

7.4 Guideline: receiver of whileTrue: is a block

The receiver of the message whileTrue: is a block, and its argument is, too.

40

7.5 Guideline: Use a Block when you do not know execution time

The following line is incorrect:

(number < limit) whileTrue: [do something]

The following line is correct:

[number < limit] whileTrue: [do something]

7.5 Guideline: Use a Block when you do not know execu-

tion time

Often newcomers get confused about when to use () and []. A good way
to understand is that we should use [] when we do know whether an ex-
pression will be executed (may be multiple times).

ifTrue:ifFalse:

The conditional is always executed, while each of the arguments is a block
because we do not know which ones will be executed.

lastNode = 0
ifTrue: [lastNode := curNode]
ifFalse: [lastNode next: curNode]

timesRepeat:

timesRepeat:’s argument is a block because we do not know how many
times it will be executed.

n timesRepeat: [lastNode := curNode next]

do:/collect:

The argument of iterators such as do:, collect:,... is a block because we do
not know how many times (if any) the block will be executed.

aCol do: [:node | ...]

41

CHA P T E R8
Conclusion

Remember that you write code once and will read it a thousand times. Take
the time to give good names. However finding good names is not an easy
task, but you can use refactorings to improve things easily. This goes in pair
with tests. You write a test once and it gets executed million times. There-
fore, write tests to exercise the names you use and change them until they
help you telling stories that can be understood.

43

Bibliography

45

	Illustrations
	General naming conventions
	Guideline: Favor simple direct meaning
	Guideline: Avoid underscores and favor camel case
	Guideline: Use camel case
	Guideline: Use descriptive names
	Guideline: Pay attention to meaning
	Guideline: Method selectors start with lowercase
	Guideline: Follow domain
	Guideline: Shared variables start with uppercase
	Guideline: Private variables start with lowercase
	Guideline: Avoid underscore in variable identifiers
	Guideline: Favor unique meaning and pronunciation
	Guideline: Class names should indicate the class' parent
	Guideline: Avoid name collisions

	About variable names
	Guideline: Favor semantic variables
	Guideline: Use typed variables to indicate API
	Guideline: Get the best from semantic and type variable
	Guideline: Use semantics for state variable
	Guideline: Use predicate for Boolean
	Guideline: Use common nouns and phrases

	Selectors
	Guideline: Choose selectors to form short sentences
	Guideline: Use imperative verbs for actions
	Guideline: Prefix with as for conversion
	Guideline: Indicate flow with preposition
	Guideline: Indicate return types
	Guideline: Use interrogative form for testing
	Guideline: Avoid using parameter and variable name type
	Guideline: Use accessors or not
	Guideline: Name accessors following variable name
	Watch out.

	Guideline: Avoid prefixing with set public accessors
	Guideline: Use basic or raw to access low-level
	Guideline: Follow conventions and idioms
	Guideline: Distinguish class vs. instance selectors
	Example

	Guidelines: Follow existing protocols

	Comments
	Guideline: Method comments
	Guideline: Avoid relying on a comment to explain what can be reflected in code
	Guideline: Use active voice and short sentences
	Guideline: Include executable comments
	Guideline: Use CRC-driven class comments
	Guideline: Comment the unusual

	About code formatting
	Guideline: Be consistent
	Guideline: Use the general method template
	Guideline: Indent method body
	Guideline: Separate signature and comments from method body
	Guideline: Use space to give breath to code
	Guideline: Align properly
	Guideline: Use tabs not spaces to indent and use spaces to help reading
	Guideline: Do not break lines randomly
	Guideline: Highlight control flow

	Powerful coding idioms
	Guideline: Do not query twice for the same object
	Guideline: Move returns outside branches

	Potential traps
	Guideline: Use parentheses to disambiguate messages with the same priority
	For keyword-messages
	Between binary messages

	Guideline: no need for extra parentheses
	No parentheses around message with higher priority
	No parentheses around variable
	No parentheses around single message

	Guideline: receiver of ifTrue:ifFalse: is a boolean
	Guideline: receiver of whileTrue: is a block
	Guideline: Use a Block when you do not know execution time
	ifTrue:ifFalse:
	timesRepeat:
	do:/collect:

	Conclusion
	Bibliography

