
HAL Id: hal-02298874
https://hal.science/hal-02298874v1

Submitted on 27 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software Defined Networking (SDN): Etat de L’art
Ihssane Choukri, Mohammed Ouzzif, Khalid Bouragba

To cite this version:
Ihssane Choukri, Mohammed Ouzzif, Khalid Bouragba. Software Defined Networking (SDN): Etat de
L’art. Colloque sur les Objets et systèmes Connectés, Ecole Supérieure de Technologie de Casablanca
(Maroc), Institut Universitaire de Technologie d’Aix-Marseille (France), Jun 2019, CASABLANCA,
Maroc. �hal-02298874�

https://hal.science/hal-02298874v1
https://hal.archives-ouvertes.fr

Software Defined Networking (SDN): Etat de L’art

Ihssane Choukri, Mohammed Ouzzif, Khalid Bouragba

Laboratoire RITM, ESTC, Université Hassan II, Casablanca, Maroc

Email : choukriihssan@gmail.com, ouzzif@est-uh2c.ac.ma, bouragba2008@gmail.com

RESUME

Internet a connu un énorme succès, Il est devenu un outil universel indispensable pour les entreprises et la plupart

d’individus. Cependant, malgré leur adoption, les réseaux classiques sont complexes et difficiles à gérer. Une des raisons

de cette difficulté réside dans l’architecture des réseaux actuels où le plan de contrôle et le plan de données sont intégrés

verticalement dans chaque équipement réseau.

SDN est un nouveau paradigme reseau, qui permet de simplifier la gestion et l’innovation dans le réseau, en séparant la

logique de contrôle du réseau des équipements d’interconnexions ,en promouvant la centralisation du contrôle et la

capacité de programmer le réseau. Dans cet article, nous présentons une vue générale sur SDN. Nous commençons par

présenter SDN, son architecture, et ses interfaces de communications. Nous décrivons par la suite le protocole Openflow,

son fonctionnement, et les principaux contrôleurs SDN. Nous examinons également les problèmes confrontées par SDN,

en nous concentrant sur les principaux défis de plan de contrôle tels que la performance, la scalabilité, la sécurité, et la

fiabilité, nous discutons ainsi, les solutions existantes afin de surmonter ces défis.

Mots clés : Software-Defined Networking, Openflow, Réseaux programmables, plan de contrôle, plan de données.

1 INTRODUCTION

Avec l’avènement de l’internet et les nouvelles

technologies de l’information comme le Big Data qui

nécessite un traitement distribué, le Cloud Computing,

ou encore l’internet des objets (IoT), les architectures

réseaux classiques constituent un grand défi, tant pour

les opérateurs que pour les administrateurs réseaux.

En effet, depuis plusieurs années, il est très difficile,

voire impossible d’innover ou apporter des changements

au réseau. Selon [1] , la conception ou le déploiement

d’un nouveau protocole de routage peuvent prendre de

5 à 10 années. Aussi les taches de configuration et de

gestion des réseaux sont plus complexes. Une des

raisons de cette difficulté d’évoluer, ou d’administrer

simplement les réseaux, est le fort couplage qui existe

entre le plan de contrôle et le plan de données des

équipements d’interconnexions dans les architectures

des réseaux actuels. C’est dans ce contexte qu’a apparu

le concept des réseaux définis par les logiciels (Software

Defined Networking ou SDN), afin de répondre à la

rigidité architecturale des réseaux actuels, notamment en

les rendant plus programmables.

L’idée principale de ce nouveau paradigme, est de sortir

la partie intelligente des équipements d’interconnexions,

et la placer vers un seul point de contrôle appelé

contrôleur, ce dernier fournit une vue centrale de reseau,

ce qui simplifie d’une part, la gestion et la configuration

de réseau.

Le SDN présente donc plusieurs avantages, il peut servir

plusieurs domaines, et être intégré avec les nouvelles

technologies, tels que Big Data, Machine Learning, 5G,

IoT, et les Smart Cities , en offrant ainsi une

programmabilité et une vue globale, centralisé du reseau

[2] .

Par exemple la capacité de programmation de SDN est

particulièrement utile pour les applications Big Data

nécessitant de nombreuses reconfigurations [3]. Le SDN

améliore aussi la résilience et la scalabilité du réseau,

qui sont essentielles pour le déploiement de l’IoT à

grande échelle, tel que les Smart

Cities. Selon [4] SDN peut jouer également un rôle

crucial dans la conception des réseaux sans fil 5G.

Il est en outre envisageable d’utiliser le SDN avec

différentes approches, afin d’améliorer les performances

des réseaux, par exemple l’utilisation de Machine

Learning avec SDN permet de fournir plus

d’intelligence aux réseaux, et cela grâce aux capacités

du SDN.

Malgré ses avantages, et sa capacité de simplifier les

réseaux, SDN rencontre des défis qui peuvent limiter ses

fonctionnalités et ses performances dans les réseaux à

grande échelle. Cet article aborde les principaux défis du

SDN de manière complète et détaillée. Il traite les

problèmes de performance, de scalabilité, de sécurité, et

de fiabilité, au niveau des contrôleurs SDN.

De nombreux travaux ont porté sur le sujet de SDN, vu

son importance dans le domaine des réseaux. Plusieurs

articles récents [1] , [5] ,[6], fournissent des études

intéressantes sur SDN. Notre objectif dans cet article est

un peu différent, nous visons à donner au lecteur

particulièrement intéressé par les réseaux SDN, un

aperçu sur le SDN, ainsi la possibilité d’intégrer ce

nouveau paradigme avec les nouvelles technologies,

pour objectif d’une part, d’améliorer, et simplifier le

déploiement de ces technologies en utilisant SDN, et

d’autre part profiter de ces technologies afin de

surmonter les défis de SDN.

Le reste de l'article est organisé comme suit. Dans la

section 2, nous présentons le SDN, son architecture, et

ses interfaces de communications. Ensuite, nous

décrivons dans la section 3, le protocole Openflow, son

fonctionnement, et les principaux contrôleurs SDN.

Dans la section 4, nous présentons quelques défis de

SDN, et les solutions récentes proposées pour surmonter

ces défis. Dans la section 6, nous concluons notre papier

avec quelques perspectives.

2 SOFTWARE-DEFINED NETWORKING

2-1. C’est quoi SDN ?

Le SDN est un nouveau paradigme qui décrit une

architecture réseau dont le plan de contrôle est

totalement découplé de plan de données. Selon l’ONF

(Open Network Fondation) [7] SDN est une architecture

qui sépare le plan de contrôle du plan de données, et

centralise toue l’intelligence de reseau dans une entité

programmable appelé «Contrôleur», afin de gérer

plusieurs éléments du plan de données(Ex switches ou

routeurs, etc.) via des APIs (Application Programming

Interface).

=>Plus concrètement, on peut dire qu’une architecture

réseau suit le paradigme SDN si, et seulement si, elle

vérifie les points suivants :

 -Le plan de contrôle est complètement découplé du

plan de données, cette séparation est matérialisée à

travers la définition d’une interface de programmation

(Southbound API)

 -Toute l’intelligence du réseau est externalisée dans

un point logiquement centralisé appelé contrôleur

SDN, ce dernier offre une vue globale sur toute

l’infrastructure physique.

 -Le contrôleur SDN est un composant

programmable qui expose une API (NorthboundAPI)

pour spécifier des applications de contrôle.

2-2. Architecture de SDN

Un réseau traditionnel est composé généralement des

équipements d’interconnexions tels que des switchs et

des routeurs. Ces équipements incorporent à la fois la

partie transmission et la partie de contrôle de reseau.

Dans ce modèle d’architecture, il est difficile de

développer de nouveaux services, en raison du fort

couplage qui existe entre le plan de contrôle et le plan de

transmission.

Afin d’ouvrir les équipements réseaux aux innovations,

l’architecture SDN, a vu le jour. Elle permet de

découpler la partie de contrôle de la partie transmission

des équipements d’interconnexions. Le SDN est

composée principalement de trois couches et

d’interfaces de communication (Figure 1), nous

décrivons dans ce qui suit ces couches, ainsi que les

interfaces de communications :

-La couche de transmission : appelée aussi «plan de

données», elle est composée des équipements

d’acheminement tels que les switches ou les routeurs,

son rôle principal est de transmettre les données, et

collecter les statistiques.

-La couche de contrôle : appelée aussi «plan de

contrôle», elle est constituée principalement d’un ou

plusieurs contrôleurs SDN, son rôle est de contrôler et

de gérer les équipements de l’infrastructure à travers une

interface appelée ‘south-bound API’.

-La couche application : représente les applications qui

permettent de déployer de nouvelles fonctionnalités

réseau, comme l’ingénierie de trafic, QoS, la sécurité,

etc. Ces applications sont construits moyennant une

interface de programmation appelée ‘north-bound API

Figure 1 : Architecture SDN

2-3. Interfaces de communications

Il existe principalement trois types d’interfaces

permettent aux contrôleurs de communiquer avec leur

environnement : interface Sud, Nord et Est/Ouest

 Interfaces Sud

Les interfaces Sud ou (Southbound APIs) représentent

les interfaces de communication, qui permettent au

contrôleur SDN d’interagir avec les équipements de la

couche d’infrastructure, tel que les switches, et les

routeurs.

Le protocole le plus utilisé, et le plus déployé comme

interface Sud est le protocole OpenFlow, qui a été

standardisé par l’ONF, sa dernière version est 1.5 [8],

plus de détails sur ce protocole sera donnée dans la

prochaine section . Il existe dorénavant d’autres

alternatives d’interface Sud, tels que ForCes [9], ou

Open vSwitch Database (OVSDB) [10] , mais le

protocole openflow est actuellement le standard de

facto, qui est largement accepté et répandu dans les

réseaux SDN.

 Interfaces Nord

Les interfaces Nord servent à programmer les

équipements de transmission, en exploitant l’abstraction

du réseau fourni par le plan de contrôle. Il est noté que

contrairement à la Southbound API qui a été standardisé,

l’interface nord reste encore une question ouverte.

Bien que la nécessité d'une telle interface standardisée

constitue un débat considérable au sein de l'industrie,

l’avantage d'une API nord ouverte est aussi important,

une API nord ouverte permette plus d’innovation et

d'expérimentation. Plusieurs implémentations de cette

interface existent, chaque ’une de ces implémentations

offre des fonctionnalités bien différents. Le RESTful

[11] considéré comme l’API nord le plus répandue dans

les réseaux SDN.

 Interfaces Est/Ouest

Les interfaces Est/Ouest sont des interfaces de

communication qui permettent la communication entre

les contrôleurs dans une architecture multi-contrôleurs

pour synchroniser l’état du réseau [12]. Ces

architectures sont très récentes et aucun standard de

communication inter-contrôleur n’est actuellement

disponible.

3 OPENFLOW

3-1. Définition d’Openflow

Openflow est le protocole utilisé pour la communication

entre la couche transmission et la couche de contrôle, il

a été initialement proposé et implémenté par l’université

de Stanford, et standardisé par la suite par l’ONF, sa

dernière version est 1.5 [8]. Nous détaillons par la suite

la structure d’openflow, son fonctionnement, ses

différentes spécifications, ainsi que quelques

contrôleurs openflow.

3-2. Architecture Openflow

L’architecture openflow est l’implémentation réelle des

réseaux SDN, Cette architecture est basée

principalement sur trois composantes : le plan de

données, qui est composée des switches openflow ; le

plan de contrôle, constitué par des

contrôleurs OpenFlow ; une chaîne sécurisée qui

permettent aux commutateurs de se connecter au plan de

contrôle.

La spécification d’un commutateur openflow est

standardisée par l’ONF. Selon la spécification d’ONF

[13], un commutateur openflow doit contenir un ou

plusieurs tables de flux , ces tables de flux contiennent

plusieurs d’entrées qui correspondent à des règles, où

chacune est constituée principalement des trois champs

suivants (Tableau 1):

-L’En-tête de paquet : il définit le flux de données, il

contient les informations nécessaires pour déterminer le

paquet auquel cette règle sera appliquée. L’en-tête de

paquet peut identifier différents protocoles tel

qu’Ethernet, IPv4, IPv6 ou MPLS, cela dépend de la

spécification d’openflow déployée.

-L’Action : spécifie comment les paquets d’un flux

seront traités. Une action peut être l'une des suivantes :

transférer le paquet vers un ou plusieurs ports, supprimer

le paquet , transférer le paquet vers le contrôleur, ou

modifier le champ d’entête de paquet [6].

-Les Compteurs : sont réservés à la collecte des

statistiques de flux. Ils enregistrent le nombre de paquets

et d'octets reçus de chaque flux, et le temps écoulé

depuis le dernier transfert de flux.

Tableau 1 : Structure d’une entrée de table de flux

d’un commutateur openflow 1.0

3-3. Fonctionnement Openflow

Lorsqu’un paquet arrive à un commutateur, le

commutateur vérifie s'il y a une entrée dans la table

de flux qui correspond à l'en-tête de paquet. Si c'est

le cas, le commutateur exécute l’action

correspondante dans la table de flux. Dans le cas

contraire, c’est-à-dire il y a pas une entrée

correspondante (1) , le commutateur génère un

message asynchrone vers le contrôleur (2) sous la

forme d’un ‘Packet_in’, puis le contrôleur décide

selon sa configuration une action pour ce paquet, et

envoie une nouvelle règle de transmission sous la

forme d’un ‘Packet_out’ et ‘Flow-mod’ au

commutateur (3), et enfin, la table de flux du

commutateur est actualisée, pour prendre en compte

la nouvelle règle installé par le contrôleur (4). La

Figure 2 [14] décrit le processus de transmission

d’un paquet avec openflow.

Figure 2 : processus de transmission d’un paquet avec

openflow [14]

L'échange d'informations entre le commutateur et le

contrôleur s'effectue par l'envoi de messages via un

canal de contrôle sécurisé en utilisant TLS (Transport

Layer Security).

3-4. Les Contrôleurs communes d’OpenFlow

Plusieurs contrôleurs ont été développés, dont la

majorité sont open source et supportent le protocole

Champs d’en-tête Compteurs Actions

openflow. Le tableau 2 présente les contrôleurs SDN les

plus connus.

Tableau 2 : Quelques contrôleurs SDN les plus connus.

4. LES DÉFIS SDN

Le SDN a connue plusieurs défis que ce soit sur le plan

de données que sur le plan de contrôle , mais dans cette

section on va présenter les principaux défis de SDN , au

niveau de son plan de contrôle, qui comprend la

performance, la scalabilité , la sécurité, et la fiabilité [6].
La section 5 décrit ces défis et présente les solutions

récentes proposées dans la littérature.

4-1. Performance

Les performances des contrôleurs SDN constituent un

domaine important que les chercheurs essayent toujours

de l’améliorer, et puisque le SDN est une technique

basée sur les flux, ses performances sont mesurées en

fonction de deux métriques : le temps nécessaire pour

instaurer un nouveau flux dans les commutateurs

(latence) et le nombre de flux que le contrôleur peut

traiter par seconde (débit).

Des chercheurs ont utilisé la technique de

multithreading, afin d’améliorer les performances des

contrôleurs SDN. En effet le premier contrôleur

développé pour gérer les réseaux SDN est le contrôleur

NOX [22], ce contrôleur a un débit de 30000 flux par

seconde et une latence de 10 ms. Un nouveau contrôleur

multithreads, appelé NOXMT (version améliorée du

contrôleur NOX) [23] a été introduit par les auteurs, afin

d’améliorer les performances des contrôleurs. NOX-MT

permet d’améliore le débit de contrôleur de plus de 30

fois, en le comparant avec le contrôleur NOX.

L’utilisation des contrôleurs multiples est une solution

plus efficace pour améliorer les performances des

contrôleurs SDN. Différentes architectures de plusieurs

contrôleurs SDN ont été proposées dans la littérature.

Les solutions tels que HyperFlow [24], Onix [25]

Opendaylight (ODL)[26] déploient un plan de contrôle

logiquement centralisé, ou plusieurs contrôleurs sont

utilisés, en partageant entre eux les charges et

synchronisant les données, ce qui permet d’améliorer les

performances et assurer la cohérence de réseau.

D’autres solutions ont été proposées afin de permettre la

communication entre plusieurs domaines de reseau

SDN. CIDC [28] est une nouvelle interface proposée,

afin de permettre la communication inter-contrôleurs

pour les plans de contrôle logiquement distribués. Cette

interface est implémentée dans chaque contrôleur et

fonctionne selon des modes de communication ce qui

améliore les performances des contrôleurs SDN.

4-2. Scalabilité

Un autre défi du SDN est la scalabilité ou l’évolutivité

du réseau, plus la taille de réseau augmente, plus des

demandes sont envoyés au contrôleur et à un moment

donné, le contrôleur devient incapable de traiter toutes

ces demandes.

Des solutions ont été proposés par les auteurs, afin

d’améliorer la scalabilité des contrôleurs SDN, L'une

des méthodes utilisé afin de surmonter le problème de

scalabilité, consiste à un niveau de parallélisme

supérieur dans les systèmes multi-cœurs. Tootoonchian

et al.[23] ont montré que des simples modifications

apportées au contrôleur NOX, augmentent ses

performances de plus de 10 fois.

Une solution viable pour surmonter les problèmes de

scalabilité est proposée dans «DIFANE» [29]. Il s'agit

d'une solution qui permet de conserver de manière

proactive, tout le trafic dans le plan de données, en

dirigeant les paquets via des commutateurs

intermédiaires stockant les règles nécessaires. Une autre

solution pour améliorer la scalabilité des contrôleurs

SDN, est l’utilisation des contrôleurs multiples, des

solutions permettant de distribuer physiquement les

contrôleurs SDN, tout en maintenant la vue globale de

réseau. Onix [25] par exemple, est une plate-forme de

contrôle distribuée, qui fournit aux applications de

contrôle un ensemble d’API, facilitant l’accès à l’état du

réseau (NIB) qui est distribué sur des instances Onix.

4-3. Sécurité

Le SDN peut poser également des problèmes de

sécurité. Le fait de centraliser toute l'intelligence du

reseau dans un seul contrôleur peut accroître la

vulnérabilité du contrôleur. Un contrôleur SDN

représente le point critique de reseau, s’il est compromis

ou devient indisponible, tous les aspects du réseau seront

endommagés.

Les réseaux SDN sont soumis à divers problèmes de

sécurité tels que le déni de service [31], l'usurpation

d'identité, l’élévation des privilèges, la falsification, et la

répudiation . Des solutions ont été proposées par les

auteurs pour améliorer la sécurité de SDN. Parmi les

solutions proposées dans le contrôle d’accès : AuthFlow

[32] est un mécanisme d'authentification et de contrôle

d'accès basé sur les informations d'identification de

l'hôte, permet de refuser l’accès aux hôtes non autorisés.

Contrôleur Organisation Langage Fonctionnalités

NOX [31] Nicira C++ le premier
contrôleur

openflow

POX [15] Nicira Python améliorer les

performances de
NOX

Ryu [16] NTT, OSRG

group

Python supporte

l’OpenStack

Beacon[17] Stanford Java basé sur le

Multithreading

Floodlight

[35]

Big Switch Java testé avec des

commutateurs
OpenFlow

physiques et

virtuels.

Opendaylight[

36]

Linux

Foundation

Java supporte le

Framework OSGi

et le REST API

Un certain nombre de solutions ont été proposées pour

surmonter l’attaque par déni de service sur les

contrôleurs SDN ou sur les tables de flux des

commutateurs. Les auteurs proposent la solution

AVANT-GUARD [35] qui limite les demandes de flux

envoyées au plan de contrôle à l'aide d'un outil de

migration de connexion.

4-4. Fiabilité

Dans les premiers déploiements de réseaux SDN qui

utilisaient un seul contrôleur centralisé, responsable de

tout le réseau, cela pose des problèmes sur les

contrôleurs SDN, qui deviennent des points uniques de

défaillance (SPOF, Single Point Of Failure) ; Si par

exemple le contrôleur tombe en panne ou devient

défaillant, tout le réseau devient indisponible. Plusieurs

solutions ont été proposés afin d’améliorer la fiabilité

des contrôleurs SDN.

Obadia et al. proposent deux mécanismes pour détecter

les défaillances dans les contrôleurs: un algorithme

connue sous le nom de mécanisme de découverte des

commutateurs(Greedy Algorithm), et une méthode de

pré-partitionnement entre contrôleurs (Pre-Partitioning

Failover ou PPF) [37].

Dans la première méthode, lorsqu’un switch détecte la

défaillance du contrôleur, il envoie un paquet LLDP

indiquant qu’il n’a pas de contrôleur maître, puis le

contrôleur qui reçoit ce paquet deviendra le maître et

ajoutera ensuite le switch orphelin à son domaine. Dans

la deuxième méthode, chaque contrôleur calcule une

liste des contrôleurs qui peuvent prendre le contrôle des

commutateurs de son domaine en cas de défaillance,

puis chaque ’un envoyera sa liste aux contrôleurs

voisins.

Chen et al. proposent FCF-M (Fast Controller Failover

for Multi-domain SDNs) [38] . Dans cette approche

chaque domaine est géré par un contrôleur principal et

un contrôleur de backup. La défaillance d’un contrôleur

est détectée à l'aide d’un mécanisme heartbeat

circulaire ; chaque contrôleur successeur vérifie la

disponibilité de son prédécesseur, en envoyant des

messages heartbeats d’une façon circulaire. Lorsque le

contrôleur successeur détecte une panne de son

prédécesseur, il sélectionne un contrôleur en fonction de

la distance et de la charge, puis lui affecte localement les

commutateurs orphelins.

Moazenni et al. proposent une méthode RDSDN

(Reliable Distributed SDN) [39] pour améliorer la

tolérance aux pannes des contrôleurs SDN. Une

architecture de plusieurs contrôleurs distribués est

utilisée, ou chaque contrôleur est responsable d’un sous-

réseau en tant que master, et définie comme esclave pour

les autres sous-réseaux. Une nouvelle formule est

proposée pour calculer le taux de fiabilité de chaque

sous-réseau. Ainsi les taux de fiabilité calculés sont

partagés entre les contrôleurs, afin de sélectionner le

contrôleur ayant la valeur de fiabilité la plus grande, ce

dernier est choisie comme coordinateur pour le réseau.

Dans RDSDN, la défaillance des contrôleurs est

détectée par le coordinateur, qui décide quel autre

contrôleur est le plus approprié pour prendre en charge

le sous-réseau dont son contrôleur a tombé en panne.

5. CONCLUSION ET PERSPECTIVES

Dans cet article, nous avons fourni une vue générale sur

SDN (Software Defined Networking), notamment les

avantages et l'architecture de SDN. Ensuite nous avons

présenté le protocole OpenFlow, son fonctionnement, et

quelques contrôleurs SDN. Ensuite nous avons présenté

quelques défis de SDN, et les solutions récentes

proposées pour surmonter ces défis. Enfin, vu

l’importance de machine learning qui ont suscité

beaucoup d’intérêt dans de nombreux efforts de

recherche. Déployer plus d’intelligence peut être une

solution efficace afin de résoudre les problèmes de SDN.

Dans ce contexte peut de travaux qui se concentrent sur

l’application de machine learning dans le domaine SDN,

pour combler cette lacune, nous prévoyant dans les

travaux futurs de faire une discussion sur la possibilité

d’appliquer les techniques de machine learning, afin de

surmonter les principaux défis de SDN notamment la

performance, la scalabilité, la sécurité, et la fiabilité.

Nous espérons que notre discussion ouvrira une

nouvelle voie aux lecteurs pour la mise en place d'un

réseau intelligent, et d’encourager davantage les études

ultérieures sur ce sujet.

Bibliographie

[1] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C.

Esteve Rothenberg, S. Azodolmolky, et S. Uhlig,

« Software-Defined Networking: A Comprehensive

Survey », Proc. IEEE, vol. 103, no 1, p. 14‑76, janv.

2015.

[2] P. C. da R. Fonseca et E. S. Mota, « A Survey on Fault

Management in Software-Defined Networks », IEEE

Commun. Surv. Tutor., vol. 19, no 4, p. 2284‑2321,

2017.

[3] L. Cui, F. R. Yu, et Q. Yan, « When big data meets

software-defined networking: SDN for big data and

big data for SDN », IEEE Netw., vol. 30, no 1, p.

58‑65, janv. 2016.

[4] A. Hakiri et P. Berthou, « Leveraging SDN for The

5G Networks: Trends, Prospects and Challenges », p.

23.

[5] W. Xia, Y. Wen, C. H. Foh, D. Niyato, et H. Xie, « A

Survey on Software-Defined Networking », IEEE

Commun. Surv. Tutor., vol. 17, no 1, p. 27‑51, 2015.

[6] M. Jammal, T. Singh, A. Shami, R. Asal, et Y. Li,

« Software defined networking: State of the art and

research challenges », Comput. Netw., vol. 72, p.

74‑98, oct. 2014.

[7] « Software-Defined Networking (SDN) Definition »,

Open Networking Foundation. [En ligne]. Disponible

sur: https://www.opennetworking.org/sdn-definition/.

[Consulté le: 19-nov-2018].

[8] « openflow-switch-v1.5.1.pdf ». [En ligne].

Disponible sur: https://www.opennetworking.org/wp-

content/uploads/2014/10/openflow-switch-v1.5.1.pdf.

[Consulté le: 29-nov-2018].

[9] J. Halpern et J. Hadi, « Forwarding and Control

Element Separation (ForCES) Forwarding Element

Model », RFC Editor, RFC5812, mars 2010.

[10] B. Pfaff et B. Davie, « The Open vSwitch Database

Management Protocol », RFC Editor, RFC7047, déc.

2013.

[11] R. T. Fielding, « in Information and Computer

Science », p. 180, 2000.

[12] [En ligne]. Disponible sur:

https://www.ietf.org/archive/id/draft-yin-sdn-sdni-

00.txt. [Consulté le: 30-nov-2018].

[13] « SDN Technical Specifications », Open Networking

Foundation. [En ligne]. Disponible sur:

https://www.opennetworking.org/software-defined-

standards/specifications/. [Consulté le: 29-nov-2018].

[14] F. Benamrane, M. Ben mamoun, et R. Benaini,

« Performances of OpenFlow-Based Software-Defined

Networks: An overview », J. Netw., vol. 10, no 6, juin

2015.

[15] N. O. X. Repo, The POX network software platform.

Contribute to noxrepo/pox development by creating an

account on GitHub. 2018.

[16] « What is Ryu Controller? - SDxCentral ». [En ligne].

Disponible sur:

https://www.sdxcentral.com/sdn/definitions/sdn-

controllers/open-source-sdn-controllers/what-is-ryu-

controller/. [Consulté le: 24-déc-2018].

[17] D. Erickson, « The beacon openflow controller », in

Proceedings of the second ACM SIGCOMM workshop

on Hot topics in software defined networking -

HotSDN ’13, Hong Kong, China, 2013, p. 13.

[18] « Les réseaux SDN transforment le Big Data en

capital informationnel ». [En ligne]. Disponible sur:

https://www.decideo.fr/Les-reseaux-SDN-

transforment-le-Big-Data-en-capital-

informationnel_a6699.html. [Consulté le: 31-déc-

2018].

[19] S. K. Routray et K. P. Sharmila, « Software defined

networking for 5G », in 2017 4th International

Conference on Advanced Computing and

Communication Systems (ICACCS), Coimbatore,

India, 2017, p. 1‑5.

[20] I. F. Akyildiz, P. Wang, et S.-C. Lin, « SoftAir: A

software defined networking architecture for 5G

wireless systems », Comput. Netw., vol. 85, p. 1‑18,

juill. 2015.

[21] J. S. B. Martins, « Towards Smart City Innovation

Under the Perspective of Software-Defined

Networking, Artificial Intelligence and Big Data »,

ArXiv181011665 Cs, oct. 2018.

[22] N. Gude et al., « NOX: towards an operating system

for networks », ACM SIGCOMM Comput. Commun.

Rev., vol. 38, no 3, p. 105, juill. 2008.

[23] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M.

Casado, et R. Sherwood, « On Controller Performance

in Software-Defined Networks », p. 6.

[24] A. Tootoonchian et Y. Ganjali, « HyperFlow: A

Distributed Control Plane for OpenFlow », p. 6, 2010.

[25] T. Koponen et al., « Onix: A Distributed Control

Platform for Large-scale Production Networks », p.

14, 2010.

[26] « OpenDaylight | A Linux Foundation Collaborative

Project ». [En ligne]. Disponible sur:

http://archive15.opendaylight.org/. [Consulté le: 31-

mars-2019].

[27] T. Tsou, P. Aranda, H. Xie, R. Sidi, H. Yin, et D.

Lopez, « SDNi: A Message Exchange Protocol for

Software Defined Networks (SDNS) across Multiple

Domains ». [En ligne]. Disponible sur:

https://tools.ietf.org/html/draft-yin-sdn-sdni-00.

[Consulté le: 31-mars-2019].

[28] « Benamrane et al. - 2017 - Etude des Performances

des Architectures du Plan d.pdf ». .

[29] M. Yu, J. Rexford, M. J. Freedman, et J. Wang,

« Scalable Flow-Based Networking with DIFANE »,

p. 12.

[30] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P.

Yalagandula, P. Sharma, et S. Banerjee, « DevoFlow:

Scaling Flow Management for High-Performance

Networks », p. 12.

[31] S. Shin et G. Gu, « Attacking Software-Defined

Networks: A First Feasibility Study », p. 2.

[32] D. M. Ferrazani Mattos et O. C. M. B. Duarte,

« AuthFlow: authentication and access control

mechanism for software defined networking », Ann.

Telecommun., vol. 71, no 11‑12, p. 607‑615, déc.

2016.

[33] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M.

Tyson, et G. Gu, « A security enforcement kernel for

OpenFlow networks », in Proceedings of the first

workshop on Hot topics in software defined networks -

HotSDN ’12, Helsinki, Finland, 2012, p. 121.

[34] S. Shin et al., « Rosemary: A Robust, Secure, and

High-performance Network Operating System », in

Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security - CCS ’14,

Scottsdale, Arizona, USA, 2014, p. 78‑89.

[35] S. Shin, V. Yegneswaran, P. Porras, et G. Gu,

« AVANT-GUARD: scalable and vigilant switch flow

management in software-defined networks », in

Proceedings of the 2013 ACM SIGSAC conference on

Computer & communications security - CCS ’13,

Berlin, Germany, 2013, p. 413‑424.

[36] G. Yao, J. Bi, et P. Xiao, « Source address validation

solution with OpenFlow/NOX architecture », in 2011

19th IEEE International Conference on Network

Protocols, Vancouver, AB, Canada, 2011, p. 7‑12.

[37] M. Obadia, M. Bouet, J. Leguay, K. Phemius, et L.

Iannone, « Failover mechanisms for distributed SDN

controllers », in 2014 International Conference and

Workshop on the Network of the Future (NOF), Paris,

France, 2014, p. 1‑6.

[38] Yi-Chen Chan, Kuochen Wang, et Yi-Huai Hsu,

« Fast Controller Failover for Multi-domain Software-

Defined Networks », in 2015 European Conference on

Networks and Communications (EuCNC), Paris,

France, 2015, p. 370‑374.

[39] S. Moazzeni, M. R. Khayyambashi, N. Movahhedinia,

et F. Callegati, « On reliability improvement of

Software-Defined Networks », Comput. Netw., vol.

133, p. 195‑211, mars 2018.

