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L2-Hypocoercivity and large time asymptotics of the linearized Vlasov-Poisson-Fokker-Planck system

INTRODUCTION AND MAIN RESULTS

The Vlasov-Poisson-Fokker-Planck system in presence of an external potential V is (VPFP)

∂ t f + v • ∇ x f -∇ x V + ∇ x φ • ∇ v f = ∆ v f + ∇ v • (v f ) , -∆ x φ = ρ f = R d f d v .
In this paper, we shall assume that (t , x, v) ∈ R + × R d × R d and that φ is a self-consistent potential corresponding to repulsive electrostatic forces and that V is a confining potential in the sense that (VPFP) admits, up to a multiplicative constant, a unique stationary solution f (x, v) = e -V (x)-φ (x) M (v) , -∆ x φ = e -V -φ and M (v) = e -1 2 |v| 2 (2π) d /2 , with associated potential φ according, e.g., to [START_REF] Ben | Relative entropies for kinetic equations in bounded domains (irreversibility, stationary solutions, uniqueness)[END_REF][START_REF]Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (large time behavior and steady states)[END_REF]. We denote by M = R d ×R d f d x d v the mass. System (VPFP) is of interest for understanding the evolution of a system of charged particles with interactions of two different natures: a self-consistent, nonlinear interaction through the mean field potential φ and collisions with a background inducing a diffusion and a friction represented by a Fokker-Planck operator acting on velocities. System (VPFP) describes the dynamics of a plasma of Coulomb particles in a thermal reservoir (see for instance [START_REF] Bittencourt | Fundamentals of plasma physics[END_REF]), but it has also been derived in stellar dynamics for gravitational models, as in [START_REF] Chandrasekhar | Brownian motion, dynamical friction, and stellar dynamics[END_REF], in the case of an attractive mean field Newton-Poisson equation. Here we shall focus on the repulsive, electrostatic case. Applications range from plasma physics to semi-conductor modelling. A long standing open question is to get estimates on the rate of convergence to equilibrium in dimensions d = 2 and d = 3 for arbitrarily large initial data, away from equilibrium. We will not solve it here but, as an important step in this direction, we will establish a constructive estimate of the decay rate of the linearized problem, which provides us with an upper bound for the convergence rate of the nonlinear (VPFP) problem. A technical but important issue is to decide how one should measure such a rate of relaxation. For this purpose, we introduce a norm which is adapted to the linearized problem and consistent with the diffusion limit.

Let us consider the linearized problem around f . Let h be a function such that f

= f (1 + η h) with R d ×R d f d x d v = M , that is, such that R d ×R d h f d x d v = 0.
The system (VPFP) can be rewritten as

∂ t h + v • ∇ x h -∇ x V + ∇ x φ • ∇ v h + v • ∇ x ψ h -∆ v h + v • ∇ v h = η ∇ x ψ h • ∇ v h -v • ∇ x ψ h h with -∆ x ψ h = R d h f d v .
At formal level, by dropping the O (η) term in the limit as η → 0 + , we obtain the linearized Vlasov-Poisson-Fokker-Planck system around the equlibrium state f given by (1)

∂ t h + v • ∇ x h -∇ x V + ∇ x φ • ∇ v h + v • ∇ x ψ h -∆ v h + v • ∇ v h = 0 , -∆ x ψ h = R d h f d v , R d ×R d h f d x d v = 0 .
From now on we shall say that h has zero average if R d ×R d h f d x d v = 0. Let us define the norm (2)

h 2 := R d ×R d h 2 f d x d v + R d |∇ x ψ h | 2 d x .
Our main result is devoted to the large time behaviour of a solution of the linearized system (1) on R + × R d × R d (t , x, v) with given initial datum h 0 at t = 0. For simplicity, we shall state a result for a simple specific potential, but an extension to more general potentials will be given to the price of a rather long list of technical assumptions that are detailed in Section 3.

Theorem 1. Let us assume that d ≥ 1, V (x) = |x| α for some α > 1 and M > 0. Then there exist two constants λ > 0 and C > 1 such that any solution h of (1) with an initial datum h 0 of zero average with h 0 2 < ∞ is such that

(3) h(t , •, •) 2 ≤ C h 0 2 e -λt ∀ t ≥ 0 .
The constant C in Theorem 1 is larger than 1 as a typical result of hypocoercivity methods. Indeed, since the Fokker-Planck operator acts only on the velocity variable v, an exponential decay with C = 1 cannot be expected for generic x-dependent functions. The main novelty here is that hypocoercive estimates can be obtained in presence of the nonlocal Poisson coupling in [START_REF] Arnold | Sharpening of decay rates in Fourier based hypocoercivity methods[END_REF], and not simply in some perturbative regime. The linearized problem (1) is at first sight easier than the full nonlinear system (VPFP) but our result gives two crucial informations which are of importance for the linearized system as well as for the nonlinear one: 1) we prove an exponential decay rate, 2) we specify an appropriate functional space and a notion of distance, corresponding to the norm defined by [START_REF] Arnold | Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift[END_REF], for measuring the convergence to equilibrium.

Our analysis is consistent with the diffusion limit of the linearized system, as we shall explain below. For any ε > 0, we consider the solution of the linearized problem in the parabolic scaling given by ( 4)

ε ∂ t h + v • ∇ x h -∇ x V + ∇ x φ • ∇ v h + v • ∇ x ψ h - 1 ε ∆ v h -v • ∇ v h = 0 , -∆ x ψ h = R d h f d v , R d ×R d h f d x d v = 0 .
In the regime ε → 0 + , the parabolic scaling corresponds to a time scale of the order ε -1 with a collision frequency which is also of the order ε -1 , but cannot be achieved by a simple scaling in the (t , x, v) variables in presence of an external potential and a Stokes friction force. Our decay estimate is uniform with respect to ε → 0 + .

Theorem 2. Let us assume that d ≥ 1, V (x) = |x| α for some α > 1 and M > 0. For any ε > 0 small enough, there exist two constants λ > 0 and C > 1, which do not depend on ε, such that any solution h of (4) with an initial datum h 0 of zero average and such that h 0 2 < ∞ satisfies [START_REF] Arnold | On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations[END_REF].

The result of Theorem 1 will be extended in Theorem 21 to a larger class of external potentials V : in the technical part of the proof of Theorem 1, we will specify precise but more general conditions under which the same result holds. A similar extension applies in the case of Theorem 2. As an application of our method, we establish the exponential rate of convergence of the solution of the non-linear system (VPFP) when d = 1. For sake of simplicity, we state the result for the same potential V as in Theorem 2.

Corollary 3. Assume that d = 1, V (x) = |x| α for some α > 1 and M > 0. If f solves (VPFP) with initial datum f 0 = (1+h 0 ) f such that h 0 has zero average, h 0 2 < ∞ and (1+h 0 ) ≥ 0, then (3) holds with h = f / f -1 for some constants λ > 0 and C > 1.
The diffusion limit of systems of kinetic equations in presence of electrostatic forces has been studied in many papers. The mathematical results go back at least to the study of a model for semi-conductors involving a linear Boltzmann kernel by F. Poupaud in [START_REF] Poupaud | Diffusion approximation of the linear semiconductor Boltzmann equation: analysis of boundary layers[END_REF]. The case of a Fokker-Planck operator in dimension d = 2 was later studied by F. Poupaud and J. Soler in [START_REF] Poupaud | Parabolic limit and stability of the Vlasov-Fokker-Planck system[END_REF], and by T. Goudon in [START_REF] Goudon | Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: analysis of the twodimensional case[END_REF], on the basis of the existence results of [START_REF] Neunzert | On the Vlasov-Fokker-Planck equation[END_REF][START_REF] Victory | On classical solutions of Vlasov-Poisson Fokker-Planck systems[END_REF]. There is also a parallel, probabilistic approach of the macroscopic diffusion limit and of the overdamped regime for the generalized Langevin equation: see [START_REF] Iacobucci | Convergence rates for nonequilibrium Langevin dynamics[END_REF][START_REF] Pavliotis | Scaling limits for the generalized Langevin equation[END_REF] and references therein. With a self-consistent Poisson coupling, we refer to [START_REF] Bouchut | Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions[END_REF] for existence results in dimension d = 3 and to [START_REF] Dressler | Steady states in plasma physics -the Vlasov-Fokker-Planck equation[END_REF][START_REF]Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (large time behavior and steady states)[END_REF] for steady states, confinement and related issues. Based on free energy considerations introduced in [START_REF] Bouchut | On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials[END_REF][START_REF]Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (large time behavior and steady states)[END_REF], N. El Ghani and N. Masmoudi were able in [START_REF] Ghani | Diffusion limit of the Vlasov-Poisson-Fokker-Planck system[END_REF] to establish diffusion limits also when d = 3. Altogether, it is proved in dimensions d = 2 and d = 3 that the Vlasov-Poisson-Fokker-Planck system, with parameters corresponding to the parabolic scaling, [START_REF] Bedrossian | Suppression of plasma echoes and Landau damping in Sobolev spaces by weak collisions in a Vlasov-Fokker-Planck equation[END_REF] 

ε ∂ t f + v • ∇ x f -∇ x V + ∇ x φ • ∇ v f = 1 ε ∆ v f + ∇ v • (v f ) , -∆ x φ = ρ f = R d f d v , has a weak solution f ε , φ ε which converges as ε → 0 + to f 0 = ρ M , φ where M (v) = (2π) -d /2 exp(-|v| 2 /2
) is the normalized Maxwellian function and where the charge density

ρ = R d f 0 d v is a weak solution of the drift-diffusion-Poisson system (6) ∂ρ ∂t = ∇ x • ∇ x ρ + ρ ∇ x (V + φ) , -∆ x φ = ρ .
Another piece of information is the asymptotic behavior of the solutions of (6) for large times. As t → +∞, it is well known (see for instance [START_REF] Ben Abdallah | A note on the long time behavior for the driftdiffusion-Poisson system[END_REF] in the case of a bounded domain, [START_REF] Arnold | On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations[END_REF] in the Euclidean case when V (x) = |x| 2 , and [START_REF] Biler | Long time behavior of solutions of Nernst-Planck and Debye-Hückel driftdiffusion systems[END_REF] in R d with a confining external potential V for any d ≥ 3) that the solution of ( 6) converges to a steady state (ρ , φ ) given by ( 7)

-∆ x φ = ρ = e -V -φ
at an exponential rate. The optimal asymptotic rates have been characterized recently in [START_REF] Li | Asymptotic behavior of Nernst-Planck equation[END_REF] using the linearized drift-diffusion-Poisson system and a norm which involves the Poisson potential. Apart the difficulty arising from the self-consistent potential, the technique is based on relative entropy methods, which are by now standard in the study of large time asymptotics of drift-diffusion equations.

Our goal is to study both regimes ε → 0 + and t → +∞ simultaneously. More precisely, we aim at proving that each solution f ε , φ ε of (5) converges to ( f , φ ) as t → +∞ in a weighted L 2 sense at an exponential rate which is uniform in ε > 0, small. In the present paper, we will focus on a linearized regime in any dimension and obtain an estimate of the decay rate in the asymptotic regime. This allows us to obtain an asymptotic decay rates in the non-linear regime when d = 1, but so far not in higher dimensions because we are still lacking some key estimates. Compared to the large time asymptotics of ( 6), the study of the convergence rate of the solution of [START_REF] Bedrossian | Suppression of plasma echoes and Landau damping in Sobolev spaces by weak collisions in a Vlasov-Fokker-Planck equation[END_REF] or, in the case ε = 1, of the decay rate of the solution of (1), is much more difficult because the diffusion only acts on the velocities and requires the use of hypocoercive methods.

T. Gallay coined the word hypocoercivity in the context of convergence without regularization as opposed to hypoellipticity where both properties arise simultaneously. This concept is well adapted to kinetic equations with general collision kernels and C. Villani made the hypocoercivity very popular in kinetic theory: see [START_REF] Villani | Hypocoercive diffusion operators[END_REF][START_REF] Villani | Hypocoercivity[END_REF]. Understanding the large time behavior of the kinetic Fokker-Planck equation (without Poisson coupling) is an interesting problem which has a long history: see [START_REF] Kolmogoroff | Zufällige Bewegungen (zur Theorie der Brownschen Bewegung)[END_REF][START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF][START_REF] Has Minski Ȋ | On the equations of Brownian motion[END_REF][START_REF] Eckmann | Spectral properties of hypoelliptic operators[END_REF][START_REF] Hérau | Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential[END_REF] for some earlier contributions. C. Villani [START_REF] Villani | Hypocoercivity[END_REF] proved convergence results in various senses: in H 1 [START_REF] Villani | Hypocoercivity[END_REF]Theorem 35], in L 2 [72, Theorem 37], and in entropy [START_REF] Villani | Hypocoercivity[END_REF]Theorem 39] when Hess(V ) is bounded. His approach is however inspired by hypoelliptic methods, as in [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF][START_REF]Short and long time behavior of the Fokker-Planck equation in a confining potential and applications[END_REF][START_REF] Neumann | Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus[END_REF]. The method of [START_REF] Arnold | Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift[END_REF] is based on a spectral decomposition and produces an exponential decay in relative entropy with a sharp rate. In a somewhat similar spirit, we can also quote [START_REF] Bouin | Hypocoercivity without confinement[END_REF], which is based on a Fourier decomposition. Due to the Fokker-Planck operator, smoothing effects in (5) can be expected as was proved in [START_REF] Bouchut | Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system[END_REF], consistently with hypoelliptic methods: this will not be exploited in the present paper.

Mean-field couplings add a serious difficulty: see [START_REF] Guillin | The kinetic Fokker-Planck equation with mean field interaction[END_REF][START_REF] Lu | Geometric ergodicity of Langevin dynamics with Coulomb interactions[END_REF] for recent results based on a probabilistic approach. In presence of a Poisson coupling large time behavior (without rates) of the solutions of (5) has been dealt with in presence of or without an external potential: cf. [START_REF] Bouchut | On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials[END_REF][START_REF] Carrillo | Asymptotic behaviour and self-similarity for the threedimensional Vlasov-Poisson-Fokker-Planck system[END_REF][START_REF]Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (large time behavior and steady states)[END_REF][START_REF] Carpio | Long-time behaviour for solutions of the Vlasov-Poisson-Fokker-Planck equation[END_REF][START_REF] Kagei | Invariant manifolds and long-time asymptotics for the Vlasov-Poisson-Fokker-Planck equation[END_REF] for early results. In [START_REF] Hwang | On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian[END_REF], a result of exponential decay is obtained in dimension d = 3, in presence of a constant neutralizing background but without confinement: the solution is a smooth perturbation of a stationary distribution function which is homogeneous in x and Maxwellian in v and the proof relies on remarkable algebraic properties. When d = 2 and d = 3, F. Hérau and L. Thomann [START_REF] Hérau | On global existence and trend to the equilibrium for the Vlasov-Poisson-Fokker-Planck system with exterior confining potential[END_REF] proved the trend to the equilibrium for the Vlasov-Poisson-Fokker-Planck system with a small nonlinear term but with a possibly large exterior confining potential. More recently, M. Herda and M. Rodrigues considered in [START_REF] Rodrigues | Large-time behavior of solutions to Vlasov-Poisson-Fokker-Planck equations: from evanescent collisions to diffusive limit[END_REF] the two limits as ε → 0 + and t → +∞, on the 2-dimensional torus, in the globally neutral regime. By a careful analysis of the trade-off between two parameters, the mean free path and the Debye length, they establish closed estimates of regularity which allow them to prove an exponential convergence, including in various limiting regimes, with uniform estimates in the other, fixed parameters. All these approaches are essentially of perturbative nature. In various papers, the properly linearized system (4) is not taken into account, in the sense that the non-local term arising from the Poisson equation is often dropped. In the case of a torus and without an external potential, the Landau damping provides another mechanism of convergence to equilibrium even without a Fokker-Planck kernel: we refer to [START_REF] Bedrossian | Suppression of plasma echoes and Landau damping in Sobolev spaces by weak collisions in a Vlasov-Fokker-Planck equation[END_REF] for a detailed study by J. Bedrossian on the enhancement induced by the Fokker-Planck operator acting on velocities and also to a result of I. Tristani in [START_REF] Tristani | Landau damping for the linearized Vlasov-Poisson equation in a weakly collisional regime[END_REF] for the analysis of the consequences of the Landau damping on the (properly) linearized Vlasov-Poisson-Fokker-Planck system. So far it is not known how these properties could be extended from the setting of a torus to the case of the whole Euclidean space in presence of an external potential of confinement. Let us emphasize that, in the present paper, we consider the properly linearized system, including the non-local Poisson term, and provide a functional framework which is compatible with hypocoercivity methods adapted to diffusion limits.

The existence of solutions of (1), which are continous w.r.t. t and take values in L 2 for the norm defined by [START_REF] Arnold | Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift[END_REF], is out of the scope of this paper. Seen as a perturbation of (VPFP), an existence result can be deduced from the results of [START_REF] Victory | On classical solutions of Vlasov-Poisson Fokker-Planck systems[END_REF][START_REF] Bouchut | Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions[END_REF] or established directly using the same methods as in these papers and we will consider it as granted. Alternatively, it is also possible to consider the non-local term as perturbation and use a fixed point argument based on the semi-group associated to the Fokker-Planck operator as, e.g., in [START_REF] Hérau | On global existence and trend to the equilibrium for the Vlasov-Poisson-Fokker-Planck system with exterior confining potential[END_REF].

In [START_REF]Hypocoercivity for linear kinetic equations conserving mass[END_REF], J. Dolbeault, C. Mouhot, and C. Schmeiser studied the exponential decay in a modified L 2 norm for the Vlasov-Fokker-Planck equation (and also for a larger class of linear kinetic equations). The method was motivated by the results of [START_REF] Hérau | Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation[END_REF] but the main source of inspiration came from the analysis of the diffusion limit, as in [START_REF] Ben | Diffusion approximation for the one dimensional Boltzmann-Poisson system[END_REF][START_REF] Tayeb | Diffusion limit of a semiconductor Boltzmann-Poisson system[END_REF][START_REF] Dolbeault | Nonlinear diffusions as limit of kinetic equations with relaxation collision kernels[END_REF] (also see [START_REF] Tayeb | Homogenized diffusion limit of a Vlasov-Poisson-Fokker-Planck model[END_REF] in presence of an oscillating external force field): the general idea is to build a norm which reflects the spectral gap that determines the rate of convergence in (6) by adding a twist which arises from the coercivity properties, at macroscopic level, of the diffusion limit. Applying [START_REF]Hypocoercivity for linear kinetic equations conserving mass[END_REF] to (1) is a natural idea, which is mentioned for instance in [69, p. 109], but has not been done yet to our knowledge. Inspired by [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF][START_REF] Bonforte | Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities[END_REF][START_REF] Dolbeault | Fast diffusion equations: matching large time asymptotics by relative entropy methods[END_REF], another idea emerged that asymptotic rates of convergence should be measured in a norm induced by a Taylor expansion of the entropy around the asymptotic state and that, in presence of a Poisson coupling, this norm should involve a non-local term: see [START_REF] Campos | Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane[END_REF][START_REF] Li | Asymptotic behavior of Nernst-Planck equation[END_REF][START_REF]Flocking: phase transition and asymptotic behaviour[END_REF] for driftdiffusion systems and Remark 1 when applied to (VPFP). The goal of this paper is to mix these two ideas. It turns out that they combine into a beautiful machinery. This paper is organized as follows. In Section 2, we expose the strategy for the L 2hypocoercivity method of [START_REF]Hypocoercivity for linear kinetic equations conserving mass[END_REF] in the abstract setting of a general Hilbert space. The notion of Hilbert space adapted to (1) is exposed in Section 3 with some fundamental considerations on confinement by an external potential and adapted Poincaré inequalities. Section 4 is devoted to the proof of Theorem 1: we have to check that the assumptions of Section 2 hold in the functional setting of Section 3, with the special scalar product for Poisson coupling involving a non-local term associated with the norm defined by [START_REF] Arnold | Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift[END_REF]. In Section 5, we prove Theorem 2: our estimates are compatible with the diffusion limit as ε → 0. Coming back to the non-linear problem (VPFP) in dimension d = 1, we prove in this latter case that an exponential rate of convergence as t → +∞ can be measured in the hypocoercive norm, that is, we prove Corollary 3.

We shall adopt the following conventions.

If a = (a i ) d i =1 and b = (b i ) d i =1 are two vectors with values in R d , then a•b = d i =1 a i b i and |a| 2 = a•a. If A = (A i j ) d i , j =1 and B = (B i j ) d i , j =1 are
two matrices with values in R d ×R d , then A : B = d i , j =1 A i j B i j and |A| 2 = A : A. We shall use the tensor convention that a ⊗ b is the matrix of elements a i b j . By extension to functions, ∇ x w is the gradient of a scalar function w while ∇ x • u denotes the divergence of a vector valued function u = (u i ) d i =1 and ∇ x ⊗ u is the matrix valued function of elements ∂u i /∂x j .

Hence

Hess(w) = (∇ x ⊗ ∇ x )w = ∂ 2 w ∂x i ∂x j d i , j =1
denotes the Hessian of w and, for instance, u ⊗ u : Hess(w) = d i , j =1 u i u j Hess(w) i j . We shall also write that |Hess(w)| 2 = Hess(w) : Hess(w).

HYPOCOERCIVITY RESULT AND DECAY RATES

This section is devoted to the abstract hypocoercivity method in general Hilbert spaces and it is inspired from [START_REF]Hypocoercivity for linear kinetic equations conserving mass[END_REF][START_REF] Bouin | Hypocoercivity without confinement[END_REF]. Since the methods sets the overall strategy of proof of our main results, we expose it for the convenience of the reader.

Let us consider the evolution equation [START_REF] Ben | Diffusion approximation for the one dimensional Boltzmann-Poisson system[END_REF] d F d t

+ TF = LF
on a Hilbert space H . In view of the applications, we shall call T and L the transport and the collision operators and assume without further notice that they are respectively antisymmetric and symmetric, and both time-independent. On H , we shall denote by 〈•, •〉 and • the scalar product and the norm. As in [START_REF]Hypocoercivity for linear kinetic equations conserving mass[END_REF], we assume that there are positive constants λ m , λ M , and C M such that, for any F ∈ H , the following properties hold:

microscopic coercivity (H1) -〈LF , F 〉 ≥ λ m (Id -Π)F 2 , macroscopic coercivity (H2) TΠF 2 ≥ λ M ΠF 2 ,
parabolic macroscopic dynamics

(H3) ΠTΠ F = 0 , bounded auxiliary operators (H4) AT(Id -Π)F + ALF ≤ C M (Id -Π)F .
Here Id is the identity, Π is the orthogonal projection onto the null space of L, * denotes the adjoint with respect to 〈•, •〉 and as in [START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF][START_REF]Hypocoercivity for linear kinetic equations conserving mass[END_REF], the operator A is defined by

A := Id + (TΠ) * TΠ -1 (TΠ) * .
Since a solution F of (8) obeys to 1 2

d d t F 2 = 〈LF , F 〉 ≤ -λ m (Id -Π)F 2 ,
this is not enough to conclude that F (t , •) 2 decays exponentially with respect to t ≥ 0 and this is why we shall consider the Lyapunov functional

H δ [F ] := 1 2 F 2 + δ 〈AF , F 〉 for some δ > 0 to be determined later. If F solves (8), then - d d t H δ [F ] = D δ [F ] := -〈LF , F 〉+δ 〈ATΠF , F 〉-δ 〈TAF , F 〉+δ 〈AT(Id -Π)F , F 〉-δ 〈ALF , F 〉 using A = ΠA. Let us define δ = min 2, λ m , 4 λ m λ M 4 λ M +C 2 M (1 + λ M )
.

We recall that the two main properties of the hypocoercivity method of [START_REF]Hypocoercivity for linear kinetic equations conserving mass[END_REF] for real valued operators and later extended in [START_REF] Bouin | Hypocoercivity without confinement[END_REF] to complex Hilbert spaces go as follows.

Proposition 4. Assume that (H1)-(H4) hold and take δ ∈ (0, δ ). Then we have:

(i) H δ and • 2 are equivalent in the sense that

(9) 2 -δ 4 F 2 ≤ H δ [F ] ≤ 2 + δ 4 F 2 ∀F ∈ H .
(ii) For some λ > 0 depending on δ, H δ and D δ are related by the entropy -entropy production inequality

(10) λ H δ [F ] ≤ D δ [F ] ∀F ∈ H .
As a consequence, a solution F of ( 8) with initial datum F 0 obeys to

H δ [F (t , •)] ≤ H δ [F 0 ] e -λt
and ( 11)

F (t , •) 2 ≤ 4 2 -δ H δ [F (t , •)] ≤ 4 2 -δ H δ [F 0 ] e -λt ≤ 2 + δ 2 -δ F 0 2 e -λt ∀ t ≥ 0 .
Proof. For completeness, we sketch the main steps of the proof, with slightly improved estimates compared to [START_REF] Bouin | Hypocoercivity without confinement[END_REF]Theorem 3]. Since ATΠ can be viewed as z → (1+z) -1 z applied to (TΠ) * TΠ, (H1) and (H2) imply that

-〈LF , F 〉 + δ 〈ATΠF , F 〉 ≥ λ m (Id -Π)F 2 + δ λ M 1 + λ M ΠF 2 .
Our goal is to prove that the r.h.s. controls the other terms in the expression of D δ [F ].

By (H4), we know that

〈AT(Id -Π)F , F 〉 + 〈ALF , F 〉 ≤ C M ΠF (Id -Π)F . As in [32, Lemma 1], if G = AF , i.e., if (TΠ) * F = G + (TΠ) * TΠG, then 〈TAF , F 〉 = G, (TΠ) * F = G 2 + TΠG 2 = AF 2 + TAF 2 .
By the Cauchy-Schwarz inequality, we know that

G, (TΠ) * F = 〈TAF , (Id -Π)F 〉 ≤ TAF (Id -Π)F ≤ 1 2 µ TAF 2 + µ 2 (Id -Π)F 2 for any µ > 0. Hence 2 AF 2 + 2 -1 µ TAF 2 ≤ µ (Id -Π)F 2 ,
which, by taking either µ = 1/2 or µ = 1, proves that ( 12)

AF ≤ 1 2 (Id -Π)F and TAF ≤ (Id -Π)F . Hence | 〈AF , F 〉 | ≤ 1 2 X Y ≤ 1 4 X 2 + Y 2
with X := (Id -Π)F and Y := ΠF because A takes values in ΠH . This establishes [START_REF] Biler | Long time behavior of solutions of Nernst-Planck and Debye-Hückel driftdiffusion systems[END_REF] and, as a side result, also proves that

|〈TAF , F 〉| = |〈TAF , (Id -Π)F 〉| ≤ (Id -Π)F 2 .
Collecting terms in the expression of D δ [F ], we find that

D δ [F ] ≥ (λ m -δ) X 2 + δ λ M 1 + λ M Y 2 -δC M X Y with X := (Id-Π)F and Y := ΠF . We know that H δ [F ] ≤ 1 2 X 2 + Y 2 + δ 2 X Y , so that the largest value of λ for which D δ [F ] ≥ λ H δ [F ] can be estimated by the largest value of λ for which (X , Y ) → (λ m -δ) X 2 + δ λ M 1 + λ M Y 2 -δC M X Y - λ 2 X 2 + Y 2 - λ 2 δ X Y = (X , Y )M (X , Y ) T
is a nonnegative quadratic form, as a function of (X , Y ), where

M :=    λ m -δ -λ 2 -δ 2 C M + λ 2 -δ 2 C M + λ 2 δ λ M 1+λ M -λ 2    .
It is characterized by the discriminant condition

h(δ, λ) := δ 2 C M + λ 2 2 -4 λ m -δ - λ 2 δ λ M 1 + λ M - λ 2 ≤ 0 and the sign condition λ m -δ -λ/2 > 0. For any δ ∈ (0, δ ), λ → h(δ, λ) is a second order polynomial such that h(δ, 0) > 0 and lim λ→+∞ h(δ, λ) = -∞.
Hence, the largest possible value of λ can be estimated by the positive root of h(δ, λ) = 0, for any given δ ∈ (0, δ ).

Notice that the proof of Proposition 4 provides us with a constructive estimate of the decay rate λ, as a function of δ ∈ (0, δ ). We refer to [START_REF] Arnold | Sharpening of decay rates in Fourier based hypocoercivity methods[END_REF] for a discussion of the best estimate of the decay rate of H δ , i.e., the largest possible estimate of λ when δ varies in the admissible range (0, δ ).

FUNCTIONAL SETTING

In this section, we collect a some observations on the external potential V and on the stationary solution obtained by solving the Poisson-Boltzmann equation. Depending on growth conditions on V , we establish a notion of confinement (so that (VPFP) admits an integrable stationary solution) and coercivity properties (which amount to Poincaré type inequalities). Our goal is to give sufficient conditions in order that: 1) there exists a nonnegative stationary solution f of (VPFP) of arbitrary given mass M > 0: see Section 3.2; 2) there is a Poincaré inequality associated with the measure e -V -φ d x on R d , and variants of it, with weights: see Section 3.3; 3) there is a Hilbert space structure on which we can study [START_REF] Arnold | Sharpening of decay rates in Fourier based hypocoercivity methods[END_REF]: see Section 3.6. These conditions on V determine a functional setting which is adapted to implement the method of Section 2. The potential V (x) = |x| α with α > 1 is an admissible potential in that perspective.

In [START_REF]Hypocoercivity for linear kinetic equations conserving mass[END_REF], without Poisson coupling, sufficient conditions were given on V which were inspired by the carré du champ method and the Holley-Stroock perturbation lemma (see [START_REF] Holley | Logarithmic Sobolev inequalities and stochastic Ising models[END_REF] and [START_REF] Dolbeault | Φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations[END_REF] for related results). These conditions are not well adapted to handle an additional Poisson coupling. Here we adopt a slightly different approach, which amounts to focus on sufficient growth conditions of the external potential V and on tools of spectral theory like Persson's lemma. For sake of simplicity, we require some basic regularity properties of V and assume that

(V1) V ∈ C 0 ∩ W 2,1 loc R d and lim inf |x|→+∞ V (x) = +∞ .
These regularity assumptions and the growth conditions on V (also see below) could be relaxed, up to additional technicalities. 

= G d * ρ with G d (x) = c d |x| 2-d , c -1 d = (d -2) |S d -1 | if d ≥ 3.
Then, if d ≥ 3, with no further restriction, by using integrations by parts, we have that

R d ρ φ d x = R d (-∆ x φ) φ d x = R d |∇ x φ| 2 d x . If d = 2, we use G 2 (x) = -1 2π log |x|. It is a standard observation that φ = (-∆ x ) -1 ρ is such that ∇ x φ(x) = -1 2π R 2 ρ d x x |x| 2 as |x| → +∞ is not square integrable unless R 2 ρ d x = 0. If R 2 ρ d x = 0, one can prove that R 2 ρ φ d x = R 2 |∇ x φ| 2 d x < +∞ . If d = 1, we can use G 1 (x) = -|x|/2,
but it is sometimes more convenient to rely on the representation ( 13)

φ(x) = M 2 x - x -∞ d y y -∞ ρ(z) d z + φ 0
and we shall then write φ =d 2 /d x 2 -1 ρ whenever we use [START_REF] Bonforte | Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities[END_REF]. Here φ 0 is a free parameter that we may fix by assuming that max x∈R φ(x) = 0. This convention does not coincide with the representation by G 1 * ρ as, in that case, φ(0) is taken equal to -1 2 R |x| ρ(x) d x, provided this quantity is well defined. Obviously, the potential is defined up to an additive constant and this is therefore not an issue. Without further notice, we will rely on [START_REF] Bonforte | Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities[END_REF] for the solutions when d = 1.

If d = 1, more important is the fact that φ = -d 2 /d x 2 -1 ρ satisfies φ = -m where m is defined by m(x) := x -∞ ρ(y) d y if M = R ρ d x = 0.
In that case, if we further assume that ρ is compactly supported or has a sufficient decay at infinity, an integration by parts shows that

(14) R φ ρ d x = - R φ md x = R |φ | 2 d x = R m 2 d x ≥ 0 . Altogether, whenever R d ρ d x = 0, we shall write R d ρ φ d x = R d |∇ x φ| 2 d x ≥ 0 without any further precaution, for any d ≥ 1.

The Poisson-Boltzmann equation.

According to [START_REF] Dressler | Steady states in plasma physics -the Vlasov-Fokker-Planck equation[END_REF][START_REF] Victory | On classical solutions of Vlasov-Poisson Fokker-Planck systems[END_REF][START_REF]Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (large time behavior and steady states)[END_REF], stationary solutions of the (VPFP) system are given by

f (x, v) = ρ (x) M (v)
where M (v) = (2π) -d /2 e -|v| 2 /2 is the normalized Maxwellian function (or Gaussian function) and the spatial density ρ is determined by the Poisson-Boltzmann equation

-∆ x φ = ρ = M e -V -φ R d e -V -φ d x .
This equation also appears in the literature as the the Poisson-Emden equation. It is obvious that φ is defined up to an additive constant which can be chosen such that M = R d e -V -φ d x and therefore solves [START_REF] Ben Abdallah | A note on the long time behavior for the driftdiffusion-Poisson system[END_REF]. Here

ρ L 1 (R d ) = f L 1 (R d ×R d ) = M is
the mass, which is a free parameter of the problem, which can be adjusted by adding a constant to V . The critical growth of V such that there are solutions ρ ∈ L 1 (R d ) of ( 7) which minimize the free energy strongly depends on the dimension. Here are some sufficient conditions.

Lemma 5. Let M > 0. Assume that V satisfies (V1) and

(V2) |V | e -V ∈ L 1 (R d ) if d ≥ 3 , lim inf |x|→+∞ V (x) log |x| > 2 + M 2π if d = 2 , lim inf |x|→+∞ V (x)-M |x|/2 log |x| > 2 if d = 1 . Then (7) has a unique solution ρ ∈ L 1 (R d ) such that R d ρ d x = M
and φ is the unique solution of [START_REF] Ben Abdallah | A note on the long time behavior for the driftdiffusion-Poisson system[END_REF]. Moreover φ is of class C 2 and lim inf |x|→+∞ W (x) = +∞, where

W = V + φ and ρ = e -W .
As a consequence of Lemma 5, we learn that under Assumptions (V1) and (V2), the potential W also satisfies (V1). Regularity results on [START_REF] Ben Abdallah | A note on the long time behavior for the driftdiffusion-Poisson system[END_REF] are scattered in the literature. See for instance [START_REF] Hérau | On global existence and trend to the equilibrium for the Vlasov-Poisson-Fokker-Planck system with exterior confining potential[END_REF]Proposition 3.5]. The general strategy is, as usual, to use the fact that the solution is in the energy space and the equation to obtain uniform estimates by elliptic bootstrapping. The regularity and decay estimates as |x| → +∞ follow respectively from the regularity of V and from its growth properties, using a representation of the solution based on the Green function. This is again classical and details will be omitted here.

Proof. The case d ≥ 3 is covered by [27, p. 123]. The free energy

F [ρ] := R d ρ log ρ d x + R d ρ V d x + 1 2 R d ρ φ d x
is bounded from below under the mass constraint R d ρ d x = M using the fact that

R d ρ φ d x = R d |∇ x φ| 2 d x ≥ 0
and, with u := ρ e V , the convexity estimate

F [ρ] ≥ R d ρ log ρ d x + R d ρ V d x = R d (u log u -u + 1 ≥0 ) e -V d x + M - R d e -V d x .
A slightly more accurate estimate is obtained using Jensen's inequality applied to u log u with the measure e -V d x/ R d e -V d x. The existence follows by a minimization method. The Euler-Lagrange equation reads

1 + log ρ + V + φ = C
for some C ∈ R which is the Lagrange multiplier associated to the mass constraint. Hence ρ = e C -1 e -(V +φ) and we deduce from the mass constraint

M = R d ρ d x that C = 1+log M - log R d e -(V +φ) d x.
As noticed in [START_REF] Lions | Sur les états d'équilibre pour les densités électroniques dans les plasmas[END_REF][START_REF] Dolbeault | Stationary states in plasma physics: Maxwellian solutions of the Vlasov-Poisson system[END_REF], the uniqueness is a consequence of the convexity of F . Finally, by standard elliptic regularity, φ = (-∆ x ) -1 ρ is continuous and has a limit as |x| → +∞.

In dimension d = 1 or d = 2, the same scheme can be adapted after proving that F is bounded from below. This has been established in [START_REF]Generalized Logarithmic Hardy-Littlewood-Sobolev Inequality[END_REF]Theorem 3.4] (also see [START_REF] Li | Asymptotic behavior of Nernst-Planck equation[END_REF]) when d = 2 under Assumption (V2). The case d = 1 can be dealt with by elementary methods, as follows. Let us consider the potential

V 0 (x) = M 2 (x + 1) 1 (-∞,-1) (x) + 1 2 (x + 1) (1 -x) 1 [-1,+1] (x) -(x -1) 1 (+1,+∞) (x) - 1 2
such that, a.e., -V 0 = M 2 1 [-1,+1] =: ρ 0 and let ψ := φ -V 0 . We claim that

F [ρ] = R ρ log ρ d x + R ρ (V + V 0 ) d x - 1 2 R ψ ψ d x + 1 2 R ρ 0 ψ d x - 1 2 R ρ V 0 d x
is bounded from below because the first two integrals can be bounded using Jensen's inequality and we have R ψ ψ

d x = -R |ψ | 2 d x.
The balance between the last to terms is slightly more subtle. Let x 0 ∈ R be such that φ(x 0 ) = M /2. Using (13), we notice that φ (x 0 ) = 0 and obtain

φ(x) = - x x 0 d y y x 0 ρ(z) d z because φ(x 0 ) = φ 0 = 0. A crude consequence is the estimate -M 2 |x -x 0 | ≤ φ(x) ≤ 0 for any x ∈ R, which shows that R ρ 0 ψ d x ≥ R ρ 0 V 0 d x + M 4 +1 -1 φ(x) d x ≥ R ρ 0 V 0 d x - M 2 8 +1 -1 |x -x 0 | d x ,
that is, a lower bound of the order of |x 0 | as |x 0 | → +∞. On the other hand, if

|x 0 | > 1, we have - R ρ V 0 d x ≥ - M 4 +1 -1 ρ(x) d x + |x|≥|x 0 | ρ V 0 d x ≥ - M 2 2 + M 2 V 0 (x 0 ) ,
which is of the order of V 0 (x 0 ) and dominates |x 0 | as |x 0 | → +∞, by Assumption (V2). Combining these estimates provides us with the lower bound we need.

Some non-trivial Poincaré inequalities.

Assume that V is such that (V1)-(V2) hold. Before considering the case of the measure e -W d x on R d , with W = V + φ , we may ask under which conditions on V the Poincaré inequality

(15) R d |∇ x u| 2 e -V d x ≥ C P R d |u| 2 e -V d x ∀ u ∈ H 1 (R d ) such that R d u e -V d x = 0
is true for some constant C P > 0. Let us define w = u e -V /2 and observe that ( 15) is equivalent to

R d |∇ x w| 2 d x + R d Φ |w| 2 d x ≥ C P R d |w| 2 d x under the condition that R d w e -V /2 d x = 0. Here Φ = 1 4 |∇ x V | 2 -1 2 ∆ x V is obtained by ex- panding the square in R d ∇ x w + 1 2 w ∇ x V 2 d
x and integrating by parts the cross-term.

From the expression of the square, we learn that the kernel of the Schrödinger operator -∆ x + Φ on L 2 R d , d x is generated by e -V /2 . According to Persson's result [63, Theorem 2.1], the lower end σ of the continuous spectrum of the Schrödinger operator -

∆ x +Φ is such that σ ≥ lim r →+∞ infess x∈B c r Φ(x) =: σ 0 .
As a consequence, if σ is positive, either there is no eigenvalue in the interval (0, σ) and C P = σ, or C P is the lowest positive eigenvalue, and it is positive by construction. In both cases, we know that (15) holds for some C P > 0 if σ 0 > 0. In order to prove [START_REF] Bouchut | Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions[END_REF], it is enough to check that (V3a)

σ V := lim r →+∞ infess x∈B c r 1 4 |∇ x V | 2 - 1 2 ∆ x V > 0 and lim r →+∞ infess x∈B c r |∇ x V | > 0 .
See for instance [START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures[END_REF][START_REF] Bouin | Hypocoercivity and sub-exponential local equilibria[END_REF] for further considerations on Assumption (V3a). Now let us consider the measure ρ d x = e -W d x on R d and establish the corresponding Poincaré inequality.

Lemma 6. Assume that d ≥ 1 and consider V such that (V1), (V2) and (V3a) hold. We further assume that

(V4) lim r →+∞ infess |x|>r M -2V 2 -2V > 0 if d = 1 .
If φ solves [START_REF] Ben Abdallah | A note on the long time behavior for the driftdiffusion-Poisson system[END_REF] and W = V + φ , then there is a positive constant C such that

(16) R d |∇ x u| 2 ρ d x ≥ C R d |u| 2 ρ d x ∀ u ∈ H 1 (R d ) s.t. R d u ρ d x = 0 .
Proof. In order to adapt the result for V to W , it is enough to prove that

σ W := lim r →+∞ infess x∈B c r 1 4 ∇ x φ + ∇ x V 2 - 1 2 ∆ x φ + ∆ x V > 0 .
By Lemma 5 and (V3a),

|∆ x φ | = ρ = o |∇ x V | 2 -2 ∆ x V . Using ∇ x φ = ∇G d * ρ , we obtain that |∇ x φ | = O |x| 1-d is negligible compared to |∇ x V | if d ≥ 2. If d = 1
, the result follows from (V4) using the fact that φ (x) ∼ ± M /2 as x → ∓∞.

We shall now replace (V3a) by the slightly stronger assumption that, for some θ ∈ [0, 1),

(V3b) lim r →+∞ infess x∈B c r θ 4 |∇ x V | 2 - 1 2 ∆ x V ≥ 0 and lim r →+∞ infess x∈B c r |∇ x V | > 0 .
Corollary 7. Assume that d ≥ 1 and consider V such that (V1), (V2), (V3b) and (V4) hold. If φ solves [START_REF] Ben Abdallah | A note on the long time behavior for the driftdiffusion-Poisson system[END_REF] and W = V + φ , then there is a positive constant C such that

(17) R d |∇ x u| 2 ρ d x ≥ C R d |u| 2 |∇ x W | 2 ρ d x ∀ u ∈ H 1 (R d ) s.t. R d u ρ d x = 0 .
Proof. By expanding ∇ x u ρ 2 , using ∇ x ρ = -1 2 ∇ x W ρ and integrating by parts, we obtain that

0 ≤ R d ∇ x u ρ 2 d x = R d |∇ x u| 2 ρ d x - R d 1 4 |∇ x W | 2 - 1 2 ∆ x W |u| 2 ρ d x .
Combined with [START_REF] Bouchut | Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system[END_REF], this shows that

R d |∇ x u| 2 ρ d x ≥ R d (1 -η) C + η θ 4 |∇ x W | 2 - 1 2 ∆ x W |u| 2 ρ d x + η 4 (1 -θ) R d |u| 2 |∇ x W | 2 ρ d x
for any η ∈ (0, 1). With η chosen small enough so that (1

-η) C + η θ 4 |∇ x W | 2 -1 2 ∆ x W is nonnegative a.e., the conclusion holds with C = η (1 -θ)/4.
In the same spirit as for Corollary 7, we shall assume that for some θ ∈ [0, 1),

(V5) lim r →+∞ infess x∈B c r θ 4 |∇ x V | 4 - 1 2 ∆ x V |∇ x V | 2 -Hess(V ) : ∇ x V ⊗ ∇ x V ≥ 0 and lim r →+∞ infess x∈B c r |∇ x V | > 0 .
Corollary 8. Assume that d ≥ 1 and consider V such that (V1), (V2), (V3b) and (V5) hold. If φ solves [START_REF] Ben Abdallah | A note on the long time behavior for the driftdiffusion-Poisson system[END_REF] and W = V + φ , then there is a positive constant C • such that

R d |∇ x u| 2 |∇ x W | 2 ρ d x ≥ C • R d |u| 2 |∇ x W | 4 ρ d x ∀ u ∈ H 1 (R d ) s.t. R d u ρ d x = 0 .
The proof is again based on the expansion of the square in 

∇ x u ρ 2 |∇ x W | 2 ,
Λ V := lim r →+∞ supess x∈B c r 1 |∇ x V (x)| 2 Λ e V (x) Hess e -V (x) - 1 2
∆ x e -V (x) Id < +∞ .

In other words, Assumption (V6) means that for any ε > 0, there exists some R > 0 such that e V (x) Hess e -V (x) -

1 2 ∆ x e -V (x) Id ≤ (Λ V -ε) |∇ x V (x)| 2 Id , x ∈ R d a.e. such that |x| > R ,
where the inequality holds in the sense of positive matrices.

Lemma 9. Assume that d ≥ 1 and consider V such that (V1), (V2) and (V6) hold. If φ solves [START_REF] Ben Abdallah | A note on the long time behavior for the driftdiffusion-Poisson system[END_REF] and W = V + φ , then there is a positive constant Λ such that

R d Hess(ρ ) - 1 2 ∆ x ρ Id : ∇ x w ⊗ ∇ x w d x ≤ Λ R d |∇ x w| 2 |∇ x W | 2 ρ d x
for any function w ∈ H 1 loc (R d ).

Proof. An elementary computation shows that

Hess(ρ ) = ∇ x W ⊗ ∇ x W -Hess(W ) ρ and ∆ x ρ = |∇ x W | 2 -∆ x W ρ .
The proof is then similar to the above arguments, up to elementary estimates, that we shall omit here.

Similarly, let us assume that (V7) lim

r →+∞ supess x∈B c r ∇ x log |∇ x V (x)| 2 < +∞ .
Lemma 10. Assume that d ≥ 1 and consider V such that (V1), (V2) and (V7) hold. If φ solves [START_REF] Ben Abdallah | A note on the long time behavior for the driftdiffusion-Poisson system[END_REF] and W = V + φ , then there is a positive constant Λ • such that

(18) ∇ x |∇ x W (x)| 2 ≤ Λ • |∇ x W (x)| 2 , x ∈ R d a.e. such that |x| > R .
Here we mean that ∇ x |∇ x W | 2 ∇ x w = 2 Hess(W ) : ∇ x W ⊗∇ x w for any C 1 function w. Inequality [START_REF] Bouin | Hypocoercivity and sub-exponential local equilibria[END_REF] follows from the regularity and decay estimates of φ . Since the proof relies only on elementary but tedious computations, we omit it here. In the same vein, let us assume that (V8)

|∇ x V | 2 e -V L ∞ (R d ,d x) < +∞ and ∇ x |∇ x V | 2 2 e -V L ∞ (R d ,d x) < +∞ .
Lemma 11. Assume that d ≥ 1 and consider V such that (V1), (V2) and (V8) hold. If φ solves [START_REF] Ben Abdallah | A note on the long time behavior for the driftdiffusion-Poisson system[END_REF] and

W = V + φ , then |∇ x W | 2 ρ L ∞ (R d ,d x) and ∇ x |∇ x W | 2 2 ρ L ∞ (R d ,d x)
are finite.

3.5.

A Bochner-Lichnerowicz-Weitzenböck identity and second order estimates. Algebraic computations and a few integrations by parts provide us with the following estimate.

Lemma 12. Let ρ = e -W be a non-trivial function in L ∞ loc ∩W 1,2 (R d ). Then for any smooth function w on R d with compact support, we have the identity

R d |Hess(w)| 2 ρ d x ≤ 6 R d 1 ρ ∇ x • ρ ∇ x w 2 d x + 8 R d ∇ x W • ∇ x w 2 ρ d x .
Notice that if V satisfies (V1)-(V2), M > 0 and W = V + φ where φ is the unique solution of ( 7), then ρ is an admissible function for Lemma 12.

Proof. Let us start by establishing a Bochner-Lichnerowicz-Weitzenböck identity as follows:

1 2 ∆ x ρ |∇ x w| 2 = ∇ x • ρ Hess(w) ∇ x w + 1 2 ∇ x • |∇ x w| 2 ∇ x ρ = ρ |Hess(w)| 2 + ρ ∇ x w • ∇ x (∆ x w) + 1 2 ∆ x ρ |∇ x w| 2 + 2 Hess(w) : ∇ x w ⊗ ∇ x ρ = ρ |Hess(w)| 2 + ∇ x w • ∇ x (ρ ∆ x w) -(∇ x w • ∇ x ρ ) ∆ x w + 1 2 ∆ x ρ |∇ x w| 2 + 2 Hess(w) : ∇ x w ⊗ ∇ x ρ .
We obtain after a few integrations by parts on R d that

R d ∆ x ρ |∇ x w| 2 d x = 0 , R d ∇ x w • ∇ x (ρ ∆ x w) d x = - R d (∆ x w) 2 ρ d x , 1 2 R d ∆ x ρ |∇ x w| 2 d x + R d Hess(w) : ∇ x w ⊗ ∇ x ρ d x = 0 , which proves that R d |Hess(w)| 2 ρ d x = R d (∆ x w) 2 ρ d x + R d (∇ x w • ∇ x ρ ) ∆ x w d x - R d Hess(w) : ∇ x w ⊗ ∇ x ρ d x .
We deduce from

R d (∇ x w • ∇ x ρ ) ∆ x w d x = - R d ∆ x w (∇ x w • ∇ x W ) ρ d x ≤ 1 2 R d (∆ x w) 2 ρ d x + 1 2 R d ∇ x W • ∇ x w 2 ρ d x and - R d Hess(w) : ∇ x w ⊗ ∇ x ρ d x = R d Hess(w) : ∇ x w ⊗ ∇ x W ρ d x ≤ 1 2 R d (Hess(w)) 2 ρ d x + 1 2 R d ∇ x W • ∇ x w 2 ρ d x that 1 2 R d |Hess(w)| 2 ρ d x ≤ 3 2 R d (∆ x w) 2 ρ d x + R d ∇ x W • ∇ x w 2 ρ d x . Since ∇ x ρ = -∇ x W ρ and ∆ x w ρ = ∇ x • ρ ∇ x w + (∇ x W • ∇ x w) ρ , we have the esti- mate R d (∆ x w) 2 ρ d x ≤ 2 R d 1 ρ ∇ x • ρ ∇ x w 2 d x + 2 R d ∇ x W • ∇ x w 2 ρ d x ,
which completes the proof.

3.6. The scalar product. On R d × R d , let us define the measure

d µ := f (x, v) d x d v
and consider the functional space ( 19)

H := h ∈ L 1 ∩ L 2 R d × R d , d µ : R d ×R d h d µ = 0 and R d |∇ x ψ h | 2 d x < ∞ ,
where we use the notation

ρ h = R d h f d v and ψ h = (-∆ x ) -1 ρ h . We also define (20) 〈h 1 , h 2 〉 := R d ×R d h 1 h 2 d µ + R d ρ h 1 (-∆ x ) -1 ρ h 2 d x ∀ h 1 , h 2 ∈ H .
Remark 1. This definition deserves an explanation. The whole motivation of this paper is to understand the large-time asymptotics of the nonlinear system (VPFP) and it is known, see for instance [START_REF] Bouchut | On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials[END_REF], that the irreversibility and the convergence of a solution f to the stationary solution f can be studied using the free energy functional

R d ×R d f log f f d x d v + 1 2 R d |∇ x φ| 2 d x .
Indeed, if ( f , φ) solves (VPFP) and has sufficient smoothness and decay properties, we have

d d t R d ×R d f log f f d x d v + 1 2 R d |∇ x φ| 2 d x = - R d ×R d f -1 |∇ v f | 2 d x d v .
However, no rate of decay of the free energy is known for initial data such that ff is large.

With f = f (1 + η h) for some h such that R d ×R d h f d x d v = 0
, we can at least investigate the limit as η → 0 + . At leading order η 2 , the free energy is η 2 〈h, h〉, which is the initial reason for introducing this scalar product.

Lemma 13. Let M > 0. If V satisfies (V1)-(V2), then H , 〈•, •〉 is a Hilbert space for any dimension d ≥ 1.
Proof. Up to an integration by parts, we can rewrite 〈h 1 , h 2 〉 as

〈h 1 , h 2 〉 = R d ×R d h 1 h 2 d µ + R d (-∆ x ψ h 1 ) ψ h 2 d x = R d ×R d h 1 h 2 d µ + R d ∇ x ψ h 1 • ∇ x ψ h 2 d x
and observe that this determines a scalar product. This computation has to be justified. Let us distinguish three cases depending on the dimension d .

Let us assume first that d ≥ 3. We know that ψ = G d * ρ is nonnegative and deduce that ρ is bounded because

0 ≤ e -V -ψ ≤ e -V ∈ L ∞ (R d ) .
Hence, for any p ∈ (1, 2], we have

ρ h p L p (R d ) = R d R d h f d v p d x ≤ ρ p-1 L ∞ (R d ) R d ×R d |h| p d µ .
According to [START_REF] Lieb | Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[END_REF], we know by the Hardy-Littlewood-Sobolev inequality that

R d ×R d |ρ 1 (x)| |ρ 2 (x)| |x -y| d -a d x d y ≤ C HLS ρ 1 L p (R d ) ρ 2 L q (R d )
if a ∈ (0, d ) and p, q ∈ (1, +∞) are such that 1 + a d = 1 p + 1 q . This justifies the fact that

R d ρ h (-∆ x ) -1 ρ h d x is well defined if h ∈ L 1 ∩ L 2 R d × R d , d µ . With a = 2, p < 3/2 if d = 3, p < 2 if d = 4 and p ≤ 2 if d ≥ 5
, we deduce that ψ h ∈ L q (R d ) where q = q/(q -1) = d p/(d -2 p). A simple Hölder estimate shows the Gagliardo-Nirenberg type estimate

∇ x ψ 2 L 2 (R d ) ≤ ∆ x ψ L p 1 (R d ) ψ L q 1 (R d )
and proves for an appropriate choice of (p 1 , q 1 ) ∈ (1, 2)×(2, +∞) with 1

p 1 + 1 q 1 = 1 that ∇ x ψ h is bounded in L 2 (R d ).
The case d = 2 is well known. The boundedness of ρ h L p (R d ) for any p ∈ (1, 2] follows by the same argument as in the case d ≥ 3 and we learn that |ρ h | log |ρ h | is integrable by log-Hölder interpolation. The boundedness from below of R 2 ρ h (-∆ x ) -1 ρ h is then a consequence of the logarithmic Hardy-Littlewood-Sobolev inequality, see [START_REF] Carlen | Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on S n[END_REF][START_REF]Generalized Logarithmic Hardy-Littlewood-Sobolev Inequality[END_REF]. Using the fact that R d ρ h d x = 0, we also know from [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF] that ∇ x ψ h is bounded in L 2 (R 2 ).

When d = 1, the nonnegativity of the scalar product is a consequence of ( 14) and holds without additional condition by a simple density argument.

The condition R d ×R d h d µ = 0 in the definition of h is simply an orthogonality condition with the constant functions, with respect to the usual scalar product in L 2 R d × R d , d µ . By taking the completion of smooth compactly supported functions with zero average with respect to the norm defined by h → 〈h, h〉, we recover H , which is therefore a Hilbert space. In the next sections, we shall denote by • the norm on H associated with the scalar product so that

h 2 = 〈h, h〉 ∀ h ∈ H .
Whenever another norm is used, this will be explicitly specified.

PROOF OF THE MAIN RESULT

In this section, we prove Theorem 1. Our task is to check that the assumptions of Section 2 hold in the functional setting of Section 3.

Definitions and elementary properties.

On the space H defined by [START_REF] Bouin | Hypocoercivity without confinement[END_REF] with scalar product given by [START_REF] Campos | Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane[END_REF], let us consider the transport and the collision operators respectively defined by ( 21)

Th := v • ∇ x h -∇ x W • ∇ v h + v • ∇ x ψ h , Lh := ∆ v h -v • ∇ v h
where W = V + φ . In the literature, L is known as the Ornstein-Uhlenbeck operator.

Lemma 14. With the above notation, L and T are respectively symmetric and anti-symmetric operators on (H , 〈, 〉).

The operator L is defined on continuous functions with compact support which are of class C 2 with respect to v and it is semi-bounded. It can be extended using Friederichs extension as a self-adjoint operator on H . Concerning T, we shall define it on the space of continuous functions with compact support of class C 1 with respect to x and v and omit details concerning domain issues and extensions as we need only properties that apply to solutions of the evolution problem [START_REF] Arnold | Sharpening of decay rates in Fourier based hypocoercivity methods[END_REF].

Proof. If h 1 and h 2 are two functions in W 2,2 (R d , M d v), then L is such that R d (Lh 1 ) h 2 M d v = - R d ∇ v h 1 • ∇ v h 2 M d v
and as a special case corresponding to h 1 = h, h 2 = 1, we find that ρ Lh = R d (Lh) f d v = 0 and also ψ Lh = 0 for any h ∈ H . As a consequence, we have that

〈(Lh 1 ), h 2 〉 = - R d ×R d ∇ v h 1 • ∇ v h 2 d µ = 〈h 1 , (Lh 2 )〉 .
Concerning the transport operator, we know that T f = 0. Hence an integration by parts shows that

〈(Th 1 ), h 2 〉 = R d ×R d (v • ∇ x h 1 -∇ x W • ∇ v h 1 ) h 2 d µ = -〈h 1 , (Th 2 )〉 for function h 1 and h 2 in M which are smooth enough, because ρ Th = R d (Th) f d v = ∇ x ψ h • R d v f d v = 0 and ψ Th = 0.

Microscopic coercivity. By the Gaussian Poincaré inequality, we know that

R d |∇ v g | 2 M d v ≥ R d g -Πg 2 M d v ∀ g ∈ H 1 R d , M d v ,
where Πg = R d g M d v denotes the average of g with respect to the Gaussian probability measure M d v. By extension, we shall consider Π as an operator on H and observe that ( 22)

Πh = u h := ρ h ρ = R d h f d v R d f d v = R d h M d v ∀ h ∈ H .
Let us notice first that Π is an orthogonal projector.

Lemma 15. Π is a self-adjoint operator and Π • Π = Π.

Proof. It is elementary to check that

(Π • Π) h = Πu h = u h , R d ×R d (Πh 1 ) h 2 d µ = R d u h 1 u h 2 ρ d x and R d ρ Πh 1 (-∆ x ) -1 ρ h 2 d x = R d ρ h 1 (-∆ x ) -1 ρ h 2 d x because ρ h 1 = ρ u h 1 = ρ u Πh 1 = ρ Πh 1 .
Lemma 16. Microscopic coercivity (H1) holds with λ m = 1.

Proof. We already know that -〈(Lh),

h〉 = R d ×R d |∇ v h| 2 d µ and ρ h-Πh = ρ h -ρ Πh = 0 so that h -Πh 2 = h -Πh 2 L 2 (R d ×R d ,d µ) = R d ×R d |h -Πh| 2 d µ .
The conclusion is then a consequence of the Gaussian Poincaré inequality. 

= C . Proof. Using TΠh = v • ∇ x u h + ∇ x ψ h with u h as in (22), R d (v • e) 2 M d v = 1
for any given e ∈ S d -1 and ( 16), we find that

TΠh 2 = R d |∇ x u h + ∇ x ψ h | 2 ρ d x ≥ C R d |u h + ψ h | 2 ρ d x - 1 M R d ψ h ρ d x 2 because R d u h ρ d x = R d ρ h d x = 0. We know from Lemma 13 that R d u h ψ h ρ d x = R d ρ h ψ h d
x ≥ 0 and by the Cauchy-Schwarz inequality, we get that

R d ψ h ρ d x 2 ≤ M R d |ψ h | 2 ρ d x .
Altogether, we collect these estimates into

R d |∇ x u h + ∇ x ψ h | 2 ρ d x ≥ C R d |u h | 2 ρ d x + R d ρ h ψ h d x = C M u h 2 ,
which concludes the proof.

Parabolic macroscopic dynamics.

Lemma 18. The transport operator T satisfies the parabolic macroscopic dynamics (H3). 

Proof. Since TΠh = v • ∇ x u h + ∇ x ψ h , we obtain that ΠTΠh ρ = ∇ x u h + ∇ x ψ h • R d v f d v = 0 .
for all h ∈ L 2 R d × R d , d µ , ALh ≤ 1 2 (Id -Π)h .
Proof. If we denote the flux by j h := R d v h f d v, we remark that j Lh =j h and

ΠTh = ∇ x • j h -∇ x V + ∇ x φ • j h .
Since Ah = g means g + (TΠ) * (TΠ)g = (TΠ) * h = -ΠTh, this implies that ALh = -Ah .

The same computation as for [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF] shows that ALh 2 = Ah 2 = g 2 ≤ 1 4 (Id -Π)h 2 , which completes the proof. Lemma 20. Assume that d ≥ 1 and consider V such that (V1), (V2), (V3b), (V4), (V5), (V6), (V7) and (V8) hold. There exists a constant C > 0 such that

AT(Id -Π) h ≤ C (Id -Π) h ∀ h ∈ H .
Proof. In order to get an estimate of AT(Id -Π) h , we will compute AT(Id -Π)) * h .

Step 1: Reformulation of the inequality as an elliptic regularity estimate. We claim that ( 23)

AT(Id -Π) * h 2 = R d ×R d AT(Id -Π) * h 2 d µ = 2 R d |Hess(w g )| 2 ρ d x ,
where w g := u g + ψ g and -∆ x ψ g = ρ g is computed in terms of

g = Id + (TΠ) * (TΠ) -1 h ,
which is obtained by solving the elliptic equation ( 24)

g -∆ x w g + ∇ x W • ∇ x w g = h .
Let u h = Πh and w h := u h + ψ h . We observe that TΠh = v • ∇ x w h , ρ TΠh = 0 and, as a consequence

(TΠ) * (TΠ) h = -ΠT(TΠ h) = -∆ x w h + ∇ x W • ∇ x w h = -e W ∇ x e -W ∇ x w h
where W = V + φ is such that ρ = e -W . With g obtained from ( 24), we compute

AT(Id -Π) * h = -(Id -Π)TA * h = -(Id -Π)T(TΠ) Id + (TΠ) * (TΠ) -1 h = -(Id -Π)T(TΠ)g = -(Id -Π) v ⊗ v : Hess(w g ) = ∆ x w g -v ⊗ v : Hess(w g )
where Hess(w) = (∇ x ⊗∇ x )w denotes the Hessian of w. Hence, with |Hess(w)| 2 = Hess(w) : Hess(w), we obtain (23) using the following elementary computation Let s = (s i j ) d i , j =1 be a symmetric matrix with coefficients which do not depend on v. We compute

S := R d (s : v ⊗ v -Tr(s)) 2 M d v as follows. Using (s : v ⊗ v -Tr(s)) 2 = d i , j =1 s i j v i v j - d i =1 s i i 2 = d i , j =1 s i j v i v j 2 -2 d i =1 s i i d i , j =1 s i j v i v j + d i =1 s i i 2 and R d v i v j M d v = δ i j , we obtain S = R d d i , j =1 s i j v i v j 2 M d v - d i =1 s i i 2 . Since d i , j =1 s i j v i v j 2 = d i = j =1 s i j v i v j 2 + d i =1 s i i v 2 i 2 + 2 d i = j =1 d k=1 s i j s kk v i v j v 2 k , R d v 2 i M d v = 1, and R d v 4 i M d v = 3, the computation simplifies to R d d i , j =1 s i j v i v j 2 M d v = 2 d i = j =1 s 2 i j + d i = j =1 s i i s j j + 3 d i =1 s 2 i i = 2 d i , j =1 s 2 i j + d i =1 s i i 2 .
Altogether, this proves that

S = 2 d i , j =1 s 2 i j = 2 |s| 2 .
The result follows with s = Hess(w g ). A bound on R d |Hess(w g )| 2 ρ d x will now be obtained by elliptic regularity estimates based on [START_REF] Chandrasekhar | Brownian motion, dynamical friction, and stellar dynamics[END_REF].

Step 2: Some H 1 -type estimates. By integrating [START_REF] Chandrasekhar | Brownian motion, dynamical friction, and stellar dynamics[END_REF] against M (v) d v, we notice that

(25) u g - 1 ρ ∇ x • ρ ∇ x w g = u h so that (26) 
R d u g ρ d x = R d u h ρ d x = R d ×R d h d µ = 0 .
If we multiply (25) by w g ρ and integrate over R d , we get after an integration by parts that

R d u g (u g + ψ g ) ρ d x + R d |∇ x w g | 2 ρ d x = R d u h (u g + ψ g ) ρ d x . Using R d u g ψ g ρ d x = R d |∇ x ψ g | 2 d x and R d u h ψ g ρ d x = R d ∇ x ψ h • ∇ x ψ g d
x on the one hand, and the elementary estimates

R d u h u g ρ d x ≤ 1 2 R d |u g | 2 + |u h | 2 ρ d x , R d ∇ x ψ h • ∇ x ψ g d x ≤ 1 2 R d |∇ x ψ h | 2 + |∇ x ψ g | 2 d x ,
on the other hand, we obtain that

(27) R d |u g | 2 ρ d x + R d |∇ x ψ g | 2 d x + 2 R d |∇ x w g | 2 ρ d x ≤ Π h 2
where

Π h 2 = R d |u h | 2 ρ d x + R d |∇ x ψ h | 2 d x . Using |∇ x u g | 2 = |∇ x w g -∇ x ψ g | 2 ≤ 2 |∇ x w g | 2 + |∇ x ψ g | 2 ,
we deduce from ( 27) that ( 28)

R d |∇ x u g | 2 ρ d x ≤ 2 R d |∇ x w g | 2 ρ d x + 2 R d |∇ x ψ g | 2 ρ d x ≤ K Π h 2 with K = 1 + 2 ρ L ∞ (R d ,d x) .
Step 3: Weighted Poincaré inequalities and weighted H 1 -type estimates. The solution u g of ( 25) has zero average according to [START_REF] Dolbeault | Stationary states in plasma physics: Maxwellian solutions of the Vlasov-Poisson system[END_REF]. We deduce from Corollary 7 that

R d |∇ x u g | 2 ρ d x ≥ C R d |u g | 2 |∇ x W | 2 ρ d x ,
from which we get that (29)

X 2 1 := R d |u g | 2 |∇ x W | 2 ρ d x ≤ K C Π h 2 .
Next, we look for a similar estimate for

R d |ψ g | 2 |∇ x W | 2 ρ d x.
The potential ψ g has generically a non-zero average ψ g := 1 M R d ψ g ρ d x which can be estimated by [START_REF]Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (large time behavior and steady states)[END_REF]. Since ∇ x ρ = -∇ x W ρ , we also have

M 2 |ψ g | 2 = R d ψ g ρ d x 2 = R d ψ g (-∆ x φ ) d x 2 = R d (-∆ x ψ g ) φ d x 2 = R d u g φ ρ d x 2 ≤ R d |φ | 2 ρ d x R d |u g | 2 ρ d x ≤ κ 1 Π h 2 with κ 1 := R d |φ | 2 ρ d x, using
R d ψ g |∇ x W | 2 ρ d x = - R d ψ g ∇ x W • ∇ x ρ d x = R d ψ g ∆ x W + ∇ x ψ g • ∇ x W ρ d x
and, using the Cauchy-Schwarz inequality,

R d ψ g |∇ x W | 2 ρ d x 2 ≤ R d |ψ g | 2 ρ d x R d (∆ x W ) 2 ρ d x + R d |∇ x ψ g | 2 d x ρ L ∞ (R d ,d x) R d |∇ x W | 2 ρ d x .
By Lemma 6 applied to

ψ g -ψ g , C R d |ψ g | 2 ρ d x ≤ ρ L ∞ (R d ,d x) R d |∇ x ψ g | 2 d x + C |ψ g | 2 ,
and ( 27), we conclude that

R d ψ g |∇ x W | 2 ρ d x 2 ≤ κ 2 Π h 2
where

κ 2 := 1 C R d (∆ x W ) 2 ρ d x + R d |∇ x W | 2 ρ d x ρ L ∞ (R d ,d x) + κ 1 M 2 R d (∆ x W ) 2 ρ d x .
By applying Corollary 7 to ψ g -ψ g , we deduce from

C R d |ψ g -ψ g | 2 |∇ x W | 2 ρ d x ≤ R d |∇ x ψ g | 2 ρ d x that C R d |ψ g | 2 |∇ x W | 2 ρ d x ≤ R d |∇ x ψ g | 2 ρ d x + 2 C ψ g R d ψ g ρ |∇ x W | 2 ρ d x . Hence (30) R d |ψ g | 2 |∇ x W | 2 ρ d x ≤ ρ L ∞ (R d ,d x) C + 2 κ 1 κ 2 M Π h 2 .
Now we use ( 29) and [START_REF] Dolbeault | Nonlinear diffusions as limit of kinetic equations with relaxation collision kernels[END_REF] to estimate the weighted H 1 -type quantity

X 2 2 := R d |∇ x u g | 2 |∇ x W | 2 ρ d x .
Let us multiply (25) by u g |∇ x W | 2 ρ and integrate by parts in order to obtain

R d |u g | 2 |∇ x W | 2 ρ d x + R d |∇ x u g | 2 |∇ x W | 2 ρ d x + R d (∇ x u g • ∇ x ψ g ) |∇ x W | 2 ρ d x + R d u g ∇ x |∇ x W | 2 (∇ x u g + ∇ x ψ g ) ρ d x = R d u h u g |∇ x W | 2 ρ d x .
Using Lemma 10, we obtain

|x|>R u g ∇ x |∇ x W | 2 ∇ x u g ρ d x ≤ Λ • R d |u g | |∇ x W | 2 |∇ x u g | ρ d x ≤ Λ • X 1 X 2 .
Using ( 27), [START_REF] Dolbeault | Φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations[END_REF], Lemma 11 and the fact that 1/ρ is bounded on B R , we obtain

|x|≤R u g ∇ x |∇ x W | 2 ∇ x u g ρ d x ≤ K ∇ x (|∇ x W ) | 2 L ∞ (B R ) Π h 2
and, by similar arguments,

R d (∇ x u g • ∇ x ψ g ) |∇ x W | 2 ρ d x ≤ κ 3 X 2 Π h , R d u g ∇ x |∇ x W | 2 ∇ x ψ g ρ d x ≤ κ 4 X 1 Π h , with κ 3 := |∇ x W | 2 ρ 1/2 L ∞ (R d ,d x) and κ 4 := ∇ x |∇ x W | 2 2 ρ 1/2 L ∞ (R d ,d x)
, because we know from [START_REF]Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (large time behavior and steady states)[END_REF] that

R d |∇ x ψ g | 2 d x ≤ Π h 2 .
Using Corollary 8, we obtain that

R d u h u g |∇ x W | 2 ρ d x 2 ≤ R d |u h | 2 ρ d x R d |u g | 2 |∇ x W | 4 ρ d x ≤ Π h 2 X 2 2 C • .
Summarizing, we have shown that

X 2 1 + X 2 2 -κ 3 X 2 Π h -Λ • X 1 X 2 -κ 4 X 1 Π h ≤ X 2 Π h C • +K ∇ x (|∇ x W ) | 2 L ∞ (B R ) Π h 2 .
Since X 2 1 is bounded by Πh 2 , we conclude that (31) X 2 2 ≤ κ Πh 2 for some κ > 0, which has an explicit form in terms quantities involving ρ and its derivatives, as well as all constants in the inequalities of Sections 3.3 and 3.4.

Step 4: Second order estimates. After multiplying (25) by ∇ x • ρ ∇ x w g , we have

R d 1 ρ ∇ x • ρ ∇ x w g 2 d x = R d (u h -u g ) ∇ x • ρ ∇ x w g d x = R d u h ρ 1 ρ ∇ x • ρ ∇ x w g d x + R d ∇ x u g • ∇ x w g ρ d x ≤ 1 2 R d |u h | 2 ρ + 1 ρ ∇ x • ρ ∇ x w g 2 d x + 1 2 R d |∇ x u g | 2 + |∇ x w g | 2 ρ d x
and after using ( 27) and ( 28), we obtain that (32)

R d 1 ρ ∇ x • ρ ∇ x w g 2 d x ≤ K + 3 2 Π h 2 . Let X 3 := R d ∇ x w g • ∇ x W 2 ρ d x 1/2
. After multiplying (25) by ∇ x w g • ∇ x W ρ , we have that

X 2 3 - R d ∆ x w g ∇ x w g • ∇ x W ρ d x = R d (u h -u g ) ∇ x w g • ∇ x W ρ d x .
Using the Cauchy-Schwarz inequality, we know that the right-hand side can be estimated by [START_REF]Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (large time behavior and steady states)[END_REF] and obtain that

X 3 R d |u g | 2 ρ d x 1/2 + X 3 R d |u h | 2 ρ d x 1/2 ≤ 2 X 3 Π h according to
X 2 3 -2 X 3 Π h ≤ R d ∆ x w g ∇ x w g • ∇ x W ρ d x .
Let us notice that

R d ∆ x w g ∇ x w g • ∇ x W ρ d x = - R d ∆ x w g ∇ x w g • ∇ x ρ d x = R d Hess(ρ ) - 1 2 ∆ x ρ Id : ∇ x w g ⊗ ∇ x w g d x .
As a consequence, by Lemma 9 and (27), we arrive at

X 2 3 -2 X 3 Π h ≤ Λ 2 R d |∇ x w g | 2 |∇ x W | 2 ρ d x ≤ Λ X 2 2 + Λ R d |∇ x ψ g | 2 |∇ x W | 2 ρ d x
where X 2 2 is the quantity that has been estimated in Step 4. Altogether, after taking ( 27) and ( 31) into account and with

λ = Λ κ + ∇ x W | 2 ρ L ∞ (R d ) ,
which is finite by Lemma 11, this proves that (33)

R d ∇ x w g • ∇ x W 2 ρ d x ≤ 1 + λ -1 2 Π h 2 .
Step 5: Conclusion of the proof. We read from Lemma 12, ( 23) and ( 32)- [START_REF] Dolbeault | Fast diffusion equations: matching large time asymptotics by relative entropy methods[END_REF] that

AT(Id -Π) * h 2 ≤ 2 R d |Hess(w g )| 2 ρ d x ≤ 2 6 K + 3 2 + 8 1 + λ -1 2 Π h 2 ,
which concludes the proof of Lemma 20.

4.6. Proof of Theorem 1. The potential V (x) = |x| α satisfies the assumptions (V1), (V2), (V3b), (V4), (V5), (V6), (V7) and (V8) if α > 1. The result is then a consequence of Proposition 4 and Lemmas 14-20. A slightly more general result goes as follows.

Theorem 21. Let us assume that d ≥ 1 and M > 0. If V satisfies the assumptions (V1), (V2), (V3b), (V4), (V5), (V6), (V7) and (V8), then there exist two constants λ > 0 and C > 1 such that any solution h of (1) with an initial datum h 0 of zero average such that h 0

2 < ∞ satisfies h(t , •, •) 2 ≤ C h 0 2 e -λt ∀ t ≥ 0 .

UNIFORM ESTIMATES IN THE DIFFUSION LIMIT

The hypocoercivity method of [START_REF] Dolbeault | Hypocoercivity for kinetic equations with linear relaxation terms[END_REF][START_REF]Hypocoercivity for linear kinetic equations conserving mass[END_REF] is directly inspired by the drift-diffusion limit, as it relies on a micro/macro decomposition in which the relaxation in the velocity direction is given by the microscopic coercivity property (H1) while the relaxation in the position direction arises from the macroscopic coercivity property (H2) which governs the relaxation of the solution of the drift-diffusion equation obtained as a limit. 5.1. Formal macroscopic limit. Let us start with a formal analysis in the framework of Section 2, when ( 8) is replaced by the scaled evolution equation ( 34)

ε d F d t + TF = 1 ε
LF on the Hilbert space H . We assume that a solution F ε of (34) can be expanded as

F ε = F 0 + ε F 1 + ε 2 F 2 + O (ε 3 )
in the asymptotic regime corresponding to ε → 0 + and, at formal level, that (34) can be solved order by order: ε -1 :

LF 0 = 0 , ε 0 : TF 0 = LF 1 , ε 1 : d F 0 d t + TF 1 = LF 2 .
The first equation reads as F 0 = ΠF 0 , that is, F 0 is in the kernel of L. Assume for simplicity that L -1 (TΠ) = -TΠ on an appropriate subspace, so that the second equation is simply solved by F 1 = -(TΠ) F 0 . Let us consider the projection on the kernel of the O (ε 1 ) equation:

d d t (ΠF 0 ) -ΠT (TΠ) F 0 = ΠLF 2 = 0 .
If we denote by u the quantity F 0 = ΠF 0 and use (H3), then -(ΠT) (TΠ) = (TΠ) * (TΠ) and the equation becomes ∂ t u + (TΠ) * (TΠ) u = 0 , which is our drift-diffusion limit equation. Notice that if u solves this equation, then

d d t u 2 = -2 (TΠ) u 2 ≤ -2 λ M u 2
according to (H2). This program applies in the case of the scaled evolution equation ( 4). Let us give a few additional details.

Let us assume that a solution h ε of (4) can be expanded as

h ε = h 0 + ε h 1 + ε 2 h 2 + O (ε 3
), in the asymptotic regime as ε → 0 + . Solving (4) order by order in ε, we find the equations

ε -1 : ∆ v h 0 -v • ∇ v h 0 = 0 , ε 0 : v • ∇ x h 0 -∇ x W • ∇ v h 0 + v • ∇ x ψ h 0 = ∆ v h 1 -v • ∇ v h 1 , ε 1 : ∂ t h 0 + v • ∇ x h 1 -∇ x W • ∇ v h 1 + v • ∇ x ψ h 1 = ∆ v h 2 -v • ∇ v h 2 .
Let us define u = Πh 0 , ψ = ψ h 0 such that -∆ x ψ = u ρ , w = u + ψ and observe that the first two equations simply mean

u = h 0 , v • ∇ x w = ∆ v h 1 -v • ∇ v h 1 ,
from which we deduce that h 1 =v • ∇ x w. After projecting with Π, the third equation is

∂ t u -∆ x w + ∇ x W • ∇ x w = 0 , using R d v ⊗ v M (v) d v = Id.
If we define ρ = u ρ , we have formally obtained that it solves

∂ t ρ = ∆ x ρ + ∇ x • ρ ∇ x V + ∇ x φ + ∇ x • ρ ∇ x ψ , -∆ x ψ = ρ .
At this point, we can notice that the solution ρ converges to ρ according to the results of, e.g., [START_REF] Li | Asymptotic behavior of Nernst-Planck equation[END_REF], at an exponential rate which is independent of ε.

5.2. Hypocoercivity. Let us adapt the computations of Section 2 to the case ε ∈ (0, 1) as in [START_REF] Bouin | Hypocoercivity without confinement[END_REF]. If F solves (34), then

-ε d d t H δ [F ] = D δ,ε [F ] , D δ,ε [F ] := - 1 ε 〈LF , F 〉 + δ 〈ATΠF , F 〉 -δ 〈TAF , F 〉 + δ 〈AT(Id -Π)F , F 〉 - δ ε 〈ALF , F 〉 .
The estimates are therefore exactly the same as in Proposition 4, up to the replacement of λ m by λ m /ε and C M by C M /ε. Hence, for ε > 0 small enough, we have that

δ(ε) := min 2, λ m ε , ε λ (ε) = 4 λ m λ M ε 4 λ M ε 2 +C 2 M (1 + λ M )
.

We may notice that lim ε→0

+ δ(ε) ε = 2 ζ with ζ := 2 λ m λ M C 2 M (1 + λ M ) and, for ε > 0 small enough, 2 -ζ ε 4 F 2 ≤ H ζ ε [F ] ≤ 2 + ζ ε 4 F 2 ∀F ∈ H .
By revisiting the proof of Proposition 4, we find that with δ = ζ ε and λ = η ε with

η := λ m λ 2 M C 2 M (1 + λ M ) 2 , the quadratic form (X , Y ) → λ m ε -δ X 2 + δ λ M 1 + λ M Y 2 -δ C M ε X Y - λ 2 X 2 + Y 2 - λ 2 δ X Y
is a nonnegative quadratic form for ε > 0 small enough. In the regime as ε → 0 + , the result of Proposition 4 can be adapted as follows.

Corollary 22. Assume that (H1)-(H4) hold and take ζ as above. Then for ε > 0 small enough,

η ε H ζ ε [F ] ≤ D ζ ε,ε [F ] ∀F ∈ H .
Proof. The range for which the quadratic form is negative is given by the condition

λ 2 m K 4 ε 4 + K C 3 M 4 K λ m + 3C M (K + 4) ε 2 -2C 6 M < 0 .
It follows that the above condition is satisfied if ε is taken small enough which, for the same reasons as above in this paper, guarantees that the entropy-entropy production inequality of Corollary 22 holds.

As an easy consequence, if F ε solves (34), we have that

H ζ ε [F (t , •)] ≤ H ζ ε [F (0, •)] e -η t ∀ t ≥ 0 .
Proof of Theorem 2. With the abstract result on (34) applied to (4), the estimate [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF] holds with δ = ζ ε. We conclude with λ = η, for some C > 1, which do not depend on ε → 0 + .

THE NONLINEAR SYSTEM IN DIMENSION d = 1

With the notation (21), we can rewrite the Vlasov-Poisson-Fokker-Planck system (VPFP) as

∂ t h + Th = Lh + Q[h], -∆ x ψ h = R d h f d v , with Q[h] := ∇ x ψ h • (∇ v h -v h) .
Here we assume that d = 1 and prove Corollary 3. Using the representation [START_REF] Bonforte | Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities[END_REF], so that

ψ h (x) = - x -∞ u h ρ d x ∀ x ∈ R ,
and the convergence of h(t , •, •) → 0 in L 1 (R × R, d µ) as t → +∞, as a consequence of [START_REF] Bouchut | On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials[END_REF], we learn that t → ψ h (t , •) L ∞ (R) is bounded uniformly w.r.t. t ≥ 0. In fact, we have a slightly more precise estimate that goes as follows.

Lemma 23. Assume V satisfies (V1) and (V2) and let ρ ∈ L 1 (R d ) be the solution of [START_REF] Ben Abdallah | A note on the long time behavior for the driftdiffusion-Poisson system[END_REF] 

such that R d ρ d x = M . Let f = (1 + h) f ∈ 1 + (R d × R d ) such that R×R f log( f / f ) d x d v < ∞.
Under the assumption R×R h f d x d v = 0, ψ h as defined above satisfies the estimate

ψ h 2 L ∞ (R) ≤ 4 M R×R f log f f d x d v .
Additionally, under the assumptions of Corollary 3, if h solves (VPFP), then

lim t →+∞ ψ h (t , •) L ∞ (R) = 0 .
Proof. We deduce from Jensen's inequality 

+ u h ) ρ d x ≥ 1 4 M R |u h | ρ d x 2 ≥ ψ h 2 L ∞ (R) 4 M .
Concerning the evolution problem (VPFP), we recall that the free energy decays according to

d d t R×R (1 + h) log(1 + h) f d x d v + 1 2 R |ψ h | 2 d x = - R×R f ∇ v log f f 2 d x d v ,
where the right-hand side is, up to the sign, a Fisher information. As stated in [START_REF] Bouchut | On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials[END_REF]Theorem B], this shows the strong convergence of f (t +n, •, •) to f in L 1 (R + ×R d ×R d ) as n → +∞ because f is the unique solution of (VPFP) with mass M and a Maxwellian velocity distribution. By the logarithmic Sobolev inequality, this also proves that the limit of the free energy is 0, which concludes the proof of Lemma 23. Let us give an estimate of the three terms of the right hand side.

Proof of Corollary

1) In order to estimate 2) Let us consider g = Ah = u g given by

〈Q[h], h〉 = R×R ψ h (∂ v h -v h) h f d x d v + R ψ h ρ R (∂ v h -v h) M d v ψ h d x , we notice that R (∂ v h -v h) M d v =
u g - 1 ρ ∇ x • ρ ∇ x w g = - 1 ρ ∇ x • j h with j h := R d v h f d v .
With ψ g such that -ψ g = u g ρ , we have to estimate

〈Q[h], Ah〉 = R×R ψ h (∂ v h -v h) u g f d x d v + R ψ h ρ R (∂ v h -v h) M d v ψ g d x .
Exactly as above, we have on the one hand that 3) With g given in terms of h by [START_REF] Chandrasekhar | Brownian motion, dynamical friction, and stellar dynamics[END_REF], A * h = v w g and we learn from (27) that A * h ≤ Πh .

R×R ψ h (∂ v h -v h) u g f d x d v ≤ ψ h L ∞ (R) g ∂ v h -v h ≤ c ψ h L ∞ (R) (Id -Π)h 〈Lh, h〉
Hence

〈AQ[h], h〉 = Q[h],A * h ≤ c ψ h L ∞ (R) 〈Lh, h〉 1/2 Πh .
Summing up all these estimates and using -〈Lh, h〉 ≥ λ m (Id -Π)h 2 by Lemma 16, we obtain as in the proof of Proposition 4 that

d d t H δ [h] ≤ -λ H δ [h]
for the largest value of λ for which

(X , Y ) → (λ m -δ) X 2 + δ λ M 1 + λ M Y 2 -δC M X Y - λ 2 X 2 + Y 2 - λ 2 δ X Y -X (X + 2 Y )
is a nonnegative quadratic form, as a function of (X , Y ). Here X := (Id -Π)h , Y := Πh , and := c ψ h L ∞ (R) can be taken as small as we wish, if we assume that t > 0 is large enough. This completes the proof of Corollary 3.

Let us conclude this section by some remarks.

(i) It is clear from the proof of Corollary 3 that the optimal rate is as close as desired of the optimal rate in the linearized problem (1) obtained in Theorem 1. Up to a change of the constant C , we can actually establish that these rates are equal because we read form the above proof that (t ) = O e -λt and the result follows from a simple ODE argument. This is a standard observation in entropy methods, which has been used on many occasions: see for instance [START_REF] Blanchet | Asymptotics of the fast diffusion equation via entropy estimates[END_REF]. (ii) Corollary 3 is written for V (x) = |x| α but it is clear that it can be extended to the setting of Theorem 21. Similarly, our estimates are compatible with the diffusion limit, as in Section 5. (iii) Results in higher dimensions, i.e., for d ≥ 2 as in [START_REF] Hwang | On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian[END_REF][START_REF] Hérau | On global existence and trend to the equilibrium for the Vlasov-Poisson-Fokker-Planck system with exterior confining potential[END_REF][START_REF] Rodrigues | Large-time behavior of solutions to Vlasov-Poisson-Fokker-Planck equations: from evanescent collisions to diffusive limit[END_REF][START_REF] Bedrossian | Suppression of plasma echoes and Landau damping in Sobolev spaces by weak collisions in a Vlasov-Fokker-Planck equation[END_REF] rely on smallness conditions, special properties of the potential V (typically, V ≡ 0 or V (x) = |x| 2 ), or closure conditions on regularity estimates which do not allow to handle the decay of generic solutions of (VPFP) based on the properties of the free energy, as we do above in the case d = 1. This is so far an important open question, which deserves attention. The understanding of the mechanism should go through a detailed description of the smoothing and decay properties of the solutions for large time asymptotics.

3. 1 .

 1 Preliminary considerations on the Poisson equation and conventions. Let us consider the Green function G d associated with -∆ x . We shall write φ = (-∆ x ) -1 ρ as a generic notation for φ

4. 5 .Lemma 19 .

 519 Bounded auxiliary operators. The point is to prove that (H4) holds, i.e., that for any F ∈ H , AT(Id -Π)F and ALF are bounded up to a constant by (Id -Π)F . This is the purpose of Lemma 19 and Lemma 20. The two quantities, AT(Id -Π)F and ALF , are needed to control the bad terms in the expression of D δ , in the abstract formulation of Proposition 4, namely 〈TAF , F 〉, 〈AT(Id -Π)F , F 〉 and 〈ALF , F 〉 (which have no definite sign), by the two good terms, -〈LF , F 〉 and 〈ATΠF , F 〉 (which are both positive). The operators TA and AL satisfy:

R ρ h log ρ h ρ d x = R ( 1 +( 1 +

 11 ρ h log ρ h that f / f = 1 + h is such that the free energy satisfies the boundR×R (1 + h) log(1 + h) f d x d v ≥ u h ) log(1 + u h ) ρ d xand get according to[START_REF] Csiszár | Information-type measures of difference of probability distributions and indirect observations[END_REF][START_REF] Kullback | On the convergence of discrimination information[END_REF][START_REF] Pinsker | Information and information stability of random variables and processes[END_REF] from the Csiszár-Kullback-Pinsker inequality that R u h ) log[START_REF] Arnold | Sharpening of decay rates in Fourier based hypocoercivity methods[END_REF] 

1 / 2 because g L 2 ( 1 Rψ g ρ d x 2 ≤

 12212 R d ×R d ,d µ) ≤ g = Ah ≤ (Id -Π)h , and on the other hand thatR |ψ g | 2 ρ d x ≤ C -|ψ g | 2 ρ d x + R ρ L ∞ (R) C R |ψ g | 2 d x + R |u g | 2 ρ d x R |φ | 2 ρ d xby Lemma 6 again, from which we conclude that〈Q[h], Ah〉 ≤ c ψ h L ∞ (R) 〈Lh, h〉 1/2 (Id -Π)h .

  Assume that d ≥ 1 and consider V such that (V1), (V2), (V3a) and (V4) hold. With the notations of Lemma 6, macroscopic coercivity (H2) holds with λ M

4.3. Macroscopic coercivity. Lemma 17.

  H δ [h] + 〈Lh, h〉 -δ 〈ATΠh, h〉 + δ 〈TAh, h〉 -δ 〈AT(Id -Π)h, h〉 + δ 〈ALh, h〉 = 〈Q[h], h〉 + δ 〈AQ[h], h〉 + δ 〈Q[h], Ah〉 .

	we obtain that
	d
	d t

3. 

With the notations of Section 3.6 and the functional H δ defined as in the linear case by

H δ [h] := 1 2 h 2 + δ 〈Ah, h〉 ,

  0 and also that R×R |∂ v h| 2 f d x d v = -〈Lh, h〉. From the improved Poincaré inequality [34, Ineq. (4)], we also learn thatv h 2 ≤ 2 (d +2) ∇ v h 2 . Simple Cauchy-Schwarz inequalities show that 〈Q[h], h〉 ≤ c ψ h L ∞ (R) 〈Lh, h〉 1/2 Πh because h L 2 (R d ×R d ,d µ) ≤ h , with c = 1 + 2 (d + 2).
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