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A Hamiltonian structure of the Isobe–Kakinuma model

for water waves

Dedicated to the late Professor Walter L. Craig

Vincent Duchêne and Tatsuo Iguchi

Abstract

We consider the Isobe–Kakinuma model for water waves, which is obtained as the sys-
tem of Euler–Lagrange equations for a Lagrangian approximating Luke’s Lagrangian for
water waves. We show that the Isobe–Kakinuma model also enjoys a Hamiltonian structure
analogous to the one exhibited by V. E. Zakharov on the full water wave problem and, more-
over, that the Hamiltonian of the Isobe–Kakinuma model is a higher order shallow water
approximation to the one of the full water wave problem.

1 Introduction

We consider a model for the motion of water in a moving domain of the (n + 1)-dimensional
Euclidean space. The water wave problem is mathematically formulated as a free boundary
problem for an irrotational flow of an inviscid, incompressible, and homogeneous fluid under a
vertical gravitational field. Let t be the time, x = (x1, . . . , xn) the horizontal spatial coordinates,
and z the vertical spatial coordinate. We assume that the water surface and the bottom are
represented as z = η(x, t) and z = −h+ b(x), respectively, where η(x, t) is the surface elevation,
h is the mean depth, and b(x) represents the bottom topography. We denote by Ω(t), Γ(t),
and Σ the water region, the water surface, and the bottom of the water at time t, respectively.
Then, the motion of the water is described by the velocity potential Φ(x, z, t) satisfying Laplace’s
equation

∆Φ+ ∂2zΦ = 0 in Ω(t), t > 0, (1.1)

where ∆ = ∂2x1
+ · · ·+ ∂2xn

. The boundary conditions on the water surface are given by




∂tη +∇Φ · ∇η − ∂zΦ = 0 on Γ(t), t > 0,

∂tΦ+
1

2

(
|∇Φ|2 + (∂zΦ)

2
)
+ gη = 0 on Γ(t), t > 0,

(1.2)

where ∇ = (∂x1
, . . . , ∂xn)

T, and g is the gravitational constant. The first equation is the kine-
matic condition on the water surface and the second one is Bernoulli’s equation. Finally, the
boundary condition on the bottom of the water is given by

∇Φ · ∇b− ∂zΦ = 0 on Σ, t > 0, (1.3)

which is the kinematic condition on the fixed and impermable bottom. These are the basic
equations for the water wave problem.

We put
φ(x, t) = Φ(x, η(x, t), t), (1.4)
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which is the trace of the velocity potential on the water surface. Then, the basic equations for
water waves (1.1)–(1.3) are transformed equivalently into





∂tη − Λ(η, b)φ = 0 on Rn, t > 0,

∂tφ+ gη +
1

2
|∇φ|2 − 1

2

(
Λ(η, b)φ +∇η · ∇φ

)2

1 + |∇η|2 = 0 on Rn, t > 0,
(1.5)

where Λ(η, b) is the Dirichlet-to-Neumann map for Laplace’s equation. Namely, it is defined by

Λ(η, b)φ = (∂zΦ)|z=η −∇η · (∇Φ)|z=η,

where Φ is the unique solution to the boundary value problem of Laplace’s equation (1.1) under
the boundary conditions (1.3)–(1.4).

As is well-known, the water wave problem has a conserved energy E = Ekin + Epot, where
Ekin is the kinetic energy

Ekin =
1

2
ρ

∫∫

Ω(t)

(
|∇Φ(x, z, t)|2 + (∂zΦ(x, z, t))

2
)
dxdz

=
1

2
ρ

∫

Rn

φ(x, t)(Λ(η, b)φ)(x, t) dx,

and Epot is the potential energy

Epot =
1

2
ρg

∫

Rn

η(x, t)2 dx

due to the gravity. Here, ρ is a constant density of the water.
V. E. Zakharov [24] found that the water wave system has a Hamiltonian structure and η

and φ are the canonical variables. The Hamiltonian H is essentially the total energy, that
is, H = 1

ρ
E. He showed that the basic equations for water waves (1.1)–(1.3) are transformed

equivalently into Hamilton’s canonical equations

∂tη =
δH

δφ
, ∂tφ = −δH

δη
.

Although V. E. Zakharov did not use explicitly the Dirichlet-to-Neumann map Λ(η, b), the above
canonical equations are exactly the same as (1.5). W. Craig and C. Sulem [9] introduced the
Dirichlet-to-Neumann map explicitly and derived (1.5). Therefore, nowadays (1.5) is often called
the Zakharov–Craig–Sulem formulation of the water wave problem. Since then, W. Craig and
his collaborators [3, 4, 5, 6, 7, 8] have used the Hamiltonian structure of the water wave problem
in order to analyze long-wave and modulation approximations. Let us also mention the recent
work of W. Craig [2], which generalizes the Hamiltonian formulation of water waves described
above to a general coordinatization of the free surface allowing overturning wave profiles.

On the other hand, as was shown by J. C. Luke [19], the water wave problem has also a
variational structure. His Lagrangian density is of the form

L (Φ, η) =

∫ η(x,t)

−h+b(x)

(
∂tΦ(x, z, t) +

1

2

(
|∇Φ(x, z, t)|2 + (∂zΦ(x, z, t))

2
))

dz +
1

2
g
(
η(x, t)

)2
(1.6)

and the action function is given by

J (Φ, η) =

∫ t1

t0

∫

Rn

L (Φ, η) dx dt.
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In fact, the corresponding Euler–Lagrange equations are exactly the basic equations for water
waves (1.1)–(1.3). We refer to J. W. Miles [21] for the relation between Zakharov’s Hamiltonian
and Luke’s Lagrangian.

M. Isobe [13, 14] and T. Kakinuma [15, 16, 17] obtained a family of systems of equations
after replacing the velocity potential Φ in Luke’s Lagrangian by

Φapp(x, z, t) =

N∑

i=0

Ψi(z; b)φi(x, t),

where {Ψi} is a given appropriate function system in the vertical coordinate z and may depend
on the bottom topography b and (φ0, φ1, . . . , φN ) are unknown variables. The Isobe–Kakinuma
model is a system of Euler–Lagrange equations corresponding to the action function

J app(φ0, φ1, . . . , φN , η) =

∫ t1

t0

∫

Rn

L (Φapp, η) dxdt. (1.7)

We have to choose the function system {Ψi} carefully for the Isobe–Kakinuma model to produce
good approximations to the water wave problem. One possible choice is the bases of the Taylor
series of the velocity potential Φ(x, z, t) with respect to the vertical spatial coordinate z around
the bottom. Such an expansion has been already used by J. Boussinesq [1] in the case of the flat
bottom and, for instance, by C. C. Mei and B. Le Méhauté [20] for general bottom topographies.
The corresponding choice of the function system is given by

Ψi(z; b) =

{
(z + h)2i in the case of the flat bottom,

(z + h− b(x))i in the case of the variable bottom.

Here we note that the latter choice is valid also for the case of the flat bottom. However, it
turns out that the terms of odd degree do not play any important role in such a case so that
the former choice is more adequate. In order to treat both cases at the same time, we adopt the
approximation

Φapp(x, z, t) =

N∑

i=0

(z + h− b(x))piφi(x, t), (1.8)

where p0, p1, . . . , pN are nonnegative integers satisfying 0 = p0 < p1 < · · · < pN . Plugging (1.8)
into the action function (1.7), the corresponding Euler–Lagrange equation yields the Isobe–
Kakinuma model of the form





Hpi∂tη +

N∑

j=0

{
∇ ·

(
1

pi + pj + 1
Hpi+pj+1∇φj −

pj
pi + pj

Hpi+pjφj∇b
)

+
pi

pi + pj
Hpi+pj∇b · ∇φj −

pipj
pi + pj − 1

Hpi+pj−1(1 + |∇b|2)φj
}

= 0

for i = 0, 1, . . . , N,

N∑

j=0

Hpj∂tφj + gη +
1

2





∣∣∣∣∣∣

N∑

j=0

(Hpj∇φj − pjH
pj−1φj∇b)

∣∣∣∣∣∣

2

+




N∑

j=0

pjH
pj−1φj




2
 = 0,

(1.9)
where H(x, t) = h + η(x, t) − b(x) is the depth of the water. Here and in what follows we
use the notational convention 0/0 = 0. This system consists of (N + 1) evolution equations
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for η and only one evolution equation for (N + 1) unknowns (φ0, φ1, . . . , φN ), so that this is
an overdetermined and underdetermined composite system. However, the total number of the
unknowns is equal to the total number of the equations.

The main purpose of this paper is to show that the Isobe–Kakinuma model (1.9) also enjoys
a canonical Hamiltonian structure which is analogous to the one of the water waves problem.
In particular, the Hamiltonian is a higher order shallow water approximation of the original
Hamiltonian of the water waves problem.
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2 Preliminaries

Since the hypersurface t = 0 in the space-time Rn ×R is characteristic for the Isobe–Kakinuma
model (1.9), the initial value problem to the model is not solvable in general. In fact, if the
problem has a solution (η, φ0, . . . , φN ), then by eliminating the time derivative ∂tη from the
equations we see that the solution has to satisfy the relations

Hpi

N∑

j=0

∇ ·
(

1

pj + 1
Hpj+1∇φj −Hpjφj∇b

)

=
N∑

j=0

{
∇ ·

(
1

pi + pj + 1
Hpi+pj+1∇φj −

pj
pi + pj

Hpi+pjφj∇b
)

(2.1)

+
pi

pi + pj
Hpi+pj∇b · ∇φj −

pipj
pi + pj − 1

Hpi+pj−1(1 + |∇b|2)φj
}

for i = 1, . . . , N . Therefore, the initial data have to satisfy these relations in order to allow
the existence of a solution. Y. Murakami and T. Iguchi [22] and R. Nemoto and T. Iguchi [23]
showed that the initial value problem to the Isobe–Kakinuma model (1.9) is well-posed locally
in time in a class of initial data for which the relations (2.1) and a generalized Rayleigh–Taylor
sign condition are satisfied. Moreover, T. Iguchi [11, 12] showed that the Isobe–Kakinuma
model (1.9) is a higher order shallow water approximation for the water wave problem in the
strongly nonlinear regime. The Isobe–Kakinuma model (1.9) has also a conserved energy, which
is the total energy given by

EIK(η,φ) =
1

2
ρ

∫∫

Ω(t)

(
|∇Φapp(x, z, t)|2 + (∂zΦ

app(x, z, t))2
)
dxdz +

1

2
ρg

∫

Rn

η(x, t)2 dx

=
ρ

2

∫

Rn





N∑

i,j=0

(
1

pi + pj + 1
Hpi+pj+1∇φi · ∇φj −

2pi
pi + pj

Hpi+pjφi∇b · ∇φj

+
pipj

pi + pj − 1
Hpi+pj−1(1 + |∇b|2)φiφj

)
+ gη2



 dx, (2.2)

where φ = (φ0, φ1, . . . , φN )T.
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We introduce second order differential operators Lij = Lij(H, b) (i, j = 0, 1, . . . , N) depend-
ing on the water depth H and the bottom topography b by

Lijψj = −∇ ·
(

1

pi + pj + 1
Hpi+pj+1∇ψj −

pj
pi + pj

Hpi+pjψj∇b
)

− pi
pi + pj

Hpi+pj∇b · ∇ψj +
pipj

pi + pj − 1
Hpi+pj−1(1 + |∇b|2)ψj . (2.3)

Then, we have L∗
ij = Lji, where L

∗
ij is the adjoint operator of Lij in L2(Rn). Moreover, the

Isobe–Kakinuma model (1.9) and the relations (2.1) can be written simply as




Hpi∂tη −
N∑

j=0

Lij(H, b)φj = 0 for i = 0, 1, . . . , N,

N∑

j=0

Hpj∂tφj + gη +
1

2

(
|(∇Φapp)|z=η|2 + ((∂zΦ

app)|z=η)
2
)
= 0

(2.4)

and
N∑

j=0

(Lij(H, b)−HpiL0j(H, b))φj = 0 for i = 1, . . . , N, (2.5)

respectively. It is easy to calculate the variational derivative of the energy function EIK(η,φ)
and to obtain 




1

ρ
δφi
EIK =

N∑

j=0

Lij(H, b)φj j = 0, 1, . . . , N,

1

ρ
δηE

IK =
1

2

(
|(∇Φapp)|z=η|2 + ((∂zΦ

app)|z=η)
2
)
+ gη.

(2.6)

Therefore, introducing l(H) = (Hp0 ,Hp1 , . . . ,HpN )T, the Isobe–Kakinuma model (1.9) can also
be written simply as (

0 −l(H)T

l(H) O

)
∂t

(
η
φ

)
=

1

ρ

(
δηE

IK

δφE
IK

)
. (2.7)

In view of (2.5) we introduce also linear operators Li = Li(H, b) (i = 1, . . . , N) depending
on the water depth H and the bottom topography b, and acting on ϕ = (ϕ0, ϕ1, . . . , ϕN )T by

Liϕ =

N∑

j=0

(
Lij(H, b)−HpiL0j(H, b)

)
ϕj for i = 1, . . . , N, (2.8)

and put Lϕ = (L1ϕ, . . . ,LNϕ)
T. Then, the conditions (2.1) can be written simply as

L(H, b)φ = 0. (2.9)

For later use, we also put L = L(H, b) = (Lij(H, b))0≤i,j≤N and define L0 = L0(H, b) by

L0(H, b)ϕ =

N∑

j=0

L0j(H, b)ϕj . (2.10)

Then, the conditions (2.1) are also equivalent to

L(H, b)φ =
(
L0(H, b)φ

)
l(H). (2.11)
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Now, for given functions F0 and F = (F1, . . . , FN )T we consider the equations

{
l(H) · ϕ = F0,

L(H, b)ϕ = F .
(2.12)

Let Wm,p =Wm,p(Rn) be the Lp-based Sobolev space of order m on Rn and Hm =Wm,2. The
norms of the Sobolev space Hm and of a Banach space X are denoted by ‖ · ‖m and by ‖ · ‖X ,
respectively. Set H̊m = {φ ; ∇φ ∈ Hm−1}. The following lemma was proved in [23].

Lemma 2.1. Let h, c0,M be positive constants and m an integer such that m > n
2 + 1. There

exists a positive constant C such that if η and b satisfy
{

‖η‖m + ‖b‖Wm,∞ ≤M,

c0 ≤ H(x) = h+ η(x)− b(x) for x ∈ Rn,
(2.13)

then for any F0 ∈ H̊k and F = (F1, . . . , FN )T ∈ (Hk−2)N with 1 ≤ k ≤ m there exists a unique
solution ϕ = (ϕ0, ϕ1, . . . , ϕN )T ∈ H̊k × (Hk)N to (2.12). Moreover, the solution satisfies

‖∇ϕ0‖k−1 + ‖(ϕ1, . . . , ϕN )‖k ≤ C (‖∇F0‖k−1 + ‖(F1, . . . , FN )‖k−2).

3 Hamiltonian structure

In the following, we will fix b ∈ Wm,∞ with m > n
2 + 1. Let (η, φ0, . . . , φN ) be a solution

to the Isobe–Kakinuma model (1.9). As we will see later, the canonical variables of the Isobe–
Kakinuma model are the surface elevation η and the trace of the approximated velocity potential
on the water surface

φ = Φapp|z=η =
N∑

j=0

Hpjφj = l(H) · φ. (3.1)

Then, the relations (2.1) and the above equation are written in the simple form

{
l(H) · φ = φ,

L(H, b)φ = 0.
(3.2)

Therefore, it follows from Lemma 2.1 that once the canonical variables (η, φ) are given in an
appropriate class of functions, φ = (φ0, φ1, . . . , φN )T can be determine uniquely. In other words,
these variables (φ0, φ1, . . . , φN ) depend on the canonical variables (η, φ) and furthermore they
depend on φ linearly so that we can write

φ = S(η, b)φ

with a linear operator S(η, b) depending on η and b. Since we fixed b, we simply write S(η) in
place of S(η, b) for simplicity.

We proceed to analyze this operator S(η) more precisely. We put

Um
b = {η ∈ Hm ; inf

x∈Rn
(h+ η(x)− b(x)) > 0},

which is an open set in Hm. For Banach spaces X and Y , we denote by B(X ;Y ) the set of
all linear and bounded operators from X into Y . In view of (2.11), (3.1), and Lemma 2.1, we
see easily the following lemma.

6



Lemma 3.1. Let m be an integer such that m > n
2 + 1 and b ∈ Wm,∞. For each η ∈ Um

b and
for k = 1, 2, . . . ,m, the linear operator

S(η) : H̊k ∋ φ 7→ φ ∈ H̊k × (Hk)N

is defined, where φ = (φ0, φ1, . . . , φN )T is the unique solution to (3.2). Moreover, we have
S(η) ∈ B(H̊k; H̊k × (Hk)N ) and

L(H, b)φ =
(
L0(H, b)φ

)
l(H).

Formally, DηS(η)[η̇] the Fréchet derivative of S(η) with respect to η is given by

{
l(H) · ψ̇ = −

(
l′(H) · φ

)
η̇,

L(H, b)ψ̇ = −DHL(H, b)[η̇]φ,
(3.3)

with φ = S(η)φ and ψ̇ = DηS(η)[η̇]φ, where l
′(H) · φ =

∑N
j=1 pjH

pj−1φj ,

DHLi(H)[η̇]φ =
N∑

j=0

(
DHLij(H, b)[η̇]−HpiDHL0j(H, b)[η̇]− piH

pi−1η̇L0j(H, b)
)
φj,

and

DHLij(H, b)[η̇]φj = −∇ ·
{
η̇(Hpi+pj∇φj − pjH

pi+pj−1φj∇b)
}

+ η̇
{
−piHpi+pj−1∇b · ∇φj + pipjH

pi+pj−2(1 + |∇b|2)φj
}
.

By using these equations together with Lemma 2.1 and standard arguments, we can justify the
Fréchet differentiability of S(η) with respect to η. More precisely, we have the following lemma.

Lemma 3.2. Let m be an integer such that m > n
2 + 1 and b ∈ Wm,∞. Then, the map

Um
b ∋ η 7→ S(η) ∈ B(H̊k; H̊k × (Hk)N ) is Fréchet differentiable for k = 1, 2, . . . ,m, and (3.3)

holds.

As mentioned before, the Isobe–Kakinuma model (1.9) has a conserved quantity EIK(η,φ)
given by (2.2), which is the total energy. Now, we define a Hamiltonian H IK(η, φ) to the
Isobe–Kakinuma model by

H IK(η, φ) =
1

ρ
EIK(η,S(η)φ), (3.4)

which is essentially the total energy in terms of the canonical variables (η, φ).

Lemma 3.3. Let m be an integer such that m > n
2 + 1 and b ∈ Wm,∞. Then, the map

Um
b × H̊1 ∋ (η, φ) 7→ H IK(η, φ) ∈ R is Fréchet differentiable and the variational derivatives of

the Hamiltonian are
{
δφH IK(η, φ) = L0(H, b)φ,

δηH
IK(η, φ) = 1

ρ
(δηE

IK)(η,φ)− (l′(H) · φ)L0(H, b)φ,

where φ = S(η)φ.
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Proof. Let us calculate Fréchet derivatives of the Hamiltonian H IK(η, φ). Let us consider first
Um
b ×H2 ∋ (η, φ) 7→ H IK(η, φ). For any φ̇ ∈ H2, we see that

DφH IK(η, φ)[φ̇] =
1

ρ
(DφE

IK)(η,S(η)φ)[S(η)φ̇]

=
1

ρ
((δφE

IK)(η,φ),S(η)φ̇)L2

= (L(H, b)φ,S(η)φ̇)L2

= (
(
L0(H, b)φ

)
l(H),S(η)φ̇)L2

= (L0(H, b)φ, l(H) · S(η)φ̇)L2

= (L0(H, b)φ, φ̇)L2 ,

where we used (2.6) and Lemma 3.1. The above calculations are also valid when (φ, φ̇) ∈
H̊1 × H̊1, provided we replace the L2 inner products with the X ′–X duality product where
X = H̊1 × (H1)N for the first lines, and X = H̊1 for the last line. This gives the first equation
of the lemma.

Similarly, for any (η, φ) ∈ Um
b × H̊2 and η̇ ∈ Hm we see that

DηH
IK(η, φ)[η̇] =

1

ρ
(DηE

IK)(η,S(η)φ)[η̇] +
1

ρ
(DφE

IK)(η,S(η)φ)[DηS(η)[η̇]φ].

Here, we have

1

ρ
(DφE

IK)(η,S(η)φ)[DηS(η)[η̇]φ] =
1

ρ
((δφE

IK)(η,φ),DηS(η)[η̇]φ)L2

= (L(H, b)φ,DηS(η)[η̇]φ)L2

= (L0(H, b)φ, l(H) ·DηS(η)[η̇]φ)L2

= −(L0(H, b)φ, (l
′(H) · S(η)φ)η̇)L2

= −((l′(H) · φ)L0(H, b)φ, η̇)L2 ,

where we used the identity

l(H) ·DηS(η)[η̇]φ+ (l′(H) · S(η)φ)η̇ = 0,

stemming from (3.3). Again, the above identities are still valid for (η, φ) ∈ Um
b × H̊1 provided

we replace the L2 inner products with suitable duality products. This concludes the proof of
the Fréchet differentiability, and the second equation of the lemma.

Now, we are ready to show our main result in this section.

Theorem 3.4. Let m be an integer such that m > n
2 + 1 and b ∈ Wm,∞. Then, the Isobe–

Kakinuma model (1.9) is equivalent to Hamilton’s canonical equations

∂tη =
δH IK

δφ
, ∂tφ = −δH

IK

δη
, (3.5)

with H IK defined in (3.4) as long as η(·, t) ∈ Um
b and φ(·, t) ∈ H̊1. More precisely, for any

regular solution (η,φ) to the Isobe–Kakinuma model (1.9), if we define φ by (3.1), then (η, φ)
satisfies Hamilton’s canonical equations (3.5). Conversely, for any regular solution (η, φ) to
Hamilton’s canonical equations (3.5), if we define φ by φ = S(η)φ, then (η,φ) satisfies the
Isobe–Kakinuma model (1.9).
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Proof. Suppose that (η,φ) is a solution to the Isobe–Kakinuma model (1.9). Then, it satis-
fies (2.7), particularly, we have

∂tη = L0(H, b)φ. (3.6)

It follows from (3.1) and (2.7) that

∂tφ = l(H) · ∂tφ+ (l′(H) · φ)∂tη

= −1

ρ
(δηE

IK)(η,φ) + (l′(H) · φ)L0(H, b)φ.

These equations together with Lemma 3.3 show that (η, φ) satisfies (3.5).
Conversely, suppose that (η, φ) satisfies Hamilton’s canonical equations (3.5) and put φ =

S(η)φ. Then, it follows from (3.5) and Lemma 3.3 that we have (3.6). This fact and Lemma 3.1
imply the equation

l(H)∂tη = L(H, b)φ =
1

ρ
δφE

IK(η,φ).

We see also that

l(H) · ∂tφ = ∂tφ− (l′(H) · φ)∂tη = −1

ρ
δηE

IK(η,φ),

where we used (3.5) and Lemma 3.3. Therefore, (η,φ) satisfies (2.7), that is, the Isobe–Kakinuma
model (1.9).

4 Consistency

As aforementioned, it was shown in [11, 12] that the Isobe–Kakinuma model (1.9) is a higher
order shallow water approximation for the water wave problem in the strongly nonlinear regime.
In this section, we will show that the canonical Hamiltonian structure exhibited in the pre-
vious section is consistent with this approximation, in the sense that the Hamiltonian of the
Isobe–Kakinuma model, H IK(η, φ), approximates the Hamiltonian of the water wave problem,
H (η, φ), in the shallow water regime.

In order to provide quantitative results, we first rewrite the equations in a nondimensional
form. Let λ be the typical wavelength of the wave. Recalling that h is the mean depth, we
introduce the nondimensional aspect ratio

δ =
h

λ
,

measuring the shallowness of the water. We then rescale the physical variables by

x = λx̃, z = hz̃, t =
λ√
gh
t̃, η = hη̃, b = hb̃, Φ = λ

√
ghΦ̃.

Under these rescaling, after dropping the tildes for the sake of readability, the basic equations
for water waves (1.1)–(1.3) are rewritten in a non-dimensional form

∆Φ+ δ−2∂2zΦ = 0 in Ω(t), t > 0, (4.1)




∂tη +∇Φ · ∇η − δ−2∂zΦ = 0 on Γ(t), t > 0,

∂tΦ+
1

2

(
|∇Φ|2 + δ−2(∂zΦ)

2
)
+ η = 0 on Γ(t), t > 0,

(4.2)
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∇Φ · ∇b− δ−2∂zΦ = 0 on Σ, t > 0, (4.3)

denoting Ω(t), Γ(t), and Σ the rescaled water region, water surface, and bottom of the water
at time t, respectively. Specifically, the rescaled water surface and bottom of the water are
represented as z = η(x, t) and z = −1 + b(x), respectively. The corresponding dimensionless
Zakharov–Craig–Sulem formulation is





∂tη − Λδ(η, b)φ = 0 on Rn, t > 0,

∂tφ+ η +
1

2
|∇φ|2 − δ2

2

(
Λδ(η, b)φ +∇η · ∇φ

)2

1 + δ2|∇η|2 = 0 on Rn, t > 0,
(4.4)

where
φ(x, t) = Φ(x, η(x, t), t) (4.5)

is the trace of the velocity potential on the water surface, and Λδ(η, b) is the dimensionless
Dirichlet-to-Neumann map for Laplace’s equation, namely, it is defined by

Λδ(η, b)φ = δ−2(∂zΦ)|z=η −∇η · (∇Φ)|z=η,

where Φ is the unique solution to the boundary value problem of the scaled Laplace’s equa-
tion (4.1) under the boundary conditions (4.3) and (4.5). With this rescaling and definitions,
the Hamiltonian of the water wave system is given by

H δ(η, φ) =
1

2

∫∫

Ω(t)

(
|∇Φ|2 + δ−2(∂zΦ)

2
)
dxdz +

1

2

∫

Rn

η2 dx.

In order to rewrite the Isobe–Kakinuma model (1.9) in dimensionless form, we need to rescale
the unknown variables (φ0, φ1, . . . , φN ), depending on the choice of function system {Ψi}. In
view of (1.8), we rescale them by

φi =
λ
√
gh

λpi
φ̃i for i = 0, 1, . . . , N,

so that

Φapp(x, z, t) = λ
√
gh Φ̃app(x̃, z̃, t̃) = λ

√
gh

( N∑

i=0

δpi(z̃ + 1− b̃(x̃))piφi(x̃, t̃)

)
. (4.6)

As before, we will henceforth drop the tildes for the sake of readability. It is also convenient to
introduce the notation

φδi = δpi φ̃i for i = 0, 1, . . . , N,

so that the Isobe–Kakinuma model (1.9) in rescaled variables is




Hpi∂tη +
N∑

j=0

{
∇ ·

(
1

pi + pj + 1
Hpi+pj+1∇φδj −

pj
pi + pj

Hpi+pjφδj∇b
)

+
pi

pi + pj
Hpi+pj∇b · ∇φδj −

pipj
pi + pj − 1

Hpi+pj−1(δ−2 + |∇b|2)φδj
}

= 0

for i = 0, 1, . . . , N,

N∑

j=0

Hpj∂tφ
δ
j + η +

1

2





∣∣∣∣∣∣

N∑

j=0

(Hpj∇φδj − pjH
pj−1φδj∇b)

∣∣∣∣∣∣

2

+ δ−2




N∑

j=0

pjH
pj−1φδj




2
 = 0,

(4.7)
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where H(x, t) = 1 + η(x, t) − b(x). We also use the notations φδ = (φδ0, φ
δ
1, . . . , φ

δ
N )T and

Lδ = Lδ(H, b) = (Lδ
ij(H, b))0≤i,j≤N , where

Lδ
ijψj = −∇ ·

(
1

pi + pj + 1
Hpi+pj+1∇ψj −

pj
pi + pj

Hpi+pjψj∇b
)

− pi
pi + pj

Hpi+pj∇b · ∇ψj +
pipj

pi + pj − 1
Hpi+pj−1(δ−2 + |∇b|2)ψj . (4.8)

Then, (4.7) can be written in a compact form
(

0 −l(H)T

l(H) O

)
∂t

(
η

φδ

)
=

(
δηE

IK,δ

δφδEIK,δ

)
, (4.9)

where

EIK,δ(η,φδ) =
1

2

∫

Rn





N∑

i,j=0

(
1

pi + pj + 1
Hpi+pj+1∇φδi · ∇φδj −

2pi
pi + pj

Hpi+pjφδi∇b · ∇φδj

+
pipj

pi + pj − 1
Hpi+pj−1(δ−2 + |∇b|2)φδiφδj

)
+ η2



 dx. (4.10)

Then, we define the Hamiltonian

H IK,δ(η, φ) = EIK,δ(η,φδ),

where φδ is the solution to
{
l(H) · φδ = φ,

Lδ(H, b)φδ =
(
Lδ
0(H, b)φ

δ
)
l(H).

(4.11)

Here, we used the notation Lδ
0 = (Lδ

00, . . . , L
δ
0N ). We recall that φδ is uniquely determined

by (4.11) thanks to Lemma 3.1.
To analyze the consistency of the Hamiltonian in the shallow water regime, we will further

restrict ourselves to the following two cases:

(H1) In the case of the flat bottom b(x) ≡ 0, pi = 2i for i = 0, 1, . . . , N .

(H2) In the case with general bottom topographies, pi = i for i = 0, 1, . . . , N .

We are now in position to state the consistency of the Hamiltonian of the Isobe–Kakinuma
model with respect to Zakharov’s Hamiltonian of the water wave problem in the shallow water
regime.

Theorem 4.1. Let c0,M be positive constants and m > n
2 +1 an integer such that m ≥ 4(N+1)

in the case (H1) and m ≥ 4([N2 ] + 1) in the case (H2). There exists a positive constant C such
that if η ∈ Hm and b ∈Wm+1,∞ satisfy

{
‖η‖m + ‖b‖Wm+1,∞ ≤M,

c0 ≤ H(x) = 1 + η(x)− b(x) for x ∈ Rn,

then for any δ ∈ (0, 1] and any φ ∈ H̊m, we have

|H δ(η, φ) − H IK,δ(η, φ)| ≤
{
C‖∇φ‖4N+3‖∇φ‖0 δ4N+2 in the case (H1),

C‖∇φ‖4[N
2
]+3‖∇φ‖0 δ4[

N
2
]+2 in the case (H2).
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Remark 4.2. Theorem 2.4 in [12] in fact states the stronger result that the difference between
exact solutions of the water wave problem obtained in [10, 18] and the corresponding solutions of
the Isobe–Kakinuma model is bounded with the same order of precision as above on the relevant
timescale.

Remark 4.3. It is important to notice that the order of the approximation given in Theorem 4.1
is greater than what we could expect based on (4.6), and in particular greater than the one
obtained when using the Boussinesq expansion in the flat bottom case (H1):

φB(t̃, x̃) = Φ̃app
B (x̃, η(x̃, t̃), t̃) with Φ̃app

B (x̃, z̃, t̃) =

N∑

i=0

δ2i(z̃ + 1)2i
(−∆)iφ0(x̃, t̃)

(2i)!

where φ0 is the trace of the velocity potential at the bottom. Here we can only expect that the
approximation is valid up to an error of order O(δ2N+2), which coincides with the precision of
Theorem 4.1 only when N = 0. When N = 0, we recover that the Saint-Venant or shallow-water
equations provide approximate solutions with precision O(δ2); see [10, 18].

Proof of Theorem 4.1. We will modify slightly the strategy in [12]. We first notice that

H δ(η, φ) =
1

2

∫∫

Ω

(
|∇Φ|2 + δ−2(∂zΦ)

2
)
dxdz +

1

2

∫

Rn

η2dx,

H IK,δ(η, φ) =
1

2

∫∫

Ω

(
|∇Φapp|2 + δ−2(∂zΦ

app)2
)
dxdz +

1

2

∫

Rn

η2dx,

where Φ is the unique solution to the boundary value problem of the scaled Laplace’s equa-
tion (4.1) under the boundary conditions (4.3) and (4.5), and the approximate velocity potential
Φapp is defined by

Φapp(x, z) =
N∑

i=0

(z + 1− b(x))piφδi (x),

where φδ = (φδ0, φ
δ
1, . . . , φ

δ
N )T is the solution to





N∑

i=0

Hpiφδi = φ,

N∑

j=0

Lδ
ij(H, b)φ

δ
j = Hpi

N∑

j=0

Lδ
0j(H, b)φ

δ
j for i = 0, 1, . . . , N.

We will denote with tildes, as in [12], the functions obtained when replacing N with 2N + 2.

Hence, φ̃
δ
= (φ̃δ0, φ̃

δ
1, . . . , φ̃

δ
2N+2)

T is the solution to





2N+2∑

i=0

Hpiφ̃δi = φ,

2N+2∑

j=0

Lδ
ij(H, b)φ̃

δ
j = Hpi

2N+2∑

j=0

Lδ
0j(H, b)φ̃

δ
j for i = 0, 1, . . . , 2N + 2.

We also introduce, as in [12], a modified approximate velocity potential Φ̃app by

Φ̃app(x, z) =

2N+2∑

i=0

(z + 1− b(x))piφ̃δi (x), (4.12)

12



and set Φres = Φ − Φ̃app and ϕδ = (ϕδ
0, ϕ

δ
1, . . . , ϕ

δ
N )T with ϕδ

j = φδj − φ̃δj for j = 0, 1, . . . , N .

Then, we decompose the difference H δ − H IK,δ as

H δ(η, φ) − H IK,δ(η, φ)

=
1

2

∫∫

Ω

{(
|∇Φ|2 + δ−2(∂zΦ)

2
)
−

(
|∇Φ̃app|2 + δ−2(∂zΦ̃

app)2
)}

dxdz

+
1

2

∫∫

Ω

{(
|∇Φ̃app|2 + δ−2(∂zΦ̃

app)2
)
−

(
|∇Φapp|2 + δ−2(∂zΦ

app)2
)}

dxdz

= I1 + I2.

We first evaluate I1. It is easy to see that

|I1| ≤
1

2

{
‖∇Φres‖L2(Ω)

(
‖∇Φ‖L2(Ω) + ‖∇Φ̃app‖L2(Ω)

)

+ δ−2‖∂zΦres‖L2(Ω)

(
‖∂zΦ‖L2(Ω) + ‖∂zΦ̃app‖L2(Ω)

)}
. (4.13)

By using [12, Lemma 8.1] with k = 0 as well as [12, Lemma 6.4] with (k, j) = (0, 2N +1) in the
case (H1) and [12, Lemma 6.9] with (k, j) = (0, 2[N2 ] + 1) in the case (H2), we find

‖∇Φres‖L2(Ω) + δ−1‖∂zΦres‖L2(Ω) ≤
{
C‖∇φ‖4N+3 δ

4N+3 in the case (H1),

C‖∇φ‖4[N
2
]+3 δ

4[N
2
]+3 in the case (H2),

provided that m ≥ 4(N + 1) in the case (H1), and m ≥ 4([N2 ] + 1) in the case (H2). Here and
in what follows, C denotes a positive constant depending on N , m, c0, and M , which changes
from line to line. On the other hand, it follows from elliptic estimates given in [10, 18] that

‖∇Φ‖L2(Ω) + δ−1‖∂zΦ‖L2(Ω) ≤ C‖∇φ‖0.

Moreover, by the definition (4.12) and using [12, Lemma 3.4] with k = 0, we see that

‖∇Φ̃app‖L2(Ω) + δ−1‖∂zΦ̃app‖L2(Ω) ≤ C
(
‖∇φ̃δ0‖0 + ‖(φ̃δ1, . . . , φ̃δ2N+2)‖1 + δ−1‖(φ̃δ1, . . . , φ̃δ2N+2)‖0

)

≤ C
(
‖∇φ̃δ0‖0 + δ−1‖(1 − δ2∆)

1

2 (φ̃δ1, . . . , φ̃
δ
2N+2)‖0

)

≤ C‖∇φ‖0.

Plugging the above estimates into (4.13), we obtain

|I1| ≤
{
C‖∇φ‖4N+3‖∇φ‖0 δ4N+3 in the case (H1),

C‖∇φ‖4[N
2
]+3‖∇φ‖0 δ4[

N
2
]+3 in the case (H2),

(4.14)

provided that m ≥ 4(N + 1) in the case (H1), and m ≥ 4([N2 ] + 1) in the case (H2).
We proceed to evaluate I2 by noticing that, after the calculations in [12, p. 2009],

I2 =
1

2

2N+2∑

i=0

2N+2∑

j=0

(
Lδ
ij(H, b)φ̃

δ
j , φ̃

δ
i

)
L2 −

1

2

N∑

i=0

N∑

j=0

(
Lδ
ij(H, b)φ

δ
j , φ

δ
i

)
L2

=
1

2

N∑

j=0

2N+2∑

i=N+1

(
(Lδ

ij(H, b)−HpiLδ
0j(H, b))ϕ

δ
j , φ̃

δ
i

)
L2

− 1

2

2N+2∑

j=N+1

2N+2∑

i=N+1

(
(Lδ

ij(H, b)−HpiLδ
0j(H, b))φ̃

δ
j , φ̃

δ
i

)
L2 .
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Therefore,

|I2| ≤ C
{
‖ϕδ‖2N∗+3 + ‖(φ̃δN+1, . . . , φ̃

δ
2N+2)‖2N∗+3

+ δ−2
(
‖ϕδ‖2N∗+1 + ‖(φ̃δN+1, . . . , φ̃

δ
2N+2)‖2N∗+1

)}
‖(φ̃δN+1, . . . , φ̃

δ
2N+2)‖−(2N∗+1)

with N⋆ = N in the case (H1) and N⋆ = [N2 ] in the case (H2). Using [12, Lemma 6.2] with
(k, j) = (2N + 3, N), (2N + 1, N + 1), (−2N − 1, N + 1) in the case (H1) and [12, Lemma 6.7]
with (k, j) = (2[N2 ] + 3, [N2 ]), (2[

N
2 ] + 1, [N2 ] + 1), (−2[N2 ]− 1, [N2 ] + 1) in the case (H2), we obtain

|I2| ≤
{
C‖∇φ‖4N+2‖∇φ‖0 δ4N+2 in the case (H1),

C‖∇φ‖4[N
2
]+2‖∇φ‖0 δ4[

N
2
]+2 in the case (H2),

(4.15)

provided that m ≥ 4N + 3 in the case (H1), and m ≥ 4[N2 ] + 3 in the case (H2). Now, (4.14)
and (4.15) give the desired estimate.
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[1] J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d’un canal rectangu-
laire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement
pareilles de la surface au fond, J. Math. Pure. Appl., 17 (1872), 55–108.

[2] W. Craig, On the Hamiltonian for water waves, RIMS Kôkyûroku No.2038 (2017), 98–114.
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