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Wigner Distribution for the Diagnosis of High
Frequency Amplitude and Phase Modulations on

Stator Currents of Induction Machine
Baptiste Trajin, IEEE Student Member, Marie Chabert, Jeremi Regnier, IEEE Member, Jean Faucher, IEEE

Member

Abstract—This paper deals with mechanical fault monitoring
in induction machines from stator current measurements. The
considered faults lead to amplitude and/or phase modulations of
the measured stator current. The different faults can be char-
acterized by their time-frequency signatures via the Wigner dis-
tribution. The time-frequency representations apply to complex
signals that may be obtained through the Hilbert transform of
the real measured signal. In case of high frequency modulations,
it can not be taken advantage of the time frequency signatures.
This study proposes an alternative complex signal representation
for modulated stator currents. The so-called space vector is
obtained through the Concordia transform. From three stator
current measurements, the Concordia transform builds a complex
vector which conveniently carries the information about phase
and amplitude modulations. This paper applies and compares the
Wigner distribution computed with the Hilbert and Concordia
transforms in case of simulated and experimental signals with
various modulation frequency ranges.

Index Terms—Diagnosis, High frequency modulations, Induc-
tion motor, Wigner Distribution.

I. INTRODUCTION

MONITORING techniques are intensively investigated to
increase the reliability and safety of industrial systems

containing induction motors. Stator current based monito-
ring can be preferred to an expensive vibration analysis for
mechanical fault detection. Indeed, current signals are often
already available for control purpose. Detection of mechanical
faults such as shaft eccentricity or load torque oscillations is
traditionally based on the stator current spectral analysis [1].
Eccentricity and load torque oscillations have been shown to
produce amplitude and phase modulation of the stator current
respectively. A time-frequency representation such as Wigner
distribution allows to detect and classify the defaults according
to their signatures [2]. This method handles a complex signal
obtained from the Hilbert transform of the real observed signal
under the Bedrosian theorem conditions. However, mechanical
faults such as bearing or gear box faults may induce specific
harmonics whose frequencies violate these conditions [3].
Consequently, such faults induce high frequency modulations
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on stator currents. The diagnosis from the time-frequency
signatures can thus be misleading.

The Concordia transform, is often used in electrical engi-
neering for control purposes [4] and to detect electrical or
mechanical static converter defects, unbalanced electrical sys-
tems, machine stator electric defects, mechanical eccentricity
or bearing defects [5], [6]. This paper proposes the Concordia
transform as an alternative to the Hilbert transform to build
a complex vector, in the case of three-phase electrical drives.
Then, a time-frequency analysis through the Wigner distrib-
ution can be performed, even when the Bedrosian theorem
conditions are not verified. Section II recalls stator current
model of the induction machine in case of eccentricity and/or
load torque oscillations. The effect of dynamic eccentricity
and load torque oscillations on the stator current are presented.
Moreover, signal processing methods are introduced. Section
III derives the Wigner distribution of modulated stator currents
obtained with the Hilbert analytic signal and the Concordia
space vector. Differences between Wigner distributions are
underlined considering the Bedrosian theorem limitations. Sec-
tion IV compares the Wigner distribution on simulated stator
currents with various modulation frequency ranges in steady
state and variable frequency applications. Finally, section V
derives the Wigner distribution and the associated modulation
signatures from the Hilbert or Concordia complex signals on
experimental stator currents.

II. STATOR CURRENT MODEL AND SIGNAL PROCESSING

METHODS

In electrical drives, eccentricity and load torque oscillations
are the main mechanical faults investigated for diagnosis
purposes. It has been demonstrated that eccentricity leads to
amplitude modulation (AM) and load torque oscillations lead
to phase modulation (PM) on the stator currents [2]. Wigner
distribution may be used in variable speed applications to
distinguish load torque oscillations and eccentricity [7]. AM
and PM (i.e. eccentricity and load torque oscillations) are
distinguishable using phase shift of sideband components of
Wigner distribution of stator currents. However, few papers
deal with high frequency modulations induced by bearing
faults for instance [8].

A. Fault currents in three-phase induction machines

In three-phase machines, combination of mechanical faults,
eccentricity and load torque oscillations, lead to simultaneous



amplitude and phase variations on the stator currents. Conse-
quently the three-phase currents can be written in a simple
form by (1).

ik(t) = a(t) cos(ψ(t)− φk), k = 1, 2, 3 (1)

with:



a(t) = I
[
1 + α cos(2πfamt + φam)

]
ψ(t) = 2πfst + β sin(2πfpmt + φpm) + φ)

φk = (k − 1) 2π
3 , k = 1, 2, 3

Note that null AM and PM indexes (α = 0 and β = 0)
correspond to the stator current model in healthy conditions.
In (1), the modulation terms are assumed to be in phase. This
assumption can be verified by considering i1(t) + i2(t) +
i3(t) = 0,∀t.

B. Analytic signal via the Hilbert transform

The study of amplitude and/or phase modulation through
the Wigner distribution requires the construction of a complex
signal from the real observed signal for a univocal instanta-
neous phase and amplitude definition [9]. The classical way
to define the instantaneous phase and amplitude is to associate
a complex signal to the measured real signal x(t) through the
Hilbert transform (HT). The definition of the analytic signal
z(t) (2) can be given in the frequency domain [10] along the
frequency f .

Z(f) = X(f) + j
[− j sgn(f)

]
X(f) = X(f) + jH(f)X(f)

(2)
where Y (f) denotes the Fourier Transform of y(t).

with sgn(f) =





+1 for f > 0
0 for f = 0
−1 for f < 0

H(f) = −j sign(f) is the Hilbert filter transfer function.
Assume z(t) = a(t)ejψ(t) with a(t) non negative and ψ(t)
defined modulo 2π, then a(t) and ψ(t) are the instantaneous
amplitude and phase respectively. Note that constructing the
analytic signal via the Hilbert transform amounts to eliminat-
ing negative frequencies in the spectrum. When a modulation
transfers significative components into the negative frequen-
cies, the Hilbert transform may yield misleading interpreta-
tions [11]. Indeed, the Hilbert transform is submitted to the
Bedrosian theorem conditions in case of modulated signals
[12]. The main restriction is that the carrier frequency must
be higher than the modulation frequency. When Bedrosian
theorem conditions are respected, the analytic signal resulting
from a stator current given in (1) expresses as (3).

ĩk(t) = a(t)eψ(t)−φk , k = 1, 2, 3 (3)

Thus, in order to obtain a complex signal, two compo-
nents in quadrature have to be defined. Under Bedrosian
theorem conditions, the Hilbert transform allows to compute
a component in quadrature to a unique real signal. However,
several mechanical faults produce high frequency modulations
that do not respect the Bedrosian theorem conditions. In this

case, another method is proposed to construct an appropriate
complex signal.

C. Space vector via the Concordia Transform

In case of three-phase electrical machines, three stator
current measurements are available. From these measurements,
two components in quadrature may be obtained through the
Concordia transform (CT). This transformation, applied to a
three-phase system that satisfies x1 + x2 + x3 = 0 along
time, can be expressed via the Concordia matrix in (4). Note
that the matrix has been normalized for further interpretation.
Applying this matrix to variables from a three-phase machine
gives a two-phase quadrature system [13].

(
xα

xβ

)
=

√
2
3

(√
3
2 0

1√
2

2√
2

) (
x1

x2

)
(4)

This transformation allows to obtain the two components
of a space vector by using two electrical variables. Then, a
complex vector is built x̃(t) = xα(t) + jxβ(t) = a(t)ejψ(t).
This method is widely implemented in electrical drives for
control purposes and thus can be used for electrical machines
monitoring applications [5]. According to this definition, the
Concordia transform provides the same results as the Hilbert
transform when the Bedrosian theorem conditions are valid.
However, when the Bedrosian theorem conditions are not
valid, no restrictions exist on the definition of the complex
signal using the Concordia Transform. Differences between
analytic signal and space vector analysis are underlined in [8].

D. Wigner Distribution

The Wigner distribution (WD) is a time-frequency energy
distribution. The WD Wz(t, f) of a complex signal z(t) is
defined as (5) along time t and frequency f [10].

Wz(t, f) =

∞∫

−∞
z
(
t +

τ

2

)
z∗

(
t− τ

2

)
ej2πfτ dτ (5)

where z∗ denotes the conjugate of z. The WD can be seen
as the Fourier transform (FT) of the kernel Kz(t, τ) (6) with
respect to the delay variable τ .

Kz(t, τ) = z
(
t +

τ

2

)
z∗

(
t− τ

2

)
(6)

III. WIGNER DISTRIBUTION OF MODULATED STATOR

CURRENTS

A. Wigner Distribution of steady state amplitude modulated
stator currents

1) Wigner Distribution using Analytic signal of stator
current: Considering an amplitude modulated stator current
according to the stator current model in (1) with φ = φam = 0
and β = 0, the FT I1(f) of stator current i1(t) is expressed as
(7) where ∗ is the convolution product. The FT of the analytic
signal equals (8).



I1(f) = I
[
δ(f) + α

2

[
δ(f − fam) + δ(f + fam)

]]

∗FT
[
cos(2πfst)

] (7)

Ĩ1(f) = Iδ(f − fs) + Iα
2 δ(f − fs − fam)

+ Iα
2 δ

[
f − sgn(fs − fam) (fs − fam)

] (8)

According to the expression of the analytic signal of AM
signals (8), the WD is obtained. First of all, the resulting
analytic signal ĩ1(t) is expressed in the time domain (9).

ĩ1(t) = Iej2πfst + Iα
2 ej2π(fs+fam)t

+ Iα
2 esgn(fs−fam) j2π(fs−fam)t (9)

According to the general considerations concerning AM
stator currents (α ¿ 1), terms that are proportional to α2

are neglected in the kernel computation, leading to (10) and
to the WD (11).

Ki1(t, τ) = I2ej2πfsτ + I2α
[
cos(2πfamt)ej2π

(
fs+ fam

2

)
τ

+ cos
(
2π

[
(1− sgn(fs − fam))fs + sgn(fs − fam)fam

]
t
)

×ej2π
[
(1+sgn(fs−fam)) fs

2 −sgn(fs−fam) fam
2

]
τ
]

(10)

Wi1(t, f) = I2δ(f − fs)
+I2α

[
cos(2πfamt)δ

(
f − fs − fam

2

)

+ cos
(
2π

[
(1− sgn(fs − fam))fs + sgn(fs − fam)fam

]
t
)

×δ
(
f − (1 + sgn(fs − fam)) fs

2 + sgn(fs − fam) fam

2

)]

(11)
When fs > fam, it can be noticed in (11) that the WD

expresses as (12).

Wi1(t, f) = I2δ(f − fs)
+I2α cos(2πfamt)δ

(
f − fs − fam

2

)

+I2α cos(2πfamt)δ
(
f − fs + fam

2

) (12)

In this case, the sideband components are sinusoidal of
frequency fam. Moreover, the two oscillating sideband com-
ponents are in phase which is characteristic to low frequency
amplitude modulated signals [2].

Obviously, according to (11), when fs < fam oscillating
components appear at fs + fam

2 and fam

2 with oscillating fre-
quency of fam and 2fs−fam respectively (13). Consequently,
it becomes impossible to estimate the phase shift between
sideband components and then to diagnose the AM.

Wi1(t, f) = I2δ(f − fs)
+I2α cos(2πfamt)δ

(
f − fs − fam

2

)

+I2α cos(2π(2fs − fam)t)δ
(
f − fam

2

)

(13)

2) Wigner distribution using space vector of stator currents:
Using the Concordia space vector, it can be demonstrated that
the space vector resulting from amplitude modulated stator
currents expresses as (14). Thus, the WD expresses as (12)
whatever the values of fs and fam. The amplitude modulation
can thus be detected for any modulation frequency.

ĩ(t) = Iej2πfst + Iα
2 ej2π(fs+fam)t

+ Iα
2 ej2π(fs−fam)t (14)

B. Wigner Distribution of steady state phase modulated stator
currents

1) Wigner Distribution using Analytic signal of stator cur-
rent: Considering a phase modulated stator current according
to the stator current model in (1) with φ = φpm = 0 and
α = 0, using the Jacobi-Anger expansion [14], the FT I1(f)
of stator current i1(t) is expressed as (15).

I1(f) = I
2

∑+∞
k=−∞ Jk(β)δ(f − fs − kfpm)

+ I
2

∑+∞
k=−∞ Jk(β)δ(f + fs + kfpm)

(15)

where Jk(β) denotes the k-th order Bessel function of the
first kind.

Thus, considering β ¿ 1, the FT is simplified in (16) with
J0(β) ' 1, J1(β) ' β

2 and J−1(β) = −J1(β).

I1(f) = I
2δ(f ± fs)
+ Iβ

4 δ(f − fs − fpm) + Iβ
4 δ(f + fs + fpm)

− Iβ
4 δ(f − fs + fpm)− Iβ

4 δ(f + fs − fpm)
(16)

Thus, a general expression of the analytic signal depending
on the sign of fs − fpm is given in (17) for fs 6= fpm.

Ĩ1(f) = Iδ(f − fs) + Iβ
2 δ(f − fs − fpm)

− Iβ
2 δ

[
f − sgn(fs − fpm)(fs − fpm)

] (17)

For β ¿ 1, terms proportional to β2 are neglected in the
computation of the Kernel Ki1(t, τ), leading to (18) and to
the WD (19).

Ki1(t, τ) = I2ej2πfsτ + I2β
[
cos(2πfpmt)ej2π

(
fs+

fpm
2

)
τ

− cos
(
2π

[
(1− sgn(fs − fpm))fs + sgn(fs − fpm) fpm

]
t
)

×ej2π
[
(1+sgn(fs−fpm)) fs

2 −sgn(fs−fpm)
fpm

2

]
τ
]

(18)

Wi1(t, f) = I2δ(f − fs)
+I2β

[
cos(2πfpmt)δ

(
f − fs − fpm

2

)

− cos
(
2π

[
(1− sgn(fs − fpm))fs + sgn(fs − fpm)fpm

]
t
)

×δ
(
f − (1 + sgn(fs − fpm)) fs

2 + sgn(fs − fpm) fpm

2

)]

(19)
It can be noticed in (19) that when fs > fpm, that the WD

expresses as (20).



Wi1(t, f) = I2δ(f − fs)
+I2β cos(2πfpmt)δ

(
f − fs − fpm

2

)

−I2β cos(2πfpmt)δ
(
f − fs + fpm

2

) (20)

In this case, the sideband components are sinusoidal of fpm

frequency. Moreover, the two oscillating sideband components
are in phase opposition which is characteristic to low fre-
quency phase modulated signals [2].

Obviously, according to (21), when fs < fpm, oscillating
components appear at fs + fpm

2 and fpm

2 with oscillating
frequency of fpm and 2fs − fpm respectively. Consequently,
it becomes impossible to estimate the phase shift between
sideband components and then to diagnose the PM.

Wi(t, f) = I2δ(f − fs)
+I2β cos(2πfpmt)δ

(
f − fs − fpm

2

)

−I2β cos(2π(2fs − fpm)t)δ
(
f − fpm

2

)

(21)
2) Wigner distribution using space vector of stator currents:

As a contrary, using the Concordia space vector, it can
be demonstrated that the space vector resulting from phase
modulated stator currents expresses as (22). Thus, the WD
of a PM signal expresses as (20) whatever the values of fs

and fpm. The phase modulation can thus be detected for any
modulation frequency.

Ĩ(f) = Iδ(f − fs) + Iβ
2 δ(f − fs − fpm)

− Iβ
2 δ(f − (fs − fpm))

(22)

IV. SIMULATED MODULATED STATOR CURRENTS

A. Wigner distribution of modulated steady state stator cur-
rents

Consider stator currents as given in (1). Fig. 1 shows the
WD for high frequency AM simulated stator currents using the
analytic signal and the space vector respectively. The chosen
parameters are I = 10, fs = 50Hz, α = 0.1, β = 0,
fam = 80Hz and φ = φam = 0. It can be clearly seen
that the WD obtained with the Hilbert analytic signal does
not allow to diagnose the amplitude modulation, due to the
impossibility of evaluating the phase shift between upper and
lower sideband components, as depicted in Fig. 1(a). However,
the WD obtained with the Concordia space vector (see Fig.
1(a)) allows to diagnose the amplitude modulation by the
evaluation of the phase shift between sideband components.
The same conclusions may be achieved by simulating phase
modulated stator currents.

B. Wigner distribution of phase modulated variable frequency
stator currents

Consider stator currents with a variable fundamental fre-
quency at fs(t) and a variable frequency phase modulation
at fpm(t). It is demonstrated in [7] that the WD of variable
frequency stator currents with a variable frequency PM lies in a

central time varying component at fs(t) that is the fundamen-
tal component and sideband components. Fig. 2 depicts WD
of simulated phase modulated stator currents with a variable
supply frequency. The PM frequency equals fpm = 1.4fs,
consequently, the stator currents do not respect the Bedrosian
theorem conditions. As for steady state conditions, the WD
computed using Concordia space vector leads to sideband
components at fs(t) ± fpm(t)

2 in phase opposition whatever
the supply frequency. However, the WD obtained through
the Hilbert analytic signal leads to sideband components at
fs(t) + fpm(t)

2 and fpm(t)
2 frequencies.

Note that the two Wigner distributions are similar in variable
frequency applications when the Bedrosian theorem conditions
are satisfied. Finally, the Concordia space vector may be used
in steady state and variable frequency three phase machines
to estimate the WD and to diagnose the amplitude or phase
modulation by estimating the phase shift between sideband
components. The same conclusions may be achieved by simu-
lating variable frequency amplitude modulated stator currents.

V. EXPERIMENTAL STATOR CURRENTS

A 5.5kW , 2 pole pair induction machine is supplied by an
adjustable frequency PWM inverter. The motor is connected
to a DC machine used as a load which is connected to a
resistor through a DC/DC converter that controls the DC
motor armature current. The reference current of the DC/DC
converter is composed of an oscillating component plus an
offset in order to induce load torque oscillations around a mean
load torque value.

Experimental stator currents are measured on the machine
in two steady state conditions, where the supply frequency
equals fs = 13.3Hz and then fs = 50Hz with a load
torque oscillation of frequency fosc ' 20Hz. Thus, the stator
currents are high and low frequency phase modulated signals.
In Fig. 3(a), the WD is obtained through the Hilbert analytic
signal. In Fig. 3(b), the WD is computed using the Concordia
space vector. In low frequency modulation case, the two WD
are similar with sideband components in phase opposition
at fs ± fosc

2 frequencies. However, it can be remarked in
high frequency modulation case that the WD computed using
the Hilbert analytic signals leads to a sideband component
at fs + fosc

2 frequency and a component at fosc

2 frequency
oscillating at 2fs − fosc frequency. Only the WD using
the Concordia space vector leads to sideband components at
fs ± fosc

2 frequencies oscillating at fosc frequency. Conse-
quently, it is demonstrated on real stator currents that the CT
allows to detect the modulation using the WD for high and
low frequency modulations in steady state conditions.

Moreover, Fig. 4 depicts a zoom of the WD obtained
with the Concordia space vector in case of high frequency
modulation (see Fig. 4(a)) and low frequency modulation (see
Fig. 4(b)). In each case, the phase shift between sideband
oscillating components may be evaluated. The sidebands com-
ponents are almost in phase opposition, that is characteristic
os phase modulation and proving the presence of load torque
oscillations on the shaft of the machine.
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Fig. 1. WD for high frequency AM simulated stator currents computed using HT and CT
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Fig. 2. WD for high frequency PM simulated stator currents computed using HT and CT with variable fundamental frequency
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(b) WD from Concordia space vector

Fig. 3. WD for high and low frequency PM experimental stator currents computed using HT and CT in steady state conditions

VI. CONCLUSION

Time-frequency analysis requires the definition of a com-
plex signal. This paper has compared the Wigner distrib-
ution obtained with the Hilbert and Concordia transforms
in case of low and high frequency phase modulations. This
comparison is first conducted theoretically and then through
simulated and experimental signals. The application to the
time-frequency diagnosis based on Wigner distribution is
developed. The Concordia transform provides an appropriate
signal representation in the low and high frequency modulation

cases. On the contrary, the Hilbert transform is limited, by
the Bedrosian theorem conditions, to the analysis of low
frequency modulation signals. Phase modulations, resulting
from load torque oscillations, can be detected using the Wigner
distribution of the complex signal. The Wigner distribution
via Concordia transform provides a clear diagnosis of phase
modulations through the estimation of the phase shift between
sideband components whatever the modulation frequency. As a
consequence, when at least two stator current components are
available, the Concordia transform should be preferred to build
the complex signal required for the time-frequency analysis.
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Fig. 4. Zoom of the WD from the Concordia space vector
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