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Abstract. Besides the ecological issues, recycling of plastics involves
economical matters that encourage industrial firms to invest in the field.
Part of them have focused on the waste sorting phase by designing op-
tical device able to discriminate on line among plastics categories. For
achieving ecological and economical objectives, sorting errors must be
minimized to avoid serious recycling problems and significant quality
degradation of the final recycled product. Even with the most recent
acquisition technologies based on spectra imaging, plastic recognition
remains a tough task due to the presence of imprecision and uncertainty,
e.g., variability in the measurement due to atmospheric disturbances,
ageing of plastics, dark or black coloured materials etc. The enhancement
of the recent sorting techniques based on classification algorithms leads
to rather good performance results, however for such applications, the
remaining errors have serious consequences. In this article, we propose an
imprecise classification algorithm to minimize sorting errors of standard
classifiers when dealing with incomplete data by both integrating the
processing of classification’s doubt and hesitation in the decision process
and improving the classification performances. To this aim, we propose
a relabelling procedure that allows to better represent the imprecision
of the learning data and we introduce the belief functions framework
to represent the posterior probability provided by a classifier. Finally,
the performances of our approach compared to existing imprecise classi-
fiers is illustrated on the sorting problem of four plastics categories from
mid-wavelength infra-red spectra acquired in an industrial context.

Keywords: Machine Learning· Imprecise Classification · Reliable Clas-
sification · Belief Functions · Plastic Separation

1 Introduction

Plastic recycling is a promising alternative to landfills for facing up to the fastest
growing waste stream in the world [7]. However for physico-chemical reasons re-
lated to the non-miscibility between plastics, most plastics must be recycled
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separately. Plastic category identification is then a major challenge in the re-
cycling process. With the emergence of hyperspectral imaging, some industrial
firms have designed sorting devices able to discriminate several categories of
plastics based on their absorption or transmittance spectra. The sorting pro-
cess is generally performed with supervised classification that has been well
developed with the emergence of computer sciences and data science [17, 38, 22].
The classification performance might be affected by several issues such as noises
or overlapping regions in the feature space [34, 21]. The latter problem occurs
when some samples from different classes share very similar characteristics. We
are particularly faced with these problems when attempting to classify industri-
ally acquired spectra. Indeed, within industrial context, the acquisition process
is subject to technical and financial constraints in order to ensure throughput
and financial competition. For this reason one cannot expect the same quality
of data as for equivalent laboratory measures. Several issues imply the presence
of imprecision and uncertainty in the acquired spectra : i) available spectral
range might be insufficient ; ii) plastic categories to recycle are chemically close
; iii) atmospheric perturbations may cause noises ; iv) plastics ageing and plas-
tics additives are known to change spectral information ; v) impurities like dust
deposits or remains of tags will also produce spectral noises. As in many other
decision problems solving, errors of classification may have serious consequences,
e.g, medical diagnosis applications. Regarding plastic sorting, errors of identifi-
cation will cause serious recycling difficulties and significant degradation of the
secondary raw material performances and thus quality degradation of the re-
cycled products. Usually, the problem of plastic identification is treated using
standard classification algorithms that are designed to produce point predictions,
i.e., a single plastic category. In the cases of imperfect data, standard classifiers
get confused and commit inevitable errors. This brings us to consider alternative
representation of the information that take into account imprecision and uncer-
tainty to achieve more accurate classification. Modern theories of uncertainty
such as fuzzy subsets [35], possibility theory [13], imprecise probabilities [33] or
belief function [26] [30] offer better representations of the data imperfection of
information. Several classification algorithms have been proposed in these frame-
works. The majority of them are extensions of standard algorithms. We can cite
the fuzzy version of the well known k-means algorithm [14], fuzzy and evidential
versions of k-Nearest Neighbour (k-NN) [18, 9] or even some fuzzy and evidential
revisions of neural networks algorithms [19, 10].

In this paper we consider the case where original imperfections come from
data feature only. Available training examples labels are precise and considered
trustworthy, e.g., based on laboratory measures and expertise. In order to better
represent all available information, we think that labels should conform with the
feature imprecision. Say if an object of class θ1 has its vector of features x in
the overlapping region θ1 and θ2, then the example should be relabelled by
the set {θ1, θ2}. In order to achieve such representation we propose to relabel
each training example in accordance with their discriminatory nature. Hence
new labels are subsets of the original set of classes. This imprecise relabelling
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would actually permit to better represent the learning data by mapping overlaps
in the feature space. The resulting imprecise label can be naturally treated in
the belief function theory context. Indeed the belief function theory [26] is an
interesting framework to represent imprecise and uncertain data by allowing
the allocation of a probability mass for imprecise data. Thus, imprecision is
better captured in this framework compared to the probability framework where
equiprobability and imprecision are confused. The recent growing interest to this
theory has allowed to develop techniques to resolve a diverse panel of problems
such as estimation [11, 16], standard classification [9, 32], or even hierarchical
classification [1, 23].

Our proposed approach, called Evidential CLAssification of incomplete data
via Imprecise RElabelling (ECLAIRE), is based on a relabelling procedure of the
training examples that allows to better represent the missing information about
some data features. Then a classifier is trained on the relabelled data producing
a posterior belief function. With imprecise relabelling we try to quantify, using
belief function, the extend to which a subsets of classes is reliable and relevant
as output for a new data. In other words, we look for the set of classes which
any more precise subset output would lead inevitably to an error. The resulting
classification algorithm can enhance the classification accuracy as well as cope
with difficult examples by allowing less precise but more reliable classification
output which will optimize the recycling process.

The remainder of this paper is organized as follows: section 2 sets the main
notations and provides a reminder on supervised classification and elements of
belief function theory; in the section 3 we present the proposed approach ; the
section 4 briefly describes the related works ; section 5 presents results of exper-
imentation on the sorting problem of four plastics.

2 Theoretical background

Classification is a technique allowing to assign objects to categories from the ob-
servations of several of their characteristics. A classifier is a function that maps
an object represented by its values of characteristics on a finite set of variables,
to a category represented by a value of a categorical variable. More precisely, let
us consider a set of n categories represented by a set Θ = {θ1, θ2, . . . , θn}, also
refereed as a set of labels or classes. In the framework of belief function Θ is
called a frame of discernment. Each θj , j ∈ {1, ..., n} denotes a singleton which
represents the lowest level of discernible information in Θ. Let us denote by
X1, X2, . . . , Xp, p variables where the taken values represent the characteristics,
also called attributes or features, of the objects, to be classified. In the rest of
the paper we refer to Θ as a set of classes and to (X1, X2, . . . , Xp) as a vector
of features where ∀i ∈ {1, . . . , p}, Xi refers both to the name of the feature and
to the space of the values taken by the feature, i.e., Xi ⊆ R. For an object x

belonging to X =
p∏
i=1

Xi ⊆ Rp, let θ(x) ∈ Θ denote the unknown label that

should be associated to x.
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In this article, we focus on a supervised classification problem, i.e., the classifier
maps new examples by inferring form labelled training examples. The specificity
of the considered data, referred as incomplete data, is that some features are
missing. The proposed classification approach qualified as imprecise integrates
the incompleteness of the data in its process to predict subsets of classes compris-
ing the true class when standard counterpart classifier would have predicted the
wrong class. To this aims we diverted standard probabilistic classifiers from their
natural use for computing probability on sets of classes. Such uncertain result-
ing information is then captured by belief functions. The following subsections,
briefly recalls the notions discussed.

2.1 Supervised classification

To determine θ(x) in a supervised classification manner, a standard classifier
δΘ : X → Θ is trained on a set of examples (xi, θi)1≤i≤N such that for all
1 ≤ i ≤ N , xi belongs to X and θi to Θ. By standard classifier we mean a
classifier that assigns to x a single class θ(x) = θj , j ∈ {1, . . . , n}. In some cases
when the input data is too large or redundant, it may be appropriate to perform
some extraction features before the training of δΘ. By reducing the dimension of
X , i.e., working with a reduced feature space X ′ ⊆ Rp′ with p′ < p, the extraction
such as Principal Component Analysis (PCA), Linear Discriminant Analysis
(LDA) or Independent Component Analysis (ICA) facilitates the learning and
may enhance the classification performance. When feature extraction is designed
taking into account the labels of the training examples it is termed as supervised
feature extraction, e.g., LDA also known as Fisher discriminant analysis reduces
the number of features to n−1 by looking for a linear combination of the variables
maximizing the within-groups and minimizing between-groups variance.

2.2 Probabilistic classifier and decision rule

When δΘ can also provide for x a posterior probability distribution p(.|x) : Θ →
[0, 1], it is called a probabilistic classifier. Many classifier algorithms base their de-
cision only on p(.|x) as follows: θ(x) = arg max

j=1,...,n
p(θj |x). For more sophisticated

decision, one can use decision rule technique classically used in decision theory.
Let A = {a1, a2, . . . , am} be a finite set of actions that can be taken. In the case
of a standard classifier, an action a ∈ A corresponds to assign a class θ ∈ Θ to an
object x. In such case, we simplify by setting A = Θ. In order to compare deci-
sions in A or to compare the classifier δΘ to another decision rule, two functions
are introduced: loss function and risk function. A loss function L : A× Θ → R
is considered to quantify the loss L(a, θ) incurred when choosing the action
a ∈ A while the true state of nature is θ ∈ Θ. A risk function rδΘ : A → R is
defined as the following expectation: rδΘ (a) = Ep(.|x)(L(a, θ)). In the case of dis-

crete and finite probability distribution, we have rδΘ (θj) =
n∑
k=1

L(θj , θk) p(θk|x),

j ∈ {1, . . . , n}. Thus, considering the decision rule δΘ, the class θj minimizing
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the risk rδΘ (θj) over Θ should be chosen. Note that the decision rule based only
on p(.|x) can be meet if the loss function L is defined as L(θj , θi) = 1, if i 6= j,
and L(θj , θj) = 0.

2.3 Elements of the belief function theory

Due to the additivity constraint inherent to the definition of a probability distri-
bution, one cannot built a probability distribution when measures, observations,
etc. are imprecise. The belief function theory as an extension of probability the-
ory allows to assign masses to imprecise data. Two levels are considered when
introducing belief functions: credal and pignistic levels. In the credal level, be-
liefs are captured and quantified by belief functions, while in the pignistic level
or decision level, beliefs are quantified using probability distributions.

Credal level A mass function, also called basic belief assignment (bba), is a
set function m : 2Θ → [0, 1] satisfying

∑
A⊆Θ

m(A) = 1. For a set A ⊆ Θ, the

quantity m(A) is interpreted as a measure of evidence committed exactly to
the set A and not to any more specific subsets of A. The elements A ∈ 2Θ

such that m(A) > 0 are called focal elements and they form a set denoted F.
(m,F) is called body of evidence. The total belief committed to A is measured
by the sum of all masses of A’s subsets. This is expressed by the belief function
Bel : 2Θ → [0, 1], Bel(A) =

∑
B⊆Θ,B⊆A

m(B). Furthermore the plausibility of

A, Pl : 2Θ → [0, 1], quantifies the maximum amount of support that could be
allocated to A, Pl(A) =

∑
B⊆Θ,B∩A6=∅

m(B).

Pignistic level In the transferable belief model [29], the decision is made in
the pignistic level. The evidential information is transferred into a probabilistic
framework by means of the pignistic probability distribution betPm, for θ ∈ Θ,
betPm(θ) =

∑
A⊆Θ,A3θ

m(A)/|A|, where |A| denotes the number of elements in A.

Decision rule The risk associated with a decision rule is adaptable for the
evidential framework [8, 27, 12]. In the case of imprecise data, the set of actions
A is 2Θ \ {∅}. In order to decide among the elements of A according to the
chosen loss function L, it is possible to adopt different strategies. Two strategies
are proposed in the literature: the optimistic strategy by minimizing rδΘ or the
pessimistic strategy by minimizing rδΘ which are defined as follows:

r(A) =
∑
B⊆Θ

m(B) min
θ∈B

L(A, θ), r(A) =
∑
B⊆Θ

m(B) max
θ∈B

L(A, θ). (1)
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3 Problem statement and Proposed approach

3.1 Imprecise supervised classification

For a new example x, the output of an imprecise classifier is a set of classes,
all its elements are candidates for the true class θ and the missing information
prevent more precise output. In this case a possible output of the classifier is
the information: ”θ ∈ A”, A ⊆ Θ. To perform an imprecise classification, two
cases are to be distinguished related to the training examples: case 1 ) learning
examples are precisely labelled, i.e., only a single class is assigned to each exam-
ple; case 2 ) one or more classes are assigned to each training example. In the
first case described in the subsection 2.1, standard classifiers give a single class
as prediction to a new object x but some recent classifiers [36, 5, 6] give a set of
classes as prediction of x. Some of these recent classifiers base their algorithm
on the posterior probability provided by standard classifiers. More precisely, if
we denotes by P(.|x) the probability measure associated to the posterior prob-
ability distribution p(.|x), P(A|x) =

∑
θ∈A

p(θ|x), A ⊆ Θ is used to determine

the relevant subset of classes to be assigned to x. In the second case when the
imprecision or doubt is explicitly expressed by the labels, [2, 37, 4], a classifier
δ2Θ : X → 2Θ \ {∅} is trained on a set of examples (xi, Ai)1≤i≤N such that for
all 1 ≤ i ≤ N , xi belongs to X and ∅ 6= Ai ⊆ Θ. This case is refereed in our
paper as imprecise supervised classification.

3.2 Problem statement

Let us consider the supervised classification problem where the available training
examples that are precisely labelled (case 1 ) (xi, θi)1≤i≤N , xi ∈ X and θi ∈ Θ are
such that i) the labels θi=1,...,N are trusted e.g. they may derive from expertise on
other features x∗i=1,...,N which contain more complete information than xi=1,...,N ,
ii) this loose of information induces overlapping on some examples, i.e., ∃i, j ∈
{1, ..., N} such that the characteristics of xi are very close to those of xj but
θi 6= θj . When a standard classifier is trained on such data, it will commit
inevitable errors. The problem that we handle in this paper is how to improve
the learning step to better consider this type of data and get better performances
and reliable predictions.

3.3 The imprecise classification approach

The proposed approach of imprecise classification is constituted by three steps:
i) the relabelling step which consists of analysing the training example in
order to add to the class that is initially associated to an example the classes
associated to the other examples having characteristics very close. Thus a new
set of examples is built: (xi, Ai)1≤i≤N such that for all 1 ≤ i ≤ N , xi belongs
to X and ∅ 6= Ai ⊆ Θ; ii) the training step which consists on the training
of probabilistic classifier δ2Θ : X → 2Θ \ {∅}. δ2Θ provides for a new object
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x ∈ X a posterior probability distribution on 2Θ which is also a mass function
denoted m(.|x). The trained classifier ignores the existence of inclusion or in-
tersection between subsets of classes. This unawareness of relations between the
labels may seem counter intuitive, but is compatible with the purpose of find-
ing a potentially imprecise label associated to a new incoming example; iii) the
decision step which consists of proposing a loss function adapted for the case
of imprecise classification that calculates the prediction that minimize the risk
function associated to the classifier δ2Θ . Fig.1 illustrates the global process and
the steps of relabelling, classification and decision are presented in details in the
following.

Training phase

Preprocessings

(xi, θi)i=1,...,N ∈ Rp ×Θ

(x′i, θi)i=1,...,N ∈ Rn−1 ×Θ

Ai=1,...,N ∈ A ⊆ 2Θ

x′′i=1,...,N ∈ R|A|−1

First LDA extraction

Relabelling
procedure

Second LDA
extraction

Training
of δ2Θ on

(x′′i , Ai)i=1,...,N

Treatment of a new un-
labelled example x ∈ Rp

x ∈ Rp

x′′ ∈ R|A|−1

m(.|x)

∅ 6= A ∈ 2Θ

Second LDA
extraction

Application
of δ2Θ

Decision
problem

Fig. 1. Steps of evidential classification of incomplete data

Relabelling procedure First we perform LDA extraction on the training ex-
amples (cf Fig.1) in order to reduce the complexity. The resulting features are
x′i ∈ Rn−1, i = 1, ..., N where n = |Θ|. Then we consider a set of C standard
classifiers δ1Θ, ..., δ

C
Θ where on each classifier δcΘ : Rn−1 → Θ, c ∈ {1, ..., C} we

compute leave-one-out (LOO) cross validation predictions for the training data
(x′i, θi)i=1,...,N .

The relabelling of the example (x′i, θi) is based on a vote procedure of the
LOO predictions of the C classifiers. The vote procedure is the following: when
more than 50% majority of the classifiers predict a class θmaji , the example is
relabelled as the union Ai = {θi, θmaji}. Note that when θmaji = θi the original
label remains, i.e., Ai = θi. If none of the predicted classes from the C classifiers
gets the majority, then the ignorance is expressed for this example by relabelling
it as Ai = Θ. Remark that the new labels are consistent with the original classes
that were trusted. The fact that several (C) classifiers are used to express the
imprecision permits a better objectivity on the real imprecision of the features,
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i,e, the example is difficult not only for a single classifier. We denote by A the
set of different subsets Ai of Θ considered in the relabelling examples.

Note that, we have limited the new labels cardinal to 2 elements except when
expressing ignorance. This is done for avoiding too unbalanced training sets, but
more general relabelling could be considered. Once all the training examples are
relabelled, a classifier δ2Θ can be trained.

Learning δ2Θ As indicated throughout this paper, δ2Θ is learnt using the
new labels ignoring the relations that might exist between the elements of A.
Reinforcing the idea of independence of treatment between the classes, LDA is
applied to the relabelled training set (xi, Ai)i=1,...,N . This results to the reduction
of the space dimension from p to |A| − 1 which better expresses the repartition
of relabelled training examples. For the training example i ∈ {1, ..., N}, let
x′′i ∈ R|A|−1 be the new projection of xi on this |A| − 1 dimension space. The
classifier δ2Θ is finally learnt on (x′′i , Ai)i=1,...,N .

Decision problem As recalled in subsections 2.2 and 2.3, the decision to
assign a new object x to a single class or a set of classes usually relies on
the minimisation of the risk function which is associated to a loss function
L : 2Θ \ {∅} × Θ → R. As mentioned in the introduction of this paper, the
application of our work concerns situations where errors may have serious con-
sequences. It would then be legitimate to consider the pessimistic strategy by
minimizing rδΘ . Furthermore, in the definition of rδΘ , equation (1), the quantity
max
θ∈B

L(A, θ) concerns the loss incurred by choosing A ⊆ Θ, when the true nature

is comprised in B ⊆ Θ. On the basis of this fact, we proposed a new definition
of the loss function, L(A,B), A,B ⊆ Θ, which directly takes into account the
relations between A and B. This is actually a generalisation of the definition
proposed in [6] that is based on F-mesure, recall and precision for imprecise
classification. Let us consider A,B ∈ 2Θ \ {∅}, where A = θ(x) is the prediction
for the object x and B is its state of nature. The Recall is defined as the pro-
portion of relevant classes included in the prediction θ(x). We define the recall
of A and B as:

R(A,B) =
|A ∩B|
|B|

. (2)

The precision is defined as the proportion of classes in the prediction that are
relevant. We define the precision of A and B as:

P (A,B) =
|A ∩B|
|A|

. (3)

Considering these two definition, the F-measure can be defined as follows:

Fβ(A,B) =
(1 + β2)PR

β2P +R
=

(1 + β2)|A ∩B|
β2|B|+ |A|

. (4)
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Note that β = 0, induce Fβ(A,B) = P (A,B), whereas when β →∞,
Fβ(A,B) →

β→∞
P (A,B). Let us comment on some situations according to the

”true set” B and the predicted set A. The worse scenario of prediction is when
there is no intersection between A and B. This would always be sanctioned by
Fβ(A,B) = 0. On the opposite, when A = B, Fβ(A,B) = 1 for every β. Between
those extreme cases, the errors of generalisation i.e., B ⊂ A are controlled by
the precision while the errors of specialisation i.e., A ⊂ B are controlled by the
recall. Finally, the loss function Lβ : 2Θ \ {∅} × 2Θ \ {∅} → R is extended:

Lβ(A,B) = 1− Fβ(A,B). (5)

For an example x to classify, which mass function m(.|x) has been calculated by
δ2Θ , we predict the set A minimizing the following risk :

Riskβ(A) =
∑
B⊆Θ

m(B)Lβ(A,B). (6)

4 Related Works

Regarding relabelling procedures, many research have been carried out to iden-
tify suspect examples with the intention to suppress or relabel them into a con-
current more appropriate class [15, 20]. This is generally done to enhance the
performance. Other approach consist in relabelling into imprecise classes. This
has been done for testing evidential classification approach on imprecise labelled
data in [37]. But, as already stated, our relabelling serves a different purpose that
is better mapping overlaps in the feature space. Concerning the imprecise classi-
fication, several works have been dedicated to tackle this problem. Instead of the
term ”imprecise classification” that is adopted in our article, authors use terms
like ”nondeterministic classification” [6], ”reliable classification” [24], ”indeter-
minate classification” [36] [5], ”set-valued classification” [28] [31] or ”conformal
prediction” [3] (see [24] for a short state of the art). In [36], the Naive Credal
Classifier (NCC) is proposed as the extension of Naive Bayes Classifier (NBC)
to sets of probability distributions. In [24] the authors propose an approach that
starts from the outputs of a binary classification [25] using classifier that are
trained to distinguish aleatoric and epistemic uncertainty. The outputs are epis-
temic uncertainty, aleatoric uncertainty and two preference degrees in favor of
the two concurrent classes. [24] generalizes this approach to the multi-class and
providing set of classes as output. Closer to our approach are approaches of [4]
and [6]. The approach in [6] is based on a posterior probability distribution pro-
vided by a probabilistic classifier. The advantage of such approach and ours is
that any standard probabilistic classifier may be used to perform an imprecise
classification. Our approach distinguishes itself by the relabelling step and by
the way probabilities are allowed on sets of classes. To the best of our knowl-
edge existing works algorithms do not train a probabilistic classifier on partially
labelled data to quantify the body of evidence. Although we insisted for the use
of standard probabilistic classifier δ2Θ unaware of relations between the sets, it
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is possible to run our procedure with an evidential classifier as the evidential
k-NN [4].

5 Illustration

5.1 Settings

We performed experiments on the classification problem of four plastic categories
designated plastics A, B, C and D on the basis of industrially acquired spectra.
The total of 11540 available data examples is summarized in Table 1. Each plastic
example was identified by experts on the basis of laboratory measure of atten-
uated total reflectance spectra (ATR) which is considered as a reliable source
of information for plastic category’s determination. As a consequence, original
training classes are trusted and were not questioned. However data provided by
the industrial devices may be challenged. These data consist in spectra composed
of the reflectance intensity of 256 different wavelengths. Therefore and for the
enumerated reasons in section 1, the features are subject to ambiguity. Prior to
experiments, all the feature vectors, i.e., spectra, were corrected by the standard
normal variate technique to avoid light scattering and spectral noise effects. We

Table 1. Number of spectra of each original class in learning and testing bases.

Classes Category A Category B Category C Category D

Learning base 1416 1412 1425 1434

Testing base 1469 1458 1454 1472

implemented our approach and compared it to the approaches in [4] and [6]. The
implementation is made using R packages, using existing functions for the ap-
plication of the following 8 classifiers naive Bayes classifier: (nbayes), k-Nearest
Neighbour (k-NN), decision tree (tree), random forest (rf), linear discriminant
analysis (lda), partial least squares discriminant analysis (pls-da), support vector
machine (svm) and neural networks (nnet). 3

5.2 Results

In order to apply our procedure, we must primary choose a set of classifiers
to perform the relabelling. These classifiers are not necessarily probabilistic
but producing point prediction. Thus, for every experimentation, our algorithm
ECLAIRE was performed with the ensemble relabelling using 7 classifiers: nbayes,
k-NN, tree, rf, lda, svm, nnet 4. Then, we are able to perform the ECLAIRE

3 Experiments concerning these learning algorithm rely on the following functions
(and R packages) : naiveBayes (e1071), knn3 (caret), rpart (rpart), randomForest
(randomForest), lda (MASS), plsda (caret), svm (e1071), nnet (nnet).

4 In order to limit unbalanced classes, we choose to exclude form the learning base
examples which new labels count less than 20 examples
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imprecise version of a selected probabilistic classifier. Fig. 2, shows the recall
and precision scores of the probabilistic classifier nbayes to show the role of β.
We see the same influence of β as mentioned in [6]. Indeed, (cf subsection 3.3),
with small values of β we have good precision, traducing the relevance of predic-
tion, i.e., the size of the predicted set is reasonable; while high values of β give
good recall, meaning reliability, i.e., better chance to have true class included in
the predictions. The choice of β should then result form a compromise between
relevance and reliability requirement.

0 2 4 6 8 10 12

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

beta

 

 

 

Precision
Recall

Fig. 2. Recall and precision of ECLAIRE using nbayes, i.e. δ2Θ is nbayes, against β.

In order to evaluate the performances of ECLAIRE, we compared our results
to the classifier proposed in [6] that is called here nondeterministic classifier.
As nondeterministic classifier and ECLAIRE are set up for a parameter β, we
decided to set βs such that global recalls equal to 0.90, and compare global
precisions on a fair basis. For even more neutrality regarding the features used
in both approach, we furnish to the nondeterministic classifier, the same reduced
features x′′i , i = 1, ..., N , that those used by ECLAIRE in the training phase (see
Fig. 1). The 7 first columns of Table 2 shows the so obtained precisions for 7

Table 2. Precision P of ECLAIRE compared with nondeterministic with βs chosen
such that recalls equal to 0.90.

nbayes k-NN tree rf lda pls-da svm evidential k-NN

Nondeterministic 86.70 86.94 85.00 86.52 83.41 85.35 88.20 86.58
ECLAIRE 87.78 87.89 83.88 87.45 82.94 86.33 88.31 86.69

classifiers. These results show the competitiveness of our approach for most of the
classifiers, especially nbayes, k-NN, rf and pls-da. However, these results are only
partial since they do not show the general trend for different βs that are generally
in favour of our approach. Therefore we present more complete results for nbayes
and svm in Fig. 3., showing evaluation of precision score against recall score for
several values of β varying in [0, 6]. On the same figure, we also present the results
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of nondeterministic classifier with different input feature (in black): raw features,
i.e., xi ∈ Rp, LDA reduced features, i.e., x′i ∈ Rn−1 and the same features as
those used for ECLAIRE, i.e., x′′i ∈ R|A|−1 (see Fig. 1 for more details). Doing
so, we show that the good performances of ECLAIRE are not only attributable
to extraction phase. To facilitate the understanding of the results plotted in Fig.
3, one should understand that the best performances are those illustrated by
points on the top right of the plots, i.e., higher precision and recall scores. We
observe that ECLAIRE generally makes a better compromise between the recall
and precision scores for the used classifiers. Regarding the special case when
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Fig. 3. Precision vs recall of Nondetermisitic (ND) and ECLAIRE

ECLAIRE is performed with an evidential classifier taking imprecise labelled
training example (see section 4), the comparison is less straightforward. We
considered the evidential k-NN [9] for imprecise labels by minimizing the error
suggested in [39]. Using this evidential k-NN as a classifier δ2Θ in ECLAIRE
procedure is straightforward. Concerning the application of nondeterministic
classifier, we decided to keep the same parameter and turn the classifier into
probabilistic by applying the pignistic transformation to the mass output of the
k-NN classifier (see column of Table 2 ). ECLAIRE has a slightly better results.

6 Conclusion

In this article, an evidential classification of incomplete data via imprecise rela-
belling was proposed. For any probabilistic classifier, our approach proposes an
adaptation to get more cautious output. The benefit of our approach was illus-
trated on the problem of sorting plastics and showed competitive performances.
In the future works we plan to exploit our procedure to provide cautious decision
for the problem of plastic sorting. This application requires high reliability of
the decision for preserving the physicochemical properties of the recycle product.
At the same time, the decision shall ensure reasonable relevance to guarantee
financial interest, indeed the more one plastic category is finely sorted the more
benefice the industrial gets.
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Banzhoff, N., Hüllermeier, E.: Reliable classification: Learning classifiers that dis-
tinguish aleatoric and epistemic uncertainty. Information Sciences 255, 16–29
(2014)

26. Shafer, G.: A mathematical theory of evidence, vol. 42. Princeton university press
(1976)

27. Shafer, G.: Constructive probability. Synthese 48(1), 1–60 (1981)
28. Shafer, G., Vovk, V.: A tutorial on conformal prediction. Journal of Machine Learn-

ing Research 9(Mar), 371–421 (2008)
29. Smets, P.: Non-Standard Logics for Automated Reasoning. Academic Press (1988)
30. Smets, P., Kennes, R.: The transferable belief model. Artificial intelligence 66(2),

191–234 (1994)
31. Soullard, Y., Destercke, S., Thouvenin, I.: Co-training with credal models. In:

IAPR Workshop on Artificial Neural Networks in Pattern Recognition. pp. 92–
104. Springer (2016)

32. Sutton-Charani, N., Imoussaten, A., Harispe, S., Montmain, J.: Evidential bagging:
Combining heterogeneous classifiers in the belief functions framework. In: Interna-
tional Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems. pp. 297–309. Springer (2018)

33. Walley, P.: Towards a unified theory of imprecise probability. International Journal
of Approximate Reasoning 24(2-3), 125–148 (2000)

34. Xiong, H., Li, M., Jiang, T., Zhao, S.: Classification algorithm based on nb for
class overlapping problem. Appl. Math 7(2L), 409–415 (2013)

35. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems
1(1), 3–28 (1978)

36. Zaffalon, M.: The naive credal classifier. Journal of statistical planning and infer-
ence 105(1), 5–21 (2002)

37. Zhang, J., Subasingha, S., Premaratne, K., Shyu, M.L., Kubat, M., Hewawasam,
K.: A novel belief theoretic association rule mining based classifier for handling
class label ambiguities. In: Proc. Workshop Foundations of Data Mining (FDM’04),
Int’l Conf. Data Mining (ICDM’04) (2004)

38. Zheng, Y., Bai, J., Xu, J., Li, X., Zhang, Y.: A discrimination model in waste
plastics sorting using nir hyperspectral imaging system. Waste Management 72,
87–98 (2018)

39. Zouhal, L.M., Denoeux, T.: An evidence-theoretic k-nn rule with parameter opti-
mization. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Appli-
cations and Reviews) 28(2), 263–271 (1998)


