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RESUME 

Internet a connu un énorme succès, Il est devenu un outil universel indispensable pour les entreprises et la plupart 

d’individus. Cependant, malgré leur adoption, les réseaux classiques sont complexes et difficiles à gérer. Une des raisons 

de cette difficulté réside dans l’architecture des réseaux actuels où le plan de contrôle et le plan de données sont intégrés 

verticalement dans chaque équipement réseau.  

SDN est un nouveau paradigme reseau, qui permet de simplifier la gestion et l’innovation dans le réseau, en séparant la 

logique de contrôle du réseau des équipements d’interconnexions ,en promouvant la centralisation  du contrôle et la 

capacité de programmer le réseau.  Dans cet article, nous présentons une vue générale sur SDN. Nous commençons par 

présenter SDN, son architecture, et ses interfaces de communications. Nous décrivons par la suite le protocole Openflow, 

son fonctionnement, et les principaux contrôleurs SDN. Nous examinons également les problèmes confrontées par SDN, 

en nous concentrant sur les principaux défis de plan de contrôle tels que la performance, la scalabilité, la sécurité, et la 

fiabilité, nous discutons ainsi, les solutions existantes afin de surmonter ces défis.  

Mots clés : Software-Defined Networking, Openflow, Réseaux programmables, plan de contrôle, plan de données.

1 INTRODUCTION 

Avec l’avènement de l’internet et les nouvelles 

technologies de l’information comme le Big Data qui 

nécessite un traitement distribué, le Cloud Computing, 

ou encore l’internet des objets (IoT), les architectures 

réseaux classiques constituent un grand défi, tant pour 

les opérateurs que pour les administrateurs réseaux. 

En effet, depuis plusieurs années, il est très difficile, 

voire impossible d’innover ou apporter des changements 

au réseau. Selon  [1] , la conception ou le déploiement 

d’un nouveau protocole de routage peuvent prendre de 

5 à 10 années. Aussi les taches de configuration et de 

gestion des réseaux sont plus complexes. Une des 

raisons de cette difficulté d’évoluer, ou d’administrer 

simplement les réseaux, est le fort couplage qui existe 

entre le plan de contrôle et le plan de données des 

équipements d’interconnexions dans les architectures 

des réseaux actuels. C’est dans ce contexte qu’a apparu 

le concept des réseaux définis par les logiciels (Software 

Defined Networking ou SDN), afin de répondre à la 

rigidité architecturale des réseaux actuels, notamment en 

les rendant plus programmables.  

 

L’idée principale de ce nouveau paradigme, est de sortir 

la partie intelligente des équipements d’interconnexions, 

et la placer vers un seul point de contrôle appelé 

contrôleur, ce dernier fournit une vue centrale de reseau, 

ce qui simplifie d’une part, la gestion et la configuration 

de réseau. 

Le SDN présente donc plusieurs avantages, il peut servir 

plusieurs domaines, et être intégré avec les nouvelles 

technologies, tels que Big Data, Machine Learning, 5G, 

IoT, et les Smart Cities , en offrant ainsi une 

programmabilité et une vue globale, centralisé du reseau 

[2] .  

Par exemple la capacité de programmation de SDN est 

particulièrement utile pour les applications Big Data 

nécessitant de nombreuses reconfigurations [3]. Le SDN 

améliore aussi la résilience et la scalabilité du réseau, 

qui sont essentielles pour le déploiement de l’IoT à 

grande échelle, tel que les Smart 

Cities. Selon [4] SDN peut jouer également un rôle 

crucial dans la conception des réseaux sans fil 5G. 

Il est en outre envisageable d’utiliser le SDN avec 

différentes approches, afin d’améliorer les performances 

des réseaux, par exemple l’utilisation de Machine 

Learning avec SDN permet de fournir plus 

d’intelligence aux réseaux, et cela grâce aux capacités 

du SDN. 

Malgré ses avantages, et sa capacité de simplifier les 

réseaux, SDN rencontre des défis qui peuvent limiter ses 

fonctionnalités et ses performances dans les réseaux à 

grande échelle. Cet article aborde les principaux défis du 

SDN de manière complète et détaillée. Il traite les 

problèmes de performance, de scalabilité, de sécurité, et 

de fiabilité, au niveau des contrôleurs SDN. 

De nombreux travaux ont porté sur le sujet de SDN, vu 

son importance dans le domaine des réseaux. Plusieurs 

articles récents [1] , [5] ,[6], fournissent des études 

intéressantes sur SDN. Notre objectif dans cet article est 

un peu différent, nous visons à donner au lecteur 

particulièrement intéressé par les réseaux SDN, un 

aperçu sur le SDN, ainsi la possibilité d’intégrer ce 

nouveau paradigme avec les nouvelles technologies, 

pour objectif d’une part, d’améliorer, et simplifier le 

déploiement de ces technologies en utilisant SDN, et 



d’autre part profiter de ces technologies afin de 

surmonter les défis de SDN. 

Le reste de l'article est organisé comme suit. Dans la 

section 2, nous présentons le SDN, son architecture, et 

ses interfaces de communications. Ensuite, nous 

décrivons dans la section 3, le protocole Openflow, son 

fonctionnement, et les principaux contrôleurs SDN. 

Dans la section 4, nous présentons quelques défis de 

SDN, et les solutions récentes proposées pour surmonter 

ces défis. Dans la section 6, nous concluons notre papier 

avec quelques perspectives. 

2 SOFTWARE-DEFINED NETWORKING 

2-1. C’est quoi SDN ? 

Le SDN est un nouveau paradigme qui décrit une 

architecture réseau dont le plan de contrôle est 

totalement découplé de plan de données. Selon l’ONF 

(Open Network Fondation) [7] SDN est une architecture 

qui sépare le plan de contrôle du plan de données, et 

centralise toue l’intelligence de reseau dans une entité 

programmable appelé «Contrôleur», afin de gérer 

plusieurs éléments du plan de données(Ex switches ou 

routeurs, etc.) via des APIs (Application Programming 

Interface). 

=>Plus concrètement, on peut dire qu’une architecture 

réseau suit le paradigme SDN si, et seulement si, elle 

vérifie les points suivants : 

 -Le plan de contrôle est complètement découplé du 

plan de données, cette séparation est matérialisée à 

travers la définition d’une interface de programmation 

(Southbound API)  

 -Toute l’intelligence du réseau est externalisée dans 

un point logiquement centralisé appelé contrôleur 

SDN, ce dernier offre une vue globale sur toute 

l’infrastructure physique. 

 -Le contrôleur SDN est un composant 

programmable qui expose une API (NorthboundAPI) 

pour spécifier des applications de contrôle. 

2-2. Architecture de SDN 

Un réseau traditionnel est composé généralement des 

équipements d’interconnexions tels que des switchs et 

des routeurs. Ces équipements incorporent à la fois la 

partie transmission et la partie de contrôle de reseau. 

Dans ce modèle d’architecture, il est difficile de 

développer de nouveaux services, en raison du fort 

couplage qui existe entre le plan de contrôle et le plan de 

transmission. 

Afin d’ouvrir les équipements réseaux aux innovations, 

l’architecture SDN, a vu le jour. Elle permet de 

découpler la partie de contrôle de la partie transmission 

des équipements d’interconnexions. Le SDN est 

composée principalement de trois couches et 

d’interfaces de communication (Figure 1), nous 

décrivons dans ce qui suit ces couches, ainsi que les 

interfaces de communications : 

-La couche de transmission : appelée aussi «plan de 

données», elle est composée des équipements 

d’acheminement tels que les switches ou les routeurs, 

son rôle principal est de transmettre les données, et 

collecter les statistiques. 

-La couche de contrôle : appelée aussi «plan de 

contrôle», elle est constituée principalement d’un ou 

plusieurs contrôleurs SDN, son rôle est de contrôler et 

de gérer les équipements de l’infrastructure à travers une 

interface appelée ‘south-bound API’.  

-La couche application : représente les applications qui 

permettent de déployer de nouvelles fonctionnalités 

réseau, comme l’ingénierie de trafic, QoS, la sécurité, 

etc. Ces applications sont construits moyennant une 

interface de programmation appelée ‘north-bound API 

Figure 1 : Architecture SDN 

 

2-3. Interfaces de communications 

Il existe principalement trois types d’interfaces 

permettent aux contrôleurs de communiquer avec leur 

environnement : interface Sud, Nord et Est/Ouest 

 Interfaces Sud 

Les interfaces Sud ou (Southbound APIs) représentent 

les interfaces de communication, qui permettent au 

contrôleur SDN d’interagir avec les équipements de la 

couche d’infrastructure, tel que les switches, et les 

routeurs.  

Le protocole le plus utilisé, et le plus déployé comme 

interface Sud est le protocole OpenFlow, qui a été 

standardisé par l’ONF, sa dernière version est 1.5 [8], 

plus de détails sur ce protocole sera donnée dans la 

prochaine section . Il existe dorénavant d’autres 

alternatives d’interface Sud, tels que ForCes [9], ou 

Open vSwitch Database (OVSDB) [10] , mais le 

protocole openflow est actuellement le standard de 

facto, qui est largement accepté et répandu dans les 

réseaux SDN. 

 

 Interfaces Nord 

Les interfaces Nord servent à programmer les 

équipements de transmission, en exploitant l’abstraction 

du réseau fourni par le plan de contrôle. Il est noté que 



contrairement à la Southbound API qui a été standardisé, 

l’interface nord reste encore une question ouverte.   

Bien que la nécessité d'une telle interface standardisée 

constitue un débat considérable au sein de l'industrie, 

l’avantage d'une API nord ouverte est aussi important, 

une API nord ouverte permette plus d’innovation et 

d'expérimentation. Plusieurs implémentations de cette 

interface existent, chaque ’une de ces implémentations 

offre des fonctionnalités bien différents. Le RESTful 

[11] considéré comme l’API nord le plus répandue dans 

les réseaux SDN.  

 Interfaces Est/Ouest 

Les interfaces Est/Ouest sont des interfaces de 

communication qui permettent la communication entre 

les contrôleurs dans une architecture multi-contrôleurs 

pour synchroniser l’état du réseau [12]. Ces 

architectures sont très récentes et aucun standard de 

communication inter-contrôleur n’est actuellement 

disponible. 

3 OPENFLOW 

3-1. Définition d’Openflow 

Openflow est le protocole utilisé pour la communication 

entre la couche transmission et la couche de contrôle, il 

a été initialement proposé et implémenté par l’université 

de Stanford, et standardisé par la suite par l’ONF, sa 

dernière version est 1.5 [8]. Nous détaillons par la suite 

la structure d’openflow, son fonctionnement, ses 

différentes spécifications, ainsi que quelques 

contrôleurs openflow. 

3-2. Architecture Openflow 

L’architecture openflow est l’implémentation réelle des 

réseaux SDN, Cette architecture est basée 

principalement sur trois composantes : le plan de 

données, qui est composée des switches openflow ; le 

plan de contrôle, constitué par des 

contrôleurs OpenFlow ; une chaîne sécurisée qui 

permettent aux commutateurs de se connecter au plan de 

contrôle.  

La spécification d’un commutateur openflow est 

standardisée par l’ONF. Selon la spécification d’ONF 

[13], un commutateur openflow doit contenir un ou 

plusieurs tables de flux , ces tables de flux contiennent 

plusieurs d’entrées qui correspondent à des règles,  où 

chacune est constituée principalement des trois champs 

suivants (Tableau 1 ):  

-L’En-tête de paquet : il définit le flux de données, il 

contient les informations nécessaires pour déterminer le 

paquet auquel cette règle sera appliquée. L’en-tête de 

paquet peut identifier différents protocoles tel 

qu’Ethernet, IPv4, IPv6 ou MPLS, cela dépend de la 

spécification d’openflow déployée. 

-L’Action :   spécifie comment les paquets d’un flux 

seront traités. Une action peut être l'une des suivantes : 

transférer le paquet vers un ou plusieurs ports, supprimer 

le paquet , transférer le paquet vers le contrôleur, ou 

modifier le champ d’entête de paquet [6]. 

-Les Compteurs : sont réservés à la collecte des 

statistiques de flux. Ils enregistrent le nombre de paquets 

et d'octets reçus de chaque flux, et le temps écoulé 

depuis le dernier transfert de flux. 

Tableau 1 : Structure d’une entrée de table de flux 

d’un commutateur openflow 1.0 

3-3. Fonctionnement Openflow  

Lorsqu’un paquet arrive à un commutateur, le 

commutateur vérifie s'il y a une entrée dans la table 

de flux qui correspond à l'en-tête de paquet. Si c'est 

le cas, le commutateur exécute l’action 

correspondante dans la table de flux. Dans le cas 

contraire, c’est-à-dire il y a pas une entrée 

correspondante (1) , le commutateur génère un 

message asynchrone vers le contrôleur (2) sous la 

forme d’un ‘Packet_in’, puis le contrôleur décide 

selon sa configuration une action pour ce paquet, et 

envoie une nouvelle règle de transmission sous la 

forme d’un ‘Packet_out’ et ‘Flow-mod’ au 

commutateur (3), et enfin, la table de flux du 

commutateur est actualisée, pour prendre en compte 

la nouvelle règle installé par le contrôleur (4). La 

Figure 2 [14] décrit le processus de transmission 

d’un paquet avec openflow. 
 

 

Figure 2 : processus de transmission d’un paquet avec 

openflow [14] 

L'échange d'informations entre le commutateur et le 

contrôleur s'effectue par l'envoi de messages via un 

canal de contrôle sécurisé en utilisant TLS (Transport 

Layer Security). 

3-4. Les Contrôleurs communes d’OpenFlow  

Plusieurs contrôleurs ont été développés, dont la 

majorité sont open source et supportent le protocole 

Champs d’en-tête Compteurs Actions 



openflow. Le tableau 2 présente les contrôleurs SDN les 

plus connus. 

Tableau 2 : Quelques contrôleurs SDN les plus connus. 

4. LES DÉFIS SDN  

Le SDN a connue plusieurs défis que ce soit sur le plan 

de données  que sur le plan de contrôle , mais dans cette 

section on va présenter  les principaux défis de SDN , au 

niveau de son plan de contrôle, qui comprend la 

performance, la scalabilité , la sécurité, et la fiabilité [6]. 
La section 5 décrit ces défis et présente les solutions 

récentes proposées dans la littérature. 

4-1. Performance 

Les performances des contrôleurs SDN constituent un 

domaine important que les chercheurs essayent toujours 

de l’améliorer, et puisque le SDN est une technique 

basée sur les flux, ses performances sont mesurées en 

fonction de deux métriques : le temps nécessaire pour 

instaurer un nouveau flux dans les commutateurs 

(latence) et le nombre de flux que le contrôleur peut 

traiter par seconde (débit).  

Des chercheurs ont utilisé la technique de 

multithreading, afin d’améliorer les performances des 

contrôleurs SDN.  En effet le premier contrôleur 

développé pour gérer les réseaux SDN est le contrôleur 

NOX [22], ce contrôleur a un débit de 30000 flux par 

seconde et une latence de 10 ms. Un nouveau contrôleur 

multithreads, appelé NOXMT (version améliorée du 

contrôleur NOX) [23] a été introduit par les auteurs, afin 

d’améliorer les performances des contrôleurs. NOX-MT 

permet d’améliore le débit de contrôleur de plus de 30 

fois, en le comparant avec le contrôleur NOX. 

L’utilisation des contrôleurs multiples est une solution 

plus efficace pour améliorer les performances des 

contrôleurs SDN. Différentes architectures de plusieurs 

contrôleurs SDN ont été proposées dans la littérature. 

Les solutions tels que HyperFlow [24], Onix [25] 

Opendaylight (ODL)[26] déploient un plan de contrôle 

logiquement centralisé, ou plusieurs contrôleurs sont 

utilisés, en partageant entre eux les charges et 

synchronisant les données, ce qui permet d’améliorer les 

performances et assurer la cohérence de réseau.  

D’autres solutions ont été proposées afin de permettre la 

communication entre plusieurs domaines de reseau 

SDN. CIDC [28] est une nouvelle interface proposée, 

afin de permettre la communication inter-contrôleurs 

pour les plans de contrôle logiquement distribués. Cette 

interface est implémentée dans chaque contrôleur et 

fonctionne selon des modes de communication ce qui 

améliore les performances des contrôleurs SDN. 

4-2.   Scalabilité 

Un autre défi du SDN est la scalabilité ou l’évolutivité 

du réseau, plus la taille de réseau augmente, plus des 

demandes sont envoyés au contrôleur et à un moment 

donné, le contrôleur devient incapable de traiter toutes 

ces demandes. 

Des solutions ont été proposés par les auteurs, afin 

d’améliorer la scalabilité des contrôleurs SDN, L'une 

des méthodes utilisé afin de surmonter le problème de 

scalabilité, consiste à un niveau de parallélisme 

supérieur dans les systèmes multi-cœurs. Tootoonchian 

et al.[23] ont montré que des simples modifications 

apportées au contrôleur NOX, augmentent ses 

performances de plus de 10 fois. 

Une solution viable pour surmonter les problèmes de 

scalabilité est proposée dans «DIFANE» [29]. Il s'agit 

d'une solution qui permet de conserver de manière 

proactive, tout le trafic dans le plan de données, en 

dirigeant les paquets via des commutateurs 

intermédiaires stockant les règles nécessaires. Une autre 

solution pour améliorer la scalabilité des contrôleurs 

SDN, est l’utilisation des contrôleurs multiples, des 

solutions permettant de distribuer physiquement les 

contrôleurs SDN, tout en maintenant la vue globale de 

réseau. Onix [25] par exemple, est une plate-forme de 

contrôle distribuée, qui fournit aux applications de 

contrôle un ensemble d’API, facilitant l’accès à l’état du 

réseau (NIB) qui est distribué sur des instances Onix.  

4-3.    Sécurité 

Le SDN peut poser également des problèmes de 

sécurité. Le fait de centraliser toute l'intelligence du 

reseau dans un seul contrôleur peut accroître la 

vulnérabilité du contrôleur. Un contrôleur SDN 

représente le point critique de reseau, s’il est compromis 

ou devient indisponible, tous les aspects du réseau seront 

endommagés. 

Les réseaux SDN sont soumis à divers problèmes de 

sécurité tels que le déni de service [31], l'usurpation 

d'identité, l’élévation des privilèges, la falsification, et la 

répudiation . Des solutions ont été proposées par les 

auteurs pour améliorer la sécurité de SDN. Parmi les 

solutions proposées dans le contrôle d’accès : AuthFlow 

[32] est un mécanisme d'authentification et de contrôle 

d'accès basé sur les informations d'identification de 

l'hôte, permet de refuser l’accès aux hôtes non autorisés.  

Contrôleur Organisation Langage Fonctionnalités 

NOX [31] Nicira C++ le premier 
contrôleur 

openflow 

POX [15] Nicira Python améliorer les 

performances de 
NOX 

Ryu [16] NTT, OSRG 

group 

Python  supporte 

l’OpenStack 

Beacon[17] Stanford Java basé sur le 

Multithreading 

Floodlight   

[35] 

Big Switch Java testé avec des 

commutateurs 
OpenFlow 

physiques et 

virtuels. 

Opendaylight[

36] 

Linux 

Foundation 

Java  supporte le 

Framework OSGi 

et le REST API 



Un certain nombre de solutions ont été proposées pour 

surmonter l’attaque par déni de service sur les 

contrôleurs SDN ou sur les tables de flux des 

commutateurs. Les auteurs proposent la solution 

AVANT-GUARD [35] qui limite les demandes de flux 

envoyées au plan de contrôle à l'aide d'un outil de 

migration de connexion.  

4-4. Fiabilité 

Dans les premiers déploiements de réseaux SDN qui 

utilisaient un seul contrôleur centralisé, responsable de 

tout le réseau, cela pose des problèmes sur les 

contrôleurs SDN, qui deviennent des points uniques de 

défaillance (SPOF, Single Point Of Failure) ; Si par 

exemple le contrôleur tombe en panne ou devient 

défaillant, tout le réseau devient indisponible. Plusieurs 

solutions ont été proposés afin d’améliorer la fiabilité 

des contrôleurs SDN. 

Obadia et al. proposent deux mécanismes pour détecter 

les défaillances dans les contrôleurs: un algorithme 

connue sous le nom de mécanisme de découverte des 

commutateurs(Greedy Algorithm), et une méthode de 

pré-partitionnement entre contrôleurs (Pre-Partitioning 

Failover ou PPF) [37]. 

Dans la première méthode, lorsqu’un switch détecte la 

défaillance du contrôleur, il envoie un paquet LLDP 

indiquant qu’il n’a pas de contrôleur maître, puis le 

contrôleur qui reçoit ce paquet deviendra le maître et 

ajoutera ensuite le switch orphelin à son domaine. Dans 

la deuxième méthode, chaque contrôleur calcule une 

liste des contrôleurs qui peuvent prendre le contrôle des 

commutateurs de son domaine en cas de défaillance, 

puis chaque ’un envoyera sa liste aux contrôleurs 

voisins.  

Chen et al. proposent FCF-M (Fast Controller Failover 

for Multi-domain SDNs) [38] . Dans cette approche 

chaque domaine est géré par un contrôleur principal et 

un contrôleur de backup. La défaillance d’un contrôleur 

est détectée à l'aide d’un mécanisme heartbeat 

circulaire ; chaque contrôleur successeur vérifie la 

disponibilité de son prédécesseur, en envoyant des 

messages heartbeats d’une façon circulaire. Lorsque le 

contrôleur successeur détecte une panne de son 

prédécesseur, il sélectionne un contrôleur en fonction de 

la distance et de la charge, puis lui affecte localement les 

commutateurs orphelins. 

Moazenni et al. proposent une méthode RDSDN 

(Reliable Distributed SDN) [39] pour améliorer la 

tolérance aux pannes des contrôleurs SDN. Une 

architecture de plusieurs contrôleurs distribués est 

utilisée, ou chaque contrôleur est responsable d’un sous-

réseau en tant que master, et définie comme esclave pour 

les autres sous-réseaux. Une nouvelle formule est 

proposée pour calculer le taux de fiabilité de chaque 

sous-réseau. Ainsi les taux de fiabilité calculés sont 

partagés entre les contrôleurs, afin de sélectionner le 

contrôleur ayant la valeur de fiabilité la plus grande, ce 

dernier est choisie comme coordinateur pour le réseau. 

Dans RDSDN, la défaillance des contrôleurs est 

détectée par le coordinateur, qui décide quel autre 

contrôleur est le plus approprié pour prendre en charge 

le sous-réseau dont son contrôleur a tombé en panne. 

5. CONCLUSION ET PERSPECTIVES 

Dans cet article, nous avons fourni une vue générale sur 

SDN (Software Defined Networking), notamment les 

avantages et l'architecture de SDN. Ensuite nous avons 

présenté le protocole OpenFlow, son fonctionnement, et 

quelques contrôleurs SDN. Ensuite nous avons présenté 

quelques défis de SDN, et les solutions récentes 

proposées pour surmonter ces défis. Enfin, vu 

l’importance de machine learning qui ont suscité 

beaucoup d’intérêt dans de nombreux efforts de 

recherche. Déployer plus d’intelligence peut être une 

solution efficace afin de résoudre les problèmes de SDN. 

Dans ce contexte peut de travaux qui se concentrent sur 

l’application de machine learning dans le domaine SDN, 

pour combler cette lacune, nous prévoyant dans les 

travaux futurs de faire une discussion sur la possibilité 

d’appliquer les techniques de machine learning, afin de 

surmonter les principaux défis de SDN notamment la 

performance, la scalabilité, la sécurité, et la fiabilité. 

Nous espérons que notre discussion ouvrira une 

nouvelle voie aux lecteurs pour la mise en place d'un 

réseau intelligent, et d’encourager davantage les études 

ultérieures sur ce sujet. 
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