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Objectives.

The objective is to provide a method of asymptotic evaluation of integrals such as

I(x, f ) = b a f x (t) dt et I π (x, f ) = b a f x (t)π(t) dt when x tends to +∞.
This is a classic and important subject in mathematics : the evaluation of a fine and often delicate phenomenon. The proof we find are, in general, very technical and difficult to follow. These difficulties complicate the approach considerably in unconventional or even finer contexts.

We will therefore try here to give a simple approach and give a tool allowing access to this problem. This is the central result established in 3, i. e. it is sufficient to know an equivalent of f -1 in the vicinity of the point where f reaches its maximum to obtain an equivalent of these integrals.

We will then give classical or not classical examples of such equivalents, ending with 3 delicate examples, with an infinite number of terms asymptotic for the last example.

In the following, for x quite large, f x π is assumed to be integrable on the integration interval, an interval that may not be a segment.

1 Definitions.

Let's start with some definitions :

Definition :

Under the condition of existence, one poses

I π (x, f ) = b a f x (t)π(t) dt and J(x, f ) = 1 0 f (t x ) dt.
We will abregate I π (x, f ) en I(x, f ) si π = 1.

We will study I π (x, f ) for x → ∞ and J(x, f ) for x → 0.

It should also be noted that the integration interval is not specified for I π (x, f ), when it's supposed to be [0.1] for J(x, f ).

Definition :

It is said that a function f : [a, b] → R + satsifies the (H)-hypothesis if : f defines an homeomorphism on a neighborhood of a such as [a, a + α], f defines a C 1 -diffeomorphism on a neighborhood of a such as [a, a + α], f (a) = 1 and ∀c ∈]a, b], ∃ρ ∈]0, 1[, f ≤ ρ sur [c, b].
If futhermore, f is a decreasing diffeomorphism from ]a, b] to [0, 1[, we'll say that f satisfies the (H )hypothesis.

2 An adjonction between I π and J.

Proposition :

Let Π the primitive of π which vanishes in a. If f satisifies (H ) then I π (x, f ) = J( 1x , Π • f -1 ).

Proof :

We use the variable change u = f (t) :

I π (x, f ) = - 1 0 u x .(f -1 ) (u).π • f -1 (u) du = -[u x Π • f -1 (u)] 1 0 =0 + x 1 0 u x-1 π • f -1 (u) du.
We then put u x = v :

I π (x, f ) = 1 0 Π • f -1 (v 1 
x ) dv as wished.

This writing is effective for obtaining comparison relationships for the study of I π (x, f ) in +∞ as shown in the following proposal :

3 Comparison relationships on J, then on I π .

Proposition :

If f = 1 o(g) (resp. f = 1 O(g)) with J(x, g) = 0 e o( 1 x ) , then J(x, f ) = 0 o(J(x, g)) (resp. J(x, f ) = 0 O(J(x, g)).
Proof :

J(x, f ) = a 0 f (v x ) dv + 1 a f (v x ) dv. But f (v) ≤ εg(v) if 1 -α ≤ v ≤ 1.
We then choose a = (1 -α)

1

x and we have :

|J(x, f )| ≤ a 0 f (v x ) dv ≤aN∞(f ) + ε 1 a g(v x ) dv ≤J(x,g) . But (1 -α) 1 x = o(J(x, g)) because J(x, g) = e o( 1 x ) and so aN ∞ (f ) ≤ εJ(x, g) if x is close to 0. So, for such x, |J(x, f )| ≤ 2εJ(x, g). The case f = 1 O(g) is treated in a similar way.
Let's start by establishing the relationship J( 1x , Π

• f -1 ) = 0 e o( 1 x ) if f satisifies (H) :
Proprosition : x) as soon as f satisfies the (H)-hypothesis and that π is never identically zero on any a-neighbourhood.

[I π (x, f )] 1/x -→ x→+∞ 1, or else I π (x, f ) = ∞ e o(
Proof :

-First of all, [I π (x, f )]

1 x ≤ N 1 (π) 1 x → x→∞ 1.
-To minorize, even if it means reducing the interval [a, b], we can assume that f ≥ 1 -ε and π ≥ α for a certain α > 0. We thus obtain I π (x, f )

1 x ≥ [α(b -a)] 1 x (1 -ε) therefore lim inf x→∞ [I π (x, f )] 1 x ≥ 1.
So we've established that :

I π (x, f ) = ∞ exp(o(x)).
We also know, by domination, that :

I π (x, f ) -→ x→+∞ 0.
Proprosition :

If f satisfies (H) then, for all a < c we have 

Consequence :

Simplification of the problem.

By changing f out of a a neighbourhood into a new f 1 function, we get

I π (x, f ) = I π (x, f 1 ) + O(ρ x ) with ρ < 1.
We can therefore assume that f verifies (H ) to obtain an equivalent of x) ).

I π (x, f ) (since I π (x, f 1 ) = ∞ e o(
The integration interval can also be reduced. We can therefore treat the case b = ∞ and truncate the integral to give an equivalent.

For example :

∞ 0 f x (t)π(t) dt ∼ ∞ 1 0 f x (t)π(t) dt if f only reaches its sup in 0.
As an application, we obtain the following fundamental result :

Theorem :

If Π • f -1 ∼ 1 Π • g -1
with π not identically zero around a, and if f and g satisfy (H), then

I π (x, f ) ∼ ∞ I π (x, g).
It is an effective result for obtaining research equivalents. It is a consequence of the previous statements.

Remarks :

(1) If π(t) ∼ 0 at α , then :

f -1 ∼ 1 g -1 ⇒ Π • f -1 ∼ 1 Π • g -1 Indeed, lim 1 f -1 = 0 et Π(t) ∼ 0 a α + 1 t α+1 pour tout α = -1, Π(t) ∼ 0 a ln(t) for α = -1,
so an equivalent of f -1 is enough to get an equivalent of 

[c -α, c + α] ⊂ [a, b], b a π(t)f x (t) dt ∼ c+α c-α π(t)f x (t) dt because c-α a π(t)f x (t) dt and b c+α π(t)f x (t) dt are dominated by ρ x for a real ρ ∈]0, 1[. If moreover the behavior of Π • f -1 is symmetrical around h = 0, that means that if Π • f -1 (c -h) ∼ h→0 Π • f -1 (c + h) then : c c-α π(t)f x (t) dt ∼ 1 2 b a π(t)f x (t) dt and c+α c π(t)f x (t) dt ∼ 1 2 b a π(t)f x (t) dt.
4 Example of applications.

Wallis integrals and generalizations.

We assume that around 0,

f (t) = 1 -pt d + o(t d ) avec d > 0.
We put g(t) = e -pt d sur[0, ∞[, so :

g -1 (y) ∼ 1 f -1 (y), thus I(x, f ) ∼ +∞ ∞ 0 e -xpt d dt. then : I(x, f ) ∼ +∞ Γ(1 + 1 d ) (px) 1 d
The case d = 2 is the classical example of Wallis integrals In addition, we have the asymptotic

I n = π 2 0 sin n (t) dt.

Equivalent of I(x) =

f (1 + h) = 1 - h 2 2e + o(h 2 ).
Using the symmetry of the behavior of f as well as its asymptotic around h = 0, (cf the simplification of the problem in paragraph 3 and the result of paragraph 4.1), on déduit :

1 0 f x (s) ds ∼ +∞ ∞ 1 f x (s) ds ∼ +∞ eπ 2x , et donc +∞ 0 x t t t dt ∼ +∞ 2π e √ x exp x e
4.3 Formule de Stirling.

It's still a classic problem, at least in the case x ∈ N. It is a question of giving an equivalent of

x! = Γ(x + 1) = ∞ 0 t x e -t dt.
The function f (t) = t x e -t reaches its sup in t = x.

We therefore put t = x(1 + h) in the integral, which gives

x! = x ∞ -1 exp [xln(x) + xln(1 + h) -x -xh] dh, so x! = x x e -x x ∞ -1 f x (h) dh where f (h) = e ln(1+h)-h = h→0 1 -h 2 2 + o(h 2 ).
Here again, by symmetry of the f behavior, as well as its asymptotic around h = 0 :

∞ -1 f x (h) dh ∼ ∞ 2 Γ( 3 2 )
x 2

, and so :

x! ∼ ∞ x x e -x √ 2πx 
4.4 Other examples.

We are doing to study an asymptotic of I(x, f ) =

1 0 f x (t) dt with f (t) = 1 + t ln(t) then f (t) = 1 + t ln(t) .
1 Case f (t) = 1 + t ln(t).

Here

f -1 (y) ∼ 1 1-y -ln(1-y) . I(x, f ) = J( 1 x , f -1 ) ∼ ∞ 1 0 1 -t 1 x -ln(1 -t 1 x ) dt.
We then pose u = 1-t 1

x thereafter u = v x and we find

I(x, f ) ∼ ∞ xK(x-1) where K(x) = 1 x 2 x 0 v(1 -v x ) x ln(x) -ln(v)
dv.

We then rewrite K(x)

∼ ∞ 1 x 2 ln(x) ∞ 0 ve -v dv.
Hence :

1 0 (1 + t ln(t)) x dt ∼ ∞ 1 x ln(x) 2 Case f (t) = 1 + t ln(t) .
Here

f -1 (y) ∼ 1 -(1 -y) ln(1 -y).
Then in the same way

I(x, f ) ∼ ∞ xK(x -1) where K(x) = 1 x 2 x 0 (ln(x) -ln(v))v(1 - v x ) x dv, K(x) ∼ ∞ ln(x) x 2 ∞ 0 ve -v dv,
and finally :

1 0 1 + t ln(t) x dt ∼ ∞ ln(x)
x

3 Asymptotic to any order of

1 0 t x (1 -t) α-1 ln β 1 1 -t dt = I α,β (x) pour x → ∞.
By changing variables,

I α,β (x) = 1 0 (1 -t) x t α-1 ln β (1/t) dt ∼ 1 0 e -xt t α-1 ln β (1/t) dt = 1 x α x 0 e -u u α-1 ln β (x/u) dt,
by the theorem of paragraph 3.

An equivalent could then easily be deduced, namely Γ(α) ln β (x)

x α , but we'll give a more precise asymptotic here by analyzing the error.

Technical preliminaries :

1 ∞ x e -u u α-1 ln k (u) du ≤ e -(1-ε)x ∞ 0 e -εu u α+k-1 du = O(e -x(1-ε) ) at k fixed and x ≥ 1 (by ln(u) ≤ u over [1, ∞[)
2 By Taylor's formula with integral remainder, let's show that

|(1 + h) β - p-1 k=0 β k h k | ≤ C p h 0 h -u 1 + u p (1 + u) β (h -u) du ≤ a|h| p+c + a |h| p+c
where a, a , c, c design constants : xt 2 e -xt t α-1 ln β (1/t) dt for the integration interval ]0, t 0 ], and in O(ρ x ) with ρ < 1 for the interval [t 0 , x[. We majorize on the integration interval ln β (1/t) by M t ε , whitch gives

Let's write A = (h -u) p+1 (1 + u) β-p = h-u 1+u p-a (1 + u) β+a (h -u) 1+a , and choose a ≥ 0 such as β + a ≥ 0. By h-u 1+u ≤ |h| if u ∈ [0, h], if p ≥ a, we have |A| ≤ |h| p-a+1+a (1 + |h|) β+a , but (1 + |h|) β+a ≤ C(1 + |h| β+a ) (the quotient being bounded on R), hence the desired result. 3 The error between I α,β (x) = 1 0 (1 -t) x t α-1 ln β (1/t) dt and 1 0 e -xt t α-1 ln β (1/t) dt is in O 1 x α+1-ε : |e -xt -(1 -t) x | = e -xt |1 -e x(ln(1-t)+t) | ≤ Cxt
E ≤ C x t0 0 e -xt t α+1-ε dt + O(ρ x ) ≤ C x ∞ 0 e -xt t α+1-ε dt + O(ρ x ) = O 1 x α+1-ε
, which will be enough here.

Application :

Let

I 1 = x 0 e -u u α-1 ln β (x/u) du = ln β (x) x 0 e -u u α-1 1 + ln(1/u) ln(x) β du.
By point 2 :

Let ε = I 1 -ln β (x) x 0 e -u u α-1 p-1 k=0 β k ln k (1/u) ln k (x) du .
We thus have ε ≤ C ln β (x) Finally by point 3 :

I α,β -I 1 = O 1 x α+1-ε .
So that

1 0 t x (1 -t) α-1 ln β 1 1 -t dt = 1 x α p-1 k=0 β k ln β-k (x)(-1) k Γ (k) (α) + O ln β-p (x) x α
Remarks :

-Γ (k) (α) ∼ (-1) k k! α k+1 and therefore the series

∞ k=0 α k ln β-k (x)(-1) k Γ (k) (α) is divergent
(otherwise absolute convergence would have immediately given the asymptotic by truncating the series).

-By the same method, we can establish or even, give a more precise asymptotic.

  t)π(t) dt = O(ρ x ) for a ρ < 1. The proof is immediate by writing that f x0 π is integrable on [c, b[ for a certain x 0 , and on the other hand that f x π ≤ ρ x-x0 f x0 π over [c, b[.

  t)π(t) dt at +∞. (2) The case f reaches its sup on ]a, b[ : If : f reaches its maximum in c ∈]a, b[ f defines an homeomorphism on neighbourhoods of c such as [c -α, c] and [c, c + α] f defines a C 1 -diffeomorphism on neighbourhoods of c such as ]c -α, c[ and ]c, c + α[ ∀d < c( resp. d > c), ∃ρ ∈]0, 1[, f ≤ ρf (c) over [a, d] (resp. [d, b]) π is not identically 0 on any neighborhood of c then for all α > 0 such as

  We write I(x) = I(x) = +∞ 0 e tln(x)-tln(t) dt. By puting t = xs e et en notant f (s) = e s-1-sln(s) e , we obtain I(x) = x e e x/e ∞ 0 f x (s) ds.

  2 e -xt si t ≤ t 0 by a Taylor formula. Note the error between the two integrals. So she's bounded by C t0 0

x 0 e

 0 -u u α-1 a | ln p+c (u)| ln p+c (x) + a | ln p+c (u)| ln p+c (x) du, then ε ≤ C a ln -p-c+β (x) ∞ 0 e -u | ln(u)| p+c du + a ln -p-c +β (x) ∞ 0 e -u | ln(u)| p+c du = O ln -p-c"+β (x) .Futhermore, by point 1 : ρ x ) for one ρ < 1.

  t a-1 ln b (1/t) ln c (ln(1/t)) dt ∼ ∞ Γ(a) ln b (x) ln c (ln(x))x a
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