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Abstract— This paper deals with the application of Luenberger
speed observer for the detection of damaged rolling bearings
in asynchronous machines. Vibration monitoring of mechanical
characteristic frequencies related to the bearings is widely used
to detect faulty operations. However, vibration measurement is
expensive and can not always be performed. An alternative is to
base the monitoring on the available electrical quantities e.g.
the machine stator current which is often already measured
for control and protection purposes. This work investigates
another detection approach using estimated variables such as
mechanical rotating speed. Considering that bearing faults induce
load torque oscillations, a theoretical stator current model in
case of load torque oscillations demonstrates the presence of
phase modulations. Then, a theoretical estimated rotor flux and
speed model in case of load torque oscillations demonstrates
the presence of harmonics related to load torque oscillations.
These components appear in the estimated speed spectrum and
can be used for detection purposes. Measurements show that
speed spectral energy is modified in specific frequency ranges
corresponding to bearing faults. A fault detector is then proposed.
The efficiency of the indicator is studied on long data records of
measurements for different operating conditions. The investigated
indicator proves that the detection of bearing faults is ensured
by using estimated mechanical speed.

I. INTRODUCTION

Electrical drives using induction motors are widely used
in industrial applications because of their low cost and high
robustness. However, faulty operations could be induced by
bearing faults [1, 2]. To improve the availability and reliability
of the drive, a condition monitoring could be implemented to
favor the predictive maintenance. Traditionally, motor condi-
tion is supervised using vibration analysis, but measuring such
mechanical quantities to detect bearing faults is often expen-
sive. To overcome this problem, available electrical quantities
such as stator current could be used. A general review of
monitoring and fault diagnosis schemes using stator current
can be found in [3]. Concerning bearing fault detection, several
studies demonstrate that specific signatures appear on stator
current spectrum [4, 5]. Some papers concern the definition
of an automatic indicator performing an extraction of relevant
information from the current spectrum [6, 7].

Moreover, closed-loop Luenberger observers are used in
several applications for sensorless control [8, 9]. Nevertheless,
few papers deal with the application of speed observer for

Fig. 1. State-model of the asynchronous drive Σ

bearing fault condition monitoring. The present paper deals
with this specific aspect. It has been demonstrated [6, 7,
10] that bearing faults induce load torque oscillations. As
a consequence, mechanical speed oscillations due to load
torque variations appear and thus can be detected with a speed
observer.

In this paper, the detection of speed oscillations is per-
formed by using Luenberger observer. Section II recalls the
construction of a Luenberger observer for asynchronous drives.
Section III proposes a model of estimated variables in case
of load torque oscillations such as rotor flux and mechanical
rotating speed. The model is based on the assumption that
load torque oscillations induce phase modulation on stator
currents [11]. This approach is validated with simulated signals
and experimental measurements. In section IV, an automatic
indicator based on the extraction of spectral energy of the
estimated speed is proposed to detect bearing faults. The
faulty bearing comes from the after-sales service of a motor
manufacturer that declares it as faulty. Then, the fault type is
representative of realistic faults. The proposed detector is va-
lidated with different mechanical speed operating conditions.
Experimental results demonstrate the ability of the proposed
detection scheme to distinguish healthy and faulty bearings in
several conditions.

II. SPEED OBSERVER FOR ASYNCHRONOUS DRIVES

In order to design a speed observer for the asynchronous
machine, a model of the drive has to be defined. A general
form of asynchronous machine state model is then recalled in
figure 1. The model depends on the allowed input measure-
ments and the desired output variables. The matrix B is the
input matrix, C the output matrix, A the dynamic matrix, U
the input vector, X the state vector and Y the output vector.



A. Asynchronous drive model

Stator currents are often already measured for control
purposes. Moreover, in case of bearing fault detection, sta-
tor current analysis [6, 7] demonstrates the ability of these
quantities to ensure the detection of faulty operations. The
supply voltage of the machine can be measured or calculated
with the knowledge of the duty-cycle applied on the inverter.
Consequently, the supply voltages are defined as the input
variables. The estimated stator currents are compared to real
measurements in the closed-loop observer and can be defined
as output and state variables. Finally, to get the mechanical
speed, the rotor flux has to be estimated [8]. Then, the rotor
flux is defined as a state variable. As the model is a four-
order system, each state, input or output variable, has to be
considered in a two-phase coordinate system. The Concordia
transform (α,β) is used in the model. Then, the classical first
harmonic equations lead to the state model defined in (1).

Ẋ =




a1 0 a2 −a3ω
0 a1 a3ω a2

a4 0 a5 −ω
0 a4 ω a5




︸ ︷︷ ︸
A

X +




1
σLS

0
0 1

σLS

0 0
0 0




︸ ︷︷ ︸
B

(
VSα

VSβ

)

︸ ︷︷ ︸
U

(
ISα

ISβ

)

︸ ︷︷ ︸
Y

=
(

1 0 0 0
0 1 0 0

)

︸ ︷︷ ︸
C




ISα

ISβ

φrα

φrβ




︸ ︷︷ ︸
X

(1)
with:

a1 = −
(

1
σTS

+ 1−σ
σTr

)
, a2 = 1−σ

σTrMsr
,

a3 = − 1−σ
σMsr

, a4 = Msr

Tr
, a5 = − 1

Tr

ω = pΩmech

where:

• Ts is the stator electrical time constant,
• Tr is the rotor electrical time constant,
• Msr is the mutual stator-rotor inductance,
• σ is the leakage coefficient,
• LS is the cyclic stator inductance,
• p is the number of pole pairs,
• Ωmech is the mechanical rotating speed.

B. Speed observer

The mechanical rotating speed is estimated by the difference
(2) between estimated stator electrical pulsation ω̂s (3) and
estimated rotor electrical pulsation ω̂r (4). The notation x̂
means that the variables are estimated.

Ω̂mech =
1
p
(ω̂s − ω̂r) (2)

Fig. 2. State-model of the Luenberger observer
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The closed-loop observer is designed according to the model
of the asynchronous machine (see figure 1). Moreover, the
dynamic of the observer is modified to ensure the convergence
of the observer variables, comparing to measurements by using
a gain matrix K as depicted in figure 2. The poles of the
observer are accelerated and the influence of speed variations
is reduced. Variables U and Y are measured variables.

III. ESTIMATED SPEED WITH LOAD TORQUE

OSCILLATIONS

It has been demonstrated that load torque oscillations induce
mechanical speed oscillations and stator current modulations
[12], especially phase modulations (PM) [11]. Then, it has to
be shown that the presence of PM on the stator current induces
oscillations on the estimated speed.

A. Expression of the mechanical speed

Considering the Luenberger Observer in open-loop condi-
tions, the gain matrix K is null. According to the dynamic
matrix A, the rotor flux is dependent on the electrical pulsation
i.e. the mechanical rotating speed. However, the rotor flux
can be expressed only with the stator current and the supply
voltage (5).
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Considering that the inverter imposes a sinusoidal supply
voltage (6), where VSαβ is the amplitude of the supply voltage
in (α,β) coordinate system and fs the supply frequency,

VSα = VSαβ cos(2πfst)
VSβ = −VSαβ sin(2πfst)

(6)

Then, the rotor flux frequency components are similar
to the stator current harmonics. As a consequence, without
load torque oscillations, the stator current is considered as



sinusoidal. Consequently, the rotor flux is also a sinusoidal
wave and the mechanical speed is constant.

In case of load torque oscillations, the stator current is phase
modulated at the load torque oscillation frequency fosc (7)
where βI is the current modulation index, ISαβ the amplitude
of stator current in (α,β) coordinate system, φ the phase
between stator current and supply voltage and θosc an arbitrary
phase.

ISα = ISαβ cos(2πfst + βI sin(2πfosct + θosc) + φ)
ISβ = −ISαβ sin(2πfst + βI sin(2πfosct + θosc) + φ)

(7)
Using the flux equation (5) for the α component and

assuming that θosc = 0, the rotor flux can be generally
expressed as (8).
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where:
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,

• ωs = 2πfs,
• D(t) = cos(2πfst + βI sin(2πfosct) + φ),
Using the development of phase modulated cosinus in

Bessel functions [13], and the assumption that the phase
modulated index βI is quite small, the rotor flux expresses
as (9) for ωosc 6= ωs.
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(9)
where:
• J0 is the 0-order Bessel function,
• J1 is the 1-order Bessel function,
• ωosc = 2πfosc.
A similar expression can be established for the β component

of the rotor flux (10) for ωosc 6= ωs.
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(10)
where:
• E(t) = − sin(2πfst + βI sin(2πfosct)).
To simplify the expressions (9) and (10), it can be noticed

that J0(βI) ' 1 and J1(βI) ' βI

2 ' 0 if βI is quite small.
Then, the rotor flux can also be considered as phase modulated
at the load torque oscillation frequency (11).

φ̂rα = Φr cos(2πfst + βφ sin(2πfosct + ψosc) + ψφr )
φ̂rβ = −Φr sin(2πfst + βφ sin(2πfosct + ψosc) + ψφr )

(11)

Fig. 3. Gain Bode diagram of simulated transfer functions between simulated,
estimated mechanical speed oscillations and load torque oscillations

where:
• βφ is the flux modulation index,
• ψosc and ψφr

are arbitrary phases.
According to (11) and (3)-(4) and by neglecting square

terms, the stator and rotor electrical pulsations are equal to a
constant plus an oscillation at the load torque oscillation fre-
quency. As a consequence, the estimated mechanical rotating
speed is also a constant plus oscillations at multiples of the
load torque oscillation frequency, whose amplitudes depend
on modulation index βI and βφ (12).

Ω̂mech = Ω0 +
∑

k

Ωosc(k) sin(2πkfosct) (12)

B. Simulation results

To ensure that load torque oscillations induce specific
harmonics on estimated mechanical speed, the asynchronous
machine and the observer defined in section II are simulated
using Matlab/Simulink. The mean values of simulated and
estimated speed are equal, proving the validity of the observer
model. Moreover, in case of load torque oscillations, the
estimated speed includes harmonics of higher amplitude than
the simulated speed. By varying the load torque oscillations
frequency, a Bode diagram is established between simulated,
estimated speed and load torque oscillations. Figure 3 shows
the gain between the speed oscillations and torque oscillations
amplitudes. A first resonance frequency appears on the two
transfer functions around fres1 = 20Hz. A second resonance
frequency appears on the estimated speed around fres2 =
160Hz and is characteristic of the dynamic of the observer.
The electromechanical resonance around 20Hz is useful for
the detection of bearing faults using stator current spectral
analysis [6, 7]. Moreover, the characteristic resonance of the
observer can also be used in the detection scheme to favor
the detection of high frequency load torque oscillations due to
bearing faults.

C. Measurements results with load torque oscillations

After demonstrating the convergence of the observer on
simulated results, the estimated speed is compared to speed
measurements on a 5.5kW induction machine. A DC machine



Fig. 4. Measured and estimated speed spectrum with load torque oscillations

Fig. 5. Estimated speed spectrum in healthy and faulty conditions

is used as a load. The DC machine is connected to a resistor
through a DC/DC converter which controls the DC motor
armature current. The reference of current is composed of
an oscillating component at the rotating frequency plus an
offset in order to induce load torque oscillations around a
mean torque value. The supply frequency of the asynchronous
machine is set to 50Hz and the mean torque equals 18N.m.
Measured and estimated speed spectra are shown in figure 4.
It can be pointed out that the first fault harmonics are sensibly
equal. Differences between high order harmonics and noise
amplitude are of no interest because the aim is to compare the
estimated speed in healthy and faulty conditions when speed
oscillations appear. Figure 5 shows spectra of the estimated
speed of the induction machine in healthy and load torque
oscillation conditions. The two noise amplitudes are similar
and a comparison between healthy and faulty operations is
possible. The amplitude of the speed oscillation component
increases due to the load torque oscillation.

IV. BEARING FAULT DETECTION USING SPEED OBSERVER

Many studies demonstrate that bearing faults induce load
torque oscillations [6, 7, 10, 14] and thus lead to speed
oscillations. Section III emphasized the ability of a Luenberger
speed observer to detect speed oscillations. Consequently,
the estimated speed can be used to detect bearing faults.
In this section, a 6208-type bearing coming from the after-
sales service of a motor manufacturer is mounted in the

asynchronous machine. The bearing is declared to be faulty
but the fault types or locations are unknown.

As shown in figure 3, the electromechanical system in-
cludes a resonance that amplifies the effects of load torque
oscillations on mechanical speed and stator currents. As a
consequence, the stator current spectral energy detector pre-
sented in [6, 7] allows to detect bearing faults preferentially if
one of the characteristic bearing fault frequencies [15] equals
the resonance frequency. The second resonance frequency,
characteristic of the dynamic of the observer, can also be used
to detect more efficiently bearing faults on estimated speed.
Thus, the detection of bearing faults using speed observer
has to be more efficient for several rotating speeds than the
detection using stator current monitoring.

A. Bearing characteristic fault frequencies

As a matter of fact, frequencies that could appear in
vibration spectrum with appearance of bearings faults are
theoretically well known. Harmonics due to defects could
appear as combinations of mechanical rotating frequency and
characteristic frequencies expressed by (13) [2, 15].

forf =
fr

2
Nb

(
1− Db cos θ

Dp

)

firf =
fr

2
Nb

(
1 +

Db cos θ

Dp

)

fc =
fr

2

(
1− Db cos θ

Dp

)
(13)

where:
• forf outer race fault frequency;
• firf inner race fault frequency;
• fc cage frequency;
• fr mechanical rotating frequency;
• Nb number of balls;
• Db ball diameter;
• Dp pitch diameter;
• θ contact angle.
The spectral vibration analysis performed on the test bench

with faulty bearings shows the appearance of multiples of
the characteristic fault frequency related to the inner or outer
race. Obviously, combinations of several fault frequencies
appear in the vibration spectrum. Strong modulations at fc

and fr can be noticed around the multiples of outer or inner
race fault frequency. Concerning a 6208-type bearing with a
rotating frequency of 25Hz, assuming θ = 0, forf = 89.4Hz,
firf = 136Hz and fc = 9.94Hz.

B. Definition of frequency ranges affected by bearing faults

Characteristic fault frequencies depend on the mechanical
rotating speed. The speed can be estimated by using the
detection of rotor slot harmonics on the stator current spectrum
[16]. As the mechanical speed is estimated by the Luenberger
observer, a stator current analysis becomes unnecessary. These
observations lead us to define an automatic mechanical detec-
tor based on estimated speed spectral energy extraction. The
estimated speed is computed off-line during 80s. Then, the



(a) fs = 6.7Hz ⇔ firf ' fres1 (b) fs = 13.3Hz ⇔ forf ' fres1

Fig. 6. Cumulative sums of relative error in %

(a) fs = 25Hz (b) fs = 50Hz

Fig. 7. Cumulative sums of relative error in %

fault detector is defined by extracting energies on frequency
ranges related to the frequency components at fdef , where
fdef is either the inner or the outer race theoretical fault
frequency. Moreover, the frequency ranges are extended to
include modulations linked to the mechanical speed and cage
frequencies underlined by a vibration spectral analysis. The
chosen frequency ranges are given in (14).

[nfdef − fc;nfdef + fc]
[nfdef − fr − fc;nfdef − fr + fc]
[nfdef + fr − fc;nfdef + fr + fc]

(14)

where n ∈ [1; 5].
The proposed indicator uses the relative energy error in

the specified frequency ranges between a faulty case and a
healthy reference of estimated mechanical speed spectrum.
Then, the relative error of energy is estimated in 15 frequency
ranges related to the outer race characteristic fault (∆orf ) and
15 frequency ranges related to the inner race fault frequency
(∆irf ). A total relative error is computed by adding relative
errors related to inner and outer race fault frequencies (15).

∆tot(k) = ∆orf (k) + ∆irf (k) with k ∈ [1; 15] (15)

A cumulative sum is then applied on the extracted energy

differences from the frequency ranges related to the investi-
gated bearing fault. Finally, the last value of the cumulative
sum is defined as the detector value. It is understandable that
the detector values have to be close to zero when a healthy
case is compared to the healthy reference. In addition, the
detector values have to be higher than zero when a faulty case
is compared to a healthy reference.

C. Detection of bearing faults using the low frequency reso-
nance point

The supply frequency fs is tuned to ensure that one of
the characteristic frequencies is close to the low frequency
resonance point. Figures 6(a)-6(b) show the cumulative sums
of relative error for two operating points. In figure 6(a), the
inner race fault characteristic frequency equals the resonance
frequency. The supply frequency fs equals 6.7Hz. In figure
6(b), the outer race fault characteristic frequency equals the
resonance frequency. The supply frequency equals 13.3Hz.

The detection of the faulty bearing is ensured for the two
operating points especially for fs = 6.7Hz. It can be noticed
that the bad performances of the Luenberger observer at low
speed [17] do not affect the detection efficiency. Table I
indicates mean and standard deviation of detectors for healthy
and faulty operations.



TABLE I

MEAN AND STANDARD DEVIATION OF DETECTORS

fs Healthy case detectors Faulty case detectors

(Hz) (Mean; Standard deviation) (Mean; Standard deviation)

6.7 (16.8; 55.2) (1020; 116)

13.3 (4.9; 26.7) (454.7; 163.8)

25 (-28.9; 99.1) (378.3; 61.8)

50 (90; 171.7) (1464; 176.7)

D. Detection of bearing faults at nominal and half-nominal
speed

Figures 7(a)-7(b) depict the cumulative sums for healthy
and faulty operations when the supply frequency equals 25Hz
and 50Hz respectively. As the supply frequency equals 50Hz,
the inner race characteristic fault frequency is close to the
high frequency resonance point on the estimated speed. The
detection of the faulty bearing is ensured for the two operating
points especially for fs = 50Hz. However the standard devia-
tion increases with the mechanical rotating speed especially
in faulty conditions. Table I indicates mean and standard
deviation of detectors for healthy and faulty operations. Due
to the high frequency resonance point, the efficiency of the
detector on the estimated speed is better than the detector
efficiency on the stator current [6, 7].

V. CONCLUSION

In this paper, a new method for an automatic detection of
bearing faults in induction motors using Luenberger speed
observer has been presented. Some mechanical faults induce
load torque and mechanical speed oscillations. Thus, the
mechanical speed can be used to detect faulty operating condi-
tions. As a consequence, a speed observer has been designed to
perform speed harmonic detection for bearing fault diagnosis.
A simplified approach of the observer demonstrates the ability
of the estimated rotating speed to render the speed oscillations.
The simulation of the close-loop Luenberger observer shows a
different frequency behavior between simulated and observed
mechanical speed with regard to the first fault harmonic. The
knowledge of the specific resonance frequencies underlined by
the Bode diagram is useful to analyse the detection scheme
performances.

The detector is tested on real faulty bearings mounted
in an asynchronous drive. According to the knowledge of
mechanical and geometrical bearing properties, an automatic
indicator has been proposed to extract the estimated speed
spectral energy in frequency ranges related to bearing faults.

Experimental results show that the detection of bearing
faults is ensured using a mechanical speed observer for large
mechanical speed ranges.

Moreover, the dynamic of the observer, especially the
high frequency resonance, can be used to improve the fault
detection. To demonstrate the efficiency and reliability of
the detector, and to be more realistic regarding real time
implementation of the detector, studies on short data length
will be performed in further work.
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