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Abstract:

We propose a new optimization of randomized motion planning via a local directed
strategy. The basic motion planning problem is to find a collision free trajectory
for a moving object (rigid, articulated or deformable) in a static or dynamic
environment. We propose an improvement of the Rapidly-exploring Random Tree
(RRT) method in associating the concepts of visibility and Gaussian sampling.
This improvement focuses on the random sampling and its localization in free
spaces. The new Gaussian sampling is described by a set of geometrical primitives
and permits to define the random sampling behavior in the entire free space. In this
paper, we first consider the existing alternatives for random sampling. Then we
propose our localized random sampling that refines the environmental possibilities
such as free space evaluation according to the mover’s dynamic constraints.
The environmental possibilities are identified during the RRT development. The
experiments and results validate that our method improve the mover’s trajectory
in static environments.

Keywords: path and motion planning, computational geometry, static
environment, random sampling

1. INTRODUCTION

Probabilistic planning methods have successfully
shown their efficiency in resolving path plan-
ning problems (Amato and Wu, 1996; Hsu et
al., 1998; Kavraki and Latombe, 1998; LaValle,
1998; LaValle and Kuffner, 1999; LaValle and
Kuffner, 2000). These methods have two advan-
tages: dealing with a large number of problems
and giving the possibility to use a robot with a
high degree of freedom with probabilistic com-
pleteness. As Kavraki (Kavraki et al., 1994) ini-
tially showed, various extensions of probabilistic
methods are possible (Hsu et al., 1998; Amato et
al., 1998; Boor et al., 2001; Wilmarth et al., 1999;
LaValle, 1998; LaValle and Kuffner, 1999; Kuffner
and LaValle, 2000; Branicky et al., 2001; Caselli

and Reggiani, 2000). They provide the same ad-
vantages and the same drawbacks due to a ran-
dom sampling: planners are able to deal with
the exponential complexity of the degree of free-
dom (dof) of the robot; planners’ completeness
seems to be guaranteed with a probability which
tends asymptotically towards one when the time
tends towards infinity. Then they are able to solve
problems involving many dof like kinodynamic
problems (Donald et al., 1993). S. LaValle and J.
Kuffner present a general method for kinodynamic
planning in (LaValle and Kuffner, 1999).

In the following, we focus on the random sam-
pling’s localization. This reflexion is initiated by
a knowledge of a well defined environment that
allows us to define a fast approximation to Gaus-



sian obstacle sampling. After a review of exist-
ing Rapidly-exploring Random Tree (RRT) meth-
ods, we describe our solution of bounding ex-
pansion with informations collected during the
exploration. Results investigate the solution’s per-
formance and validate our motion planner with
static environment.

1.1 Related Works

The RRT is a biased random walk in the state
space. The RRT method is composed of two steps
iterated until it provides a solution: the random
step and the extend step. During the random step,
a new state is randomly generated. This new state
will guide the next extend step. During the extend
step, the nearest neighbor of the new random state
in the tree is selected. The random state provides
the following direction which leads to the addition
of a new state in the tree. Therefore the construc-
tion algorithm is associated to a collision detection
function which determines if this new state is
valid and then if it could be inserted in the tree.
The RRT explores the free space with an uniform
distribution which is assumed by random’s linear
congruence. The association of the RRT expansion
with a Voronoi diagram shows that each step at-
tempts to join unexplored regions. So RRT is nat-
urally not working in the same way as a random
walk. At each expansion step, every new state tries
to break a new Voronoi cell. Largest cells have the
highest probability to be broken. Based on this
simple construction method, some problems occur
iteratively : insuring the completeness; staying in
the free space Xfree (which is equal to stay out
of collision regions (Xcol) and imminent collision
regions (Xric)); excluding non desired moves that
the random walk could cause; managing the lack
of simple metric able to select the nearest state
in the tree; managing the convergence of the tree
towards the goal.

In order to insure the completeness, P. Cheng
and S. LaValle (Cheng and LaValle, 2002) sug-
gest to compute the accessibility of the tree ac-
cording to Lipschitz conditions. This is practical
for an appropriate discretization resolution. The
exploration function is controlled by a neighbor-
hood analysis. This analysis maintains informa-
tions that exclude selected states. In this way,
spin cycles are avoided and the exploration will
certainly find a way to the goal. But this guarantee
sacrifies the possible optimality of the path. If the
tree grows up with a wrong starting sequence,
the final path will be unexpectedly longer. Results
show a successfully complete resolution involving
kinematic and dynamic constraints with one steer-
ing input for a 9-dimensional nonlinear system.

The Xfree region is studied in (LaValle and
Kuffner, 2001). S. LaValle and J. Kuffner show the
differences between the configuration free space
C and the state space X. After defining Xobs by
assimilating it to Cobs in X, Xric is described
as the X’s region of inevitable collisions, so the
free state space X is reduced. Consequently the
random possibility is also reduced, achieving at
the same time an improvement of RRT. So un-
desired moves seem to be avoided by converging
more rapidly through a solution trajectory.

The avoidance of undesired moves has found an
expecting expansion in the bidirectional RRT (bi-
RRT) (LaValle and Kuffner, 2001; LaValle and
Kuffner, 1999; LaValle and Kuffner, 2000) (as a
global RRT improvement, bi-RRT are currently
mentioned RRT). In the context of differential
constraints computing, it is difficult to define a
solution trajectory between two states. Here the
relationship between different states is defined and
the possible attractiveness of bi-RRT is explained.
S1 and S2 are two states. If a short sequence of
control can be applied in X then it can reach S2
starting from S1. S1 is a fair state for S2. With a
single RRT, it is important to provide fair states
to reach the goal. If the neighbor space of the goal
is narrowed, the single RRT may provide unfair
states. In the worst case, it provides only unfair
states, requiring then backward moves to return
in a fair state. The bi-RRT is a way to avoid this
by trying to achieve the vicinity of the starting
position and the goal more efficiently. In bi-RRT
planners, the expansion step is divided in two
cases : the first case is the standard randomized
expansion and the second one is a new tree con-
necting step. The first RRT construction veers off
the second one, during which each one of the trees
tries to grow into each other. Variations by using
connection or extension step are achieved in RRT-
ConCon, RRT-ExtCon and RRT-ExtExt (LaValle
and Kuffner, 2000).

The RRT is very useful to determine if there
is a feasible trajectory for a general constraints
movers. But the trajectories then produced are
often under optimal (with turnings or useless in-
put’s fluctuations). Cheng (Cheng et al., 2000) re-
minds of two generalized solutions that solve such
optimization problem: the first-order gradient de-
scent and the perturbation introduction methods.
In the first-order gradient method, starting from a
given input sequence, a perturbation is iteratively
introduced to converge towards a locally-optimal
solution. This first solution is hardly applicable
for models exceeding 3 dof and may be trapped
in Cops. The second solution is based on the in-
troduction of a disturbance during iterations; The
problem then resides on the disturbance sources
qualification and on these sources quantification
along the trajectory. Tests are presented for a



Dubins car. Albeit the remaining problem is the
definition of the disturbance sources, this method
is good for its simplicity and its suitability with
the RRT's algorithm.

The efficiency of the distance metric is addressed
at each extension step of RRT. Involving the
growing behavior of the tree, the nearest state
selection can improve the RRT connection. By
rightly selecting the nearest neighbor state, this
will be fairly reliable. A. Atramentov and S.
LaValle have developed an approach based on
KdTree (Atramentov and LaValle, 2002). Using
a recursive subdividing, the nearest state search
is associated to a shortest states list. It provides
an algorithm for the nearest state search based
on the comparison of distance between states
and the Hausdorff distance. P. Cheng and S.
LaValle reduce the metric sensitivity (Cheng and
LaValle, 2001) with two solutions: introducing an
exploring information and calculating the con-
straint violation probability (CVP). These two
considerations are gathered during the expansion
step. The efficiency of this RRT improvement de-
pends on these exploration informations.

The reinforcement of converging toward the goal
has a solution in RRT-GoalBias (LaValle and
Kuffner, 2000). This is obtained by replacing the
random with a probability biased toward the goal.
The random distribution is no longer uniform.
By introducing biases, the RRT will be trapped
in some local minimum like in the randomized
potential field methods (Latombe, 1991). An im-
provement called RRT-GoalZoom suggests to bi-
ase the random gradually around the goal. The
convergence toward the goal is successfully done
without considering the controllability influence
in the RRT growing. To manage the convergence
towards a solution trajectory, S. Carpin and E.
Pagello (Carpin and Pagello, 2002) proposed a
parallel formulation of motion planning to man-
age the convergence towards a solution trajectory.
By increasing the number of processors, they in-
creased at the same time the number of gener-
ated bi-trees starting from the same state and
contributing to the same solution. They showed
that a concurrent paradigm and a cooperative one
have to be combined for more efficiency.

All investigations consider the first solution they
found. It would be useful to improve the solution
near the optimal, developing RRTs in the same
space. When using RRT over a parallel computer,
each processor is engaged in a distinct RRT with
the same tuple start-end states. Therefore taking
the best of all these iterations would improve the
solution trajectory (Carpin and Pagello, 2001).

1.2 Our solution

This paper focuses on defining localized random
sampling (LR). During its two previously defined
basic steps (random and extend), the RRT ex-
plores free surrounding spaces. The traditional
random explores uniformly free spaces. This prop-
erty is fine in a space with uniform density. In
a space made up of obstacles, the density is
not uniform any more, and so this property be-
comes invalid. In the visibility based PRM method
(Nissoux et al., 1999), the visibility decreases the
map size in charge and raises up the probability
of narrow passages integration. We propose here
a visibility based RRT to evaluate various open
spaces. To increase the capture of narrow spaces,
(Boor et al., 2001) guides the PRM sampling with
a Gaussian random. Therefore, we propose to use
a visibility based localized random to improve the
RRT algorithm.

For a localized random distribution G ;05 around
an obstacle, we define an uniform random sam-
pling Uj,e in a dimension D and a random sam-
pling Gy on the normal axis of each point of the
same. In this Gy, the length and the height are
dynamically defined. The proportion between the
height (with the length [) and the sum of all other
heights L defines the random sampling G, on the
obstacle axis. The height defines the ratio of the
densities of various lengths. The dimension nature
D can be for example the external perimeter or
the whole surface of the random distribution. This
distribution G, is carried outside the obstacles.

In a 2D space, the random sampling G5 com-
bines at the first dimension Uj,. and at the second
dimension Gioe. Ggiop defines a surface. This sur-
face is able to be divided to a set of identifiable
surfaces by the points and the faces of each obsta-
cle. Another random sampling Ugop assumes the
equiprobability between all surfaces according to
the parameter D. Therefore, the localized random
distribution is defined. By applying a Gaussian
distribution to Gjee, it evolves in a 2D space
according to a function defined by:
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with o the standard deviation of the Gaussian one.

2. LOCALIZED RANDOM SAMPLING

In one of the simplest case, each obstacle is rep-
resented by a simple convex polygon and the
random distribution is uniform. This distribution
around a convex obstacle is a succession of right-
angled trapezoids and curves. Each face is associ-
ated to a trapezoid and each vertex is associated
to a curve. The parameters are identified with
one vertex pair in the clockwise order. Therefore,



Fig. 2. Scaled random
sampling around a
polygon.

Fig. 1. Random sampling
around a polygon.
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Fig. 3. A free space exam- Fig. 4. Boor’s random
ple. sampling.

Fig. 5. Localized random Fig. 6. Gaussian random
sampling. sampling.

height values are computed to define the random
shape. If two height values are associated to these
two vertexes, we call this scaled sampling. If only
one height value is associated to these two ver-
texes, this height value can be the minimum, the
middle or the highest of the previously defined
pair of height values. Instead of being uniform,
this distribution can be Gaussian. Figures 1 and
5 show simple Gaussian distributions. Figure 2
shows a scaled Gaussian distribution. A Gaussian
distribution associated with a face is defined by
two values o and two lengths of normals corre-
sponding to this vertex pair. This distribution
associated with a single vertex is defined by two
values of o, two lengths of normals and two angles.
The Gaussian distribution Gy is proportionally
uniform for all these surfaces. In preoccupations
with a continuity of the distribution G e, the
values of the maximum associated with a face are
fixed by the values of the parameters describing
its face.

Ggiop is also defined by two local parameters, p;
and py, which allow to position the band-width
of the Gaussian one. p; avoids the configurations
in collision and py defines the external limit of
the surface corresponding to the Gaussian distri-
bution Ggep. In this way p; draws aside random
samplings of the vertex’s obstacles. In order not to

remove possible configurations of the free space,
we choose to fix p; to the half of the profile of
the mobile for the non-holonomic robot. For holo-
nomic robots, a good value for p; is the smallest
distance in each normal face’s axis between each
vertex and its gravity center. For a circular robot,
if p; is equal to the value of its ray, then any
configuration in the random sampling is at the
most cases apart from the collision’s space.

In the basic Ggop distribution, open spaces are
expressed with obstacles’s faces. This is divided
into a set of arcs and trapezoids in which Ggiop
distribution is applied. This decomposition can
be partial or complete. It can be uniform or
Gaussian, with or without p;. Figure 5 shows a
uniform sampling and figure 6 shows a Gaussian
sampling. Figure 4 shows the Boor’s Gaussian
sampling as described in (Boor et al., 2001). In
these figures, we fixed the max height values
for each shape. To avoid doubling the narrows
spaces density, the height value is worth half of
the distance between facing obstacles. This value
has been fixed between minimum and maximum
values.

We studied repercussions of the random sampling
of the RRT growth, so that we can be able to com-
pare various randomization’s possibilities. During
its growth, the RRT uses random configurations.
The good configurations make the RRT evolving
in the entire space; the bad ones lead to collision
with obstacles. The classical random produces a
significant number of collisions. The distribution
G g10p Produces much less collisions, due to its def-
inition. The effective time for collision detection
is much less significant by using G g0p-

Table 1. sampling times.

time CR CRCD BR LR
0.001 3 200 16 20 270
0.005 1600 56 55 1 550
0.01 32 500 105 110 3120
0.05 163 900 515 540 15 500
0.1 325 100 1032 1020 31 700
0.5 1 600 400 5 056 5 100 159 300
1. 3250700 10169 10200 318 600

Table 2. density influence for classical random
sampling with collision detection.

time CRl1in CRlout CR2in CR2out
0.001 10 6 21 3

0.01 66 41 168 23

0.1 640 392 1631 226

1. 6 292 3 877 16 197 2213

Table 1 presents the number of generated con-
figurations according to time in seconds in the
map presented in figure 3. CR is a classical ran-
dom. CRCD is a classical random with collision
detection. BR is a Boor’s random. LR is a Lo-
calized random. For LR, being uniform or Gaus-
sian, with or without p;, with segments only or



segments and arcs does not change significantly
the resulting computational time. Obviously the
classical random produces a great number of con-
figurations, by including the collision detection
the random G 10, produces even more. The Boor’s
random produces less configurations. Its number
of generated configurations falls as its coverage
is increased. Moreover the traditional random is
dramatically sensitive to the space density. Ta-
ble 2 shows the number of configurations gener-
ated in two cases. They show the average of two
randomization cases: the first (CRIin) expresses
the number of configurations in free space and
CR1out expresses the number of configurations
in collision. CR1 is carried out on the figure 3.
The second (CR2) is carried out on the figure 3
in broader plan. The number of generated config-
urations increases as well of the proportion of the
good configurations.

3. VISIBILITY BASED RRT

To use the concept of visibility with the RRT
method, two phases should be added: the first
initializes the localized random to the initial con-
figuration’s visible free spaces; the second main-
tains the list of visible free spaces. During the first
phase, it is necessary to create a visible segments
list. The segments inserted to this list are marked
so later inserts can be avoided. To maintain this
list, we fix the Visibility Refresh Constant VRC.
In a simple case, the segments are added dur-
ing RRT growth. In the RRT method, starting
from a new random configuration Cfa we select
the closest configuration Cfb in the RRT. This
configuration Cfb is then associated to a local
control function. This function generates a new
configuration Cfc which is the result of a mobile
move starting from Cfb towards Cfa. Therefore the
RRT is built by adding Cfc. To increase the RRT
convergence towards unexplored spaces, the prob-
ability of progression is balanced by the number
of Cfc configurations that it contains. Therefore
every local shape defined in Gg0p is not initially
considered. Only visible trapezoids and curves are
added to the sampling distribution. Other shapes
are added only when they become visible.

For the GoalBias management, we propose to dy-
namically modify the policy of random sampling.
Simple policies use a random function (CR, BR or
LR) as previously defined. GoalBias policies use
half a random function (CR, BR or LR) and half
the goal. So half configurations are added towards
the goal. If we want to use dynamically these
two policies, we should know if the objective is
visible following each new Cfc addition. An RRT'is
GB (GoalBias) if it uses permanently a deviation
towards the goal as soon as it sees the goal. In the

Fig. 7. RRT with visi- Fig. 8. unsuited growth
bility based Gaussian with visibility based
random sampling. Gaussian sampling.

previous paragraph, the visibility add trapezoids
and curves to the sampling distribution. The vis-
ibility is also used to bias the random sampling
toward the goal.

Table 3. random sampling results.

success % (nb Cf) failures % (nb Cf)

CR GB 0.04 (1163) 0.96 (1585)
CR VGB 0.21 (1713) 0.79 (2422)
BG GB 0.02 (600) 0.98 (485)
BG VGB 0.01 (628) 0.99 (332)
LR Uni GB 0.21 (1411) 0.79 (1650)
LR Gauss GB  0.29 (1141) 0.71 (1654)
LR Uni VGB 0.47 (1792) 0.53 (2500)
LR Gauss VGB _ 0.61 (1749) 0.39 (2514)

The table 3 shows results of different sampling
policies in the map previously defined. figure 7,
the mobile starts in the bottom left and must cross
the narrow passage of the center to join the goal
position on the top left. CR means Classical Ran-
dom, BR Boor’s random and LR Localized ran-
dom, GB GoalBias, VGB Visible Goal Bias, Uni
uniform and Gauss Gaussian. The left-hand col-
umn is the percentage of success and the column
of right-hand side is the failure’s one. For each
column, the number of necessary configurations
is noted between brackets. Without GoalBias, the
percentage of success is quasi null. The resolving
time is limited to 1,5 seconds. VRC has been
fixed to 10. The model used is a 5-dimensional
model presented in (Cheng and LaValle, 2001).
The RRT CR believes uniformly in the space. In
half cases it captures the narrow passage .Then it
generate a great number of configurations leading
to collisions in the narrow passage (so it justifies
its percentage of 0.21 success). RRT BR not only
generates few configurations but it also projects
the RRT towards obstacles (so it leads to many
collisions). The localization of the random allows
better free spaces definition and so increases the
RRT's success chances. It maintains the RRT
at a distance which is a function of free spaces
evaluation. It also minimizes divergences in the
RRT's growth. Its disadvantage is the fact that it
is based itself on the visible faces. Therefore it can
involuntarily avoid the goal (as shown in figure 8).



4. CONCLUSION

This paper investigates the effect of localizing the
random sampling with the performance of the
RRT method. We have presented an improvement
of the basic RRT method by using the concepts
of visibility and Gaussian sampling. We proposed
a new localized random sampling (LR) which is
defined by a set of geometrical primitives. We
define the random sampling behavior in the entire
free space. Our localized random sampling allows
better free spaces evaluation and increases the
RRT success chances. It maintains the RRT at
a distance from obstacles. This distance is a func-
tion of free spaces evaluation. It also minimizes
divergences in the RRT’s growth according to
free space evaluation and mover’s dynamic con-
straints.
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