N
N

N

HAL

open science

Software Defined Networking (SDIN): Etat de L’art
Ihssane Choukri, Mohammed Ouzzif, Khalid Bouragba

» To cite this version:

Ihssane Choukri, Mohammed Ouzzif, Khalid Bouragba. Software Defined Networking (SDN): Etat de
L’art. Colloque sur les Objets et systémes Connectés, Ecole Supérieure de Technologie de Casablanca
(Maroc), Institut Universitaire de Technologie d’Aix-Marseille (France), Jun 2019, CASABLANCA,
Maroc. hal-02298874

HAL Id: hal-02298874
https://hal.science/hal-02298874v1
Submitted on 27 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02298874v1
https://hal.archives-ouvertes.fr

Software Defined Networking (SDN): Etat de L’art

Ihssane Choukri, Mohammed Ouzzif, Khalid Bouragba
Laboratoire RITM, ESTC, Université Hassan I, Casablanca, Maroc
Email : choukriihssan@gmail.com, ouzzif@est-uh2c.ac.ma, bouragha2008@gmail.com
RESUME

Internet a connu un énorme succes, Il est devenu un outil universel indispensable pour les entreprises et la plupart
d’individus. Cependant, malgré leur adoption, les réseaux classiques sont complexes et difficiles a gérer. Une des raisons
de cette difficulté réside dans I’architecture des réseaux actuels ou le plan de contréle et le plan de données sont intégrés
verticalement dans chaque équipement réseau.

SDN est un nouveau paradigme reseau, qui permet de simplifier la gestion et I’innovation dans le réseau, en séparant la
logique de contréle du réseau des équipements d’interconnexions ,en promouvant la centralisation du contréle et la
capacité de programmer le réseau. Dans cet article, nous présentons une vue générale sur SDN. Nous commengons par
présenter SDN, son architecture, et ses interfaces de communications. Nous décrivons par la suite le protocole Openflow,
son fonctionnement, et les principaux contrdleurs SDN. Nous examinons également les problémes confrontées par SDN,
en nous concentrant sur les principaux défis de plan de controle tels que la performance, la scalabilité, la sécurité, et la
fiabilité, nous discutons ainsi, les solutions existantes afin de surmonter ces défis.

Mots clés : Software-Defined Networking, Openflow, Réseaux programmables, plan de contréle, plan de données.

1 INTRODUCTION

Avec l’avénement de [I’internet et les nouvelles
technologies de I’information comme le Big Data qui
nécessite un traitement distribué, le Cloud Computing,
ou encore I’internet des objets (10T), les architectures
réseaux classiques constituent un grand défi, tant pour
les opérateurs que pour les administrateurs réseaux.

En effet, depuis plusieurs années, il est trés difficile,
voire impossible d’innover ou apporter des changements
au réseau. Selon [1], la conception ou le déploiement
d’un nouveau protocole de routage peuvent prendre de
5 & 10 années. Aussi les taches de configuration et de
gestion des réseaux sont plus complexes. Une des
raisons de cette difficulté d’évoluer, ou d’administrer
simplement les réseaux, est le fort couplage qui existe
entre le plan de contréle et le plan de données des
équipements d’interconnexions dans les architectures
des réseaux actuels. C’est dans ce contexte qu’a apparu
le concept des réseaux définis par les logiciels (Software
Defined Networking ou SDN), afin de répondre a la

Cities. Selon [4] SDN peut jouer également un role
crucial dans la conception des réseaux sans fil 5G.

Il est en outre envisageable d’utiliser le SDN avec
différentes approches, afin d’améliorer les performances
des réseaux, par exemple I’utilisation de Machine
Learning avec SDN permet de fournir plus
d’intelligence aux réseaux, et cela grice aux capacités
du SDN.

Malgré ses avantages, et sa capacité de simplifier les
réseaux, SDN rencontre des défis qui peuvent limiter ses
fonctionnalités et ses performances dans les réseaux a
grande échelle. Cet article aborde les principaux défis du
SDN de maniére compléte et détaillée. Il traite les

rigidité architecturale des réseaux actuels, notamment en
les rendant plus programmables.

L’idée principale de ce nouveau paradigme, est de sortir
la partie intelligente des équipements d’interconnexions,
et la placer vers un seul point de contrble appelé
controleur, ce dernier fournit une vue centrale de reseau,
ce qui simplifie d’une part, la gestion et la configuration
de réseau.

Le SDN présente donc plusieurs avantages, il peut servir
plusieurs domaines, et étre intégré avec les nouvelles
technologies, tels que Big Data, Machine Learning, 5G,
lIoT, et les Smart Cities , en offrant ainsi une
programmabilité et une vue globale, centralisé du reseau
[2].

Par exemple la capacité de programmation de SDN est
particulierement utile pour les applications Big Data
nécessitant de nombreuses reconfigurations [3]. Le SDN
améliore aussi la résilience et la scalabilité du réseau,
qui sont essentielles pour le déploiement de I’loT a
grande échelle, tel que les Smart

problémes de performance, de scalabilité, de sécurité, et
de fiabilité, au niveau des contréleurs SDN.

De nombreux travaux ont porté sur le sujet de SDN, vu
son importance dans le domaine des réseaux. Plusieurs
articles récents [1] , [5] ,[6], fournissent des études
intéressantes sur SDN. Notre objectif dans cet article est
un peu différent, nous visons a donner au lecteur
particuliéerement intéressé par les réseaux SDN, un
apercu sur le SDN, ainsi la possibilité d’intégrer ce
nouveau paradigme avec les nouvelles technologies,
pour objectif d’une part, d’améliorer, et simplifier le
déploiement de ces technologies en utilisant SDN, et

d’autre part profiter de ces technologies afin de
surmonter les défis de SDN.

Le reste de l'article est organisé comme suit. Dans la
section 2, nous présentons le SDN, son architecture, et
ses interfaces de communications. Ensuite, nous
décrivons dans la section 3, le protocole Openflow, son
fonctionnement, et les principaux contrleurs SDN.
Dans la section 4, nous présentons quelques défis de
SDN, et les solutions récentes proposées pour surmonter
ces défis. Dans la section 6, nous concluons notre papier
avec quelques perspectives.

2 SOFTWARE-DEFINED NETWORKING
2-1. C’est quoi SDN ?

Le SDN est un nouveau paradigme qui décrit une
architecture réseau dont le plan de contréle est
totalement découplé de plan de données. Selon I’ONF
(Open Network Fondation) [7] SDN est une architecture
qui sépare le plan de controle du plan de données, et
centralise toue I’intelligence de reseau dans une entité
programmable appelé «Contrbleur», afin de gérer
plusieurs éléments du plan de données(Ex switches ou
routeurs, etc.) via des APIs (Application Programming
Interface).

=>Plus concrétement, on peut dire qu’une architecture
réseau suit le paradigme SDN si, et seulement si, elle
vérifie les points suivants :

-Le plan de controle est complétement découplé du
plan de données, cette séparation est matérialisée a
travers la définition d’une interface de programmation
(Southbound API)

-Toute I’intelligence du réseau est externalisée dans
un point logiquement centralisé appelé contréleur
SDN, ce dernier offre une vue globale sur toute
I’infrastructure physique.

-Le contrdoleur SDN est un composant
programmable qui expose une API (NorthboundAPI)
pour spécifier des applications de controle.

2-2. Architecture de SDN

Un réseau traditionnel est composé généralement des
équipements d’interconnexions tels que des switchs et
des routeurs. Ces équipements incorporent a la fois la
partie transmission et la partie de contréle de reseau.
Dans ce modele d’architecture, il est difficile de
développer de nouveaux services, en raison du fort
couplage qui existe entre le plan de contrdle et le plan de
transmission.

Afin d’ouvrir les équipements réseauX aux innovations,
I’architecture SDN, a vu le jour. Elle permet de
découpler la partie de contrdle de la partie transmission
des équipements d’interconnexions. Le SDN est
composée principalement de trois couches et
d’interfaces de communication (Figure 1), nous
décrivons dans ce qui suit ces couches, ainsi que les
interfaces de communications :

-La couche de transmission : appelée aussi «plan de
données», elle est composée des équipements

d’acheminement tels que les switches ou les routeurs,
son rdle principal est de transmettre les données, et
collecter les statistiques.

-La couche de contréle : appelée aussi «plan de
contrOle», elle est constituée principalement d’un ou
plusieurs contrbleurs SDN, son role est de contrdler et
de gérer les équipements de I’infrastructure a travers une
interface appelée ‘south-bound APT’.

-La couche application : représente les applications qui
permettent de déployer de nouvelles fonctionnalités
réseau, comme 1’ingénierie de trafic, QoS, la sécurité,
etc. Ces applications sont construits moyennant une
interface de programmation appelée ‘north-bound API

Couche d” Application .

Couche & Applcation N

Application de Application de Application de
Cloud QoS Sécurité

APl MNord

Couche de Contrale

Contréleur | APIEstiOuest | CONtréleur | aprpopouest| COntroleur
SDN SDMN SDMN

APl Sud

_ Routeurs -

: Switches physiques \/ ‘-

Switches virtuels

Figure 1 : Architecture SDN

2-3. Interfaces de communications

Il existe principalement trois types d’interfaces
permettent aux contr6leurs de communiquer avec leur
environnement : interface Sud, Nord et Est/Ouest

v"Interfaces Sud

Les interfaces Sud ou (Southbound APIs) représentent
les interfaces de communication, qui permettent au
contréleur SDN d’interagir avec les équipements de la
couche d’infrastructure, tel que les switches, et les
routeurs.

Le protocole le plus utilisé, et le plus déployé comme
interface Sud est le protocole OpenFlow, qui a été
standardisé par I’ONF, sa derniére version est 1.5 [8],
plus de détails sur ce protocole sera donnée dans la
prochaine section . Il existe dorénavant d’autres
alternatives d’interface Sud, tels que ForCes [9], ou
Open vSwitch Database (OVSDB) [10] , mais le
protocole openflow est actuellement le standard de
facto, qui est largement accepté et répandu dans les
réseaux SDN.

v"Interfaces Nord

Les interfaces Nord servent a programmer les
équipements de transmission, en exploitant I’abstraction
du réseau fourni par le plan de contrdle. Il est noté que

contrairement a la Southbound API qui a été standardisé,
I’interface nord reste encore une question ouverte.

Bien que la nécessité d'une telle interface standardisée
constitue un débat considérable au sein de l'industrie,
I’avantage d'une APl nord ouverte est aussi important,
une API nord ouverte permette plus d’innovation et
d'expérimentation. Plusieurs implémentations de cette
interface existent, chaque "une de ces implémentations
offre des fonctionnalités bien différents. Le RESTful
[11] considéré comme 1’API nord le plus répandue dans
les réseaux SDN.

v"Interfaces Est/Ouest

Les interfaces Est/Ouest sont des interfaces de
communication qui permettent la communication entre
les contrdleurs dans une architecture multi-contréleurs
pour synchroniser 1’état du réseau [12]. Ces
architectures sont trés récentes et aucun standard de
communication inter-controleur n’est actuellement

disponible.

3 OPENFLOW
3-1. Définition d’Openflow

Openflow est le protocole utilisé pour la communication
entre la couche transmission et la couche de contrdle, il
a été initialement proposé et implémenté par ['université
de Stanford, et standardisé par la suite par ’ONF, sa
derniére version est 1.5 [8]. Nous détaillons par la suite
la structure d’openflow, son fonctionnement, ses
différentes spécifications, ainsi que quelques
controleurs openflow.

3-2. Architecture Openflow

L’architecture openflow est I’implémentation réelle des
réseaux SDN, Cette architecture est basée
principalement sur trois composantes : le plan de
données, qui est composée des switches openflow ; le
plan de contréle, constitué par des
controleurs OpenFlow ; une chaine sécurisée qui
permettent aux commutateurs de se connecter au plan de
contréle.

La spécification d’un commutateur openflow est
standardisée par I’ONF. Selon la spécification d’ONF
[13], un commutateur openflow doit contenir un ou
plusieurs tables de flux , ces tables de flux contiennent
plusieurs d’entrées qui correspondent a des régles, ou
chacune est constituée principalement des trois champs
suivants (Tableau 1):

-L’En-téte de paquet : il définit le flux de données, il
contient les informations nécessaires pour déterminer le
paquet auquel cette reégle sera appliquée. L’en-téte de
paquet peut identifier différents protocoles tel
qu’Ethernet, IPv4, IPv6 ou MPLS, cela dépend de la
spécification d’openflow déployée.

-L’Action : spécifie comment les paquets d’un flux
seront traités. Une action peut étre I'une des suivantes :

transférer le paquet vers un ou plusieurs ports, supprimer
le paquet , transférer le paquet vers le contrdleur, ou
modifier le champ d’entéte de paquet [6].

-Les Compteurs : sont réservés a la collecte des
statistiques de flux. lls enregistrent le nombre de paquets
et d'octets recus de chaque flux, et le temps écoulé
depuis le dernier transfert de flux.

| Champs d’en-téte | Compteurs | Actions |

Tableau 1 : Structure d'une entrée de table de flux
d’un commutateur openflow 1.0

3-3. Fonctionnement Openflow

Lorsqu’un paquet arrive a un commutateur, le
commutateur vérifie s'il y a une entrée dans la table
de flux qui correspond a I'en-téte de paquet. Si c'est
le «cas, le commutateur exécute 1’action
correspondante dans la table de flux. Dans le cas
contraire, c’est-a-dire il y a pas une entrée
correspondante (1) , le commutateur génere un
message asynchrone vers le contréleur (2) sous la
forme d’un ‘Packet in’, puis le contréleur décide
selon sa configuration une action pour ce paquet, et
envoie une nouvelle régle de transmission sous la
forme dun ‘Packet out’ et ‘Flow-mod’ au
commutateur (3), et enfin, la table de flux du
commutateur est actualisée, pour prendre en compte
la nouvelle regle installé par le controleur (4). La
Figure 2 [14] décrit le processus de transmission
d’un paquet avec openflow.

(2) Flow request sent (3) Reply sent
to the controller to the switch

x(l) No match

o
(4) The switch’s flow

|
Rgress port table update
-

Match—"

Figure 2 : processus de transmission d’un paquet avec
openflow [14]

L'échange d'informations entre le commutateur et le
contrbleur s'effectue par l'envoi de messages via un
canal de contrdle sécurisé en utilisant TLS (Transport
Layer Security).

3-4. Les Contréleurs communes d’OpenFlow

Plusieurs controleurs ont été développés, dont la
majorité sont open source et supportent le protocole

openflow. Le tableau 2 présente les contréleurs SDN les
plus connus.

Contrdleur Organisation | Langage | Fonctionnalités

NOX [31] Nicira C++ le premier
contréleur
openflow

POX [15] Nicira Python améliorer les
performances de
NOX

Ryu [16] NTT, OSRG Python supporte

group I’OpenStack

Beacon[17] Stanford Java basé sur le
Multithreading

Floodlight Big Switch Java testé avec des

[35] commutateurs
OpenFlow
physiques et
virtuels.

Opendaylight[Linux Java supporte le

36] Foundation Framework OSGi
et le REST API

Tableau 2 : Quelques contrdleurs SDN les plus connus.

4. LES DEFIS SDN
Le SDN a connue plusieurs défis que ce soit sur le plan
de données que sur le plan de contréle , mais dans cette
section on va présenter les principaux défis de SDN , au
niveau de son plan de contrble, qui comprend la
performance, la scalabilité , la sécurité, et la fiabilité [6].
La section 5 décrit ces défis et présente les solutions
récentes proposées dans la littérature.

4-1. Performance

Les performances des contrdleurs SDN constituent un
domaine important que les chercheurs essayent toujours
de I’améliorer, et puisque le SDN est une technique
basée sur les flux, ses performances sont mesurées en
fonction de deux métriques : le temps nécessaire pour
instaurer un nouveau flux dans les commutateurs
(latence) et le nombre de flux que le contréleur peut
traiter par seconde (débit).

Des chercheurs ont utilisé la technique de
multithreading, afin d’améliorer les performances des
contréleurs SDN. En effet le premier contr6leur
développé pour gérer les réseaux SDN est le controleur
NOX [22], ce contrdleur a un débit de 30000 flux par
seconde et une latence de 10 ms. Un nouveau contrdleur
multithreads, appelé NOXMT (version améliorée du
contréleur NOX) [23] a été introduit par les auteurs, afin
d’améliorer les performances des contrdleurs. NOX-MT
permet d’améliore le débit de contrdleur de plus de 30
fois, en le comparant avec le controleur NOX.
L’utilisation des contréleurs multiples est une solution
plus efficace pour améliorer les performances des
controleurs SDN. Différentes architectures de plusieurs
contréleurs SDN ont été proposées dans la littérature.
Les solutions tels que HyperFlow [24], Onix [25]
Opendaylight (ODL)[26] déploient un plan de contréle
logiquement centralisé, ou plusieurs contrdleurs sont

utilisés, en partageant entre eux les charges et
synchronisant les données, ce qui permet d’améliorer les
performances et assurer la cohérence de réseau.

D’autres solutions ont été proposées afin de permettre la
communication entre plusieurs domaines de reseau
SDN. CIDC [28] est une nouvelle interface proposée,
afin de permettre la communication inter-contréleurs
pour les plans de contréle logiquement distribués. Cette
interface est implémentée dans chaque contrdleur et
fonctionne selon des modes de communication ce qui
améliore les performances des controleurs SDN.

4-2. Scalabilité

Un autre défi du SDN est la scalabilité ou 1’évolutivité
du réseau, plus la taille de réseau augmente, plus des
demandes sont envoyés au controleur et a un moment
donng, le contréleur devient incapable de traiter toutes
ces demandes.

Des solutions ont été proposés par les auteurs, afin
d’améliorer la scalabilité des contréleurs SDN, L'une
des méthodes utilisé afin de surmonter le probléme de
scalabilité, consiste & un niveau de parallélisme
supérieur dans les systemes multi-cceurs. Tootoonchian
et al.[23] ont montré que des simples modifications
apportées au contrbleur NOX, augmentent ses
performances de plus de 10 fois.

Une solution viable pour surmonter les problemes de
scalabilité est proposée dans «DIFANE» [29]. Il s'agit
d'une solution qui permet de conserver de maniére
proactive, tout le trafic dans le plan de données, en
dirigeant les paquets via des commutateurs
intermédiaires stockant les régles nécessaires. Une autre
solution pour améliorer la scalabilité des contrdleurs
SDN, est I'utilisation des contréleurs multiples, des
solutions permettant de distribuer physiquement les
contréleurs SDN, tout en maintenant la vue globale de
réseau. Onix [25] par exemple, est une plate-forme de
contréle distribuée, qui fournit aux applications de
contréle un ensemble d’API, facilitant I’accés a 1’état du
réseau (NIB) qui est distribué sur des instances Onix.

4-3. Sécurité

Le SDN peut poser également des problemes de
sécurité. Le fait de centraliser toute l'intelligence du
reseau dans un seul contrbleur peut accroitre la
vulnérabilitté du contréleur. Un contrdleur SDN
représente le point critique de reseau, s’il est compromis
ou devient indisponible, tous les aspects du réseau seront
endommagés.

Les réseaux SDN sont soumis a divers problemes de
sécurité tels que le déni de service [31], l'usurpation
d'identité, 1’élévation des priviléges, la falsification, et la
répudiation . Des solutions ont été proposées par les
auteurs pour améliorer la sécurité de SDN. Parmi les
solutions proposées dans le contrdle d’accés : AuthFlow
[32] est un mécanisme d'authentification et de controle
d'accés basé sur les informations d'identification de
I'hGte, permet de refuser I’accés aux hotes non autorisés.

Un certain nombre de solutions ont été proposées pour
surmonter [’attaque par déni de service sur les
controleurs SDN ou sur les tables de flux des
commutateurs. Les auteurs proposent la solution
AVANT-GUARD [35] qui limite les demandes de flux
envoyées au plan de contrble a l'aide d'un outil de
migration de connexion.

4-4. Fiabilité

Dans les premiers déploiements de réseaux SDN qui
utilisaient un seul contr6leur centralisé, responsable de
tout le réseau, cela pose des problemes sur les
contréleurs SDN, qui deviennent des points uniques de
défaillance (SPOF, Single Point Of Failure) ; Si par
exemple le contréleur tombe en panne ou devient
défaillant, tout le réseau devient indisponible. Plusieurs
solutions ont été proposés afin d’améliorer la fiabilité
des contrdleurs SDN.

Obadia et al. proposent deux mécanismes pour détecter
les défaillances dans les contréleurs: un algorithme
connue sous le nom de mécanisme de découverte des
commutateurs(Greedy Algorithm), et une méthode de
pré-partitionnement entre contréleurs (Pre-Partitioning
Failover ou PPF) [37].

Dans la premiére méthode, lorsqu’un switch détecte la
défaillance du contréleur, il envoie un paquet LLDP
indiquant qu’il n’a pas de contrOleur maitre, puis le
controleur qui regoit ce paquet deviendra le maitre et
ajoutera ensuite le switch orphelin a son domaine. Dans
la deuxieme méthode, chaque contrdleur calcule une
liste des contréleurs qui peuvent prendre le controle des
commutateurs de son domaine en cas de défaillance,
puis chaque ’un envoyera Sa liste aux contrbleurs
voisins.

Chen et al. proposent FCF-M (Fast Controller Failover
for Multi-domain SDNs) [38] . Dans cette approche
chaque domaine est géré par un contrdleur principal et
un contréleur de backup. La défaillance d’un contréleur
est détectée a l'aide d’un mécanisme heartbeat
circulaire ; chaque contrbleur successeur vérifie la
disponibilit¢ de son prédécesseur, en envoyant des
messages heartbeats d’une fagon circulaire. Lorsque le
contréleur successeur détecte une panne de son
prédécesseur, il sélectionne un contrdleur en fonction de
la distance et de la charge, puis lui affecte localement les
commutateurs orphelins.

Moazenni et al. proposent une méthode RDSDN
(Reliable Distributed SDN) [39] pour améliorer la
tolérance aux pannes des contrleurs SDN. Une
architecture de plusieurs controleurs distribués est
utilisée, ou chaque contréleur est responsable d’un sous-
réseau en tant que master, et définie comme esclave pour
les autres sous-réseaux. Une nouvelle formule est
proposée pour calculer le taux de fiabilité de chaque
sous-réseau. Ainsi les taux de fiabilité calculés sont
partagés entre les contrdleurs, afin de sélectionner le
contréleur ayant la valeur de fiabilité la plus grande, ce

dernier est choisie comme coordinateur pour le réseau.
Dans RDSDN, la défaillance des controleurs est
détectée par le coordinateur, qui décide quel autre
contrdleur est le plus approprié pour prendre en charge
le sous-réseau dont son contréleur a tombé en panne.

5. CONCLUSION ET PERSPECTIVES

Dans cet article, nous avons fourni une vue générale sur
SDN (Software Defined Networking), notamment les
avantages et l'architecture de SDN. Ensuite nous avons
présenté le protocole OpenFlow, son fonctionnement, et
quelques contréleurs SDN. Ensuite nous avons présenté
quelques défis de SDN, et les solutions récentes
proposées pour surmonter ces défis. Enfin, wvu
I’importance de machine learning qui ont suscité
beaucoup d’intérét dans de nombreux efforts de
recherche. Déployer plus d’intelligence peut étre une
solution efficace afin de résoudre les problémes de SDN.
Dans ce contexte peut de travaux qui se concentrent sur
I’application de machine learning dans le domaine SDN,
pour combler cette lacune, nous prévoyant dans les
travaux futurs de faire une discussion sur la possibilité
d’appliquer les techniques de machine learning, afin de
surmonter les principaux défis de SDN notamment la
performance, la scalabilité, la sécurité, et la fiabilite.
Nous espérons que notre discussion ouvrira une
nouvelle voie aux lecteurs pour la mise en place d'un
réseau intelligent, et d’encourager davantage les études
ultérieures sur ce sujet.

Bibliographie

[1] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C.
Esteve Rothenberg, S. Azodolmolky, et S. Uhlig,

« Software-Defined Networking: A Comprehensive
Survey », Proc. IEEE, vol. 103, n° 1, p. 14-76, janv.
2015.

[2] P.C.daR. FonsecaetE.S. Mota, « A Survey on Fault
Management in Software-Defined Networks », IEEE
Commun. Surv. Tutor., vol. 19, n° 4, p. 2284-2321,
2017.

[3] L. Cui, F. R. Yu, et Q. Yan, « When big data meets
software-defined networking: SDN for big data and
big data for SDN », IEEE Netw., vol. 30, n° 1, p.
58-65, janv. 2016.

[4] A.Hakiri et P. Berthou, « Leveraging SDN for The
5G Networks: Trends, Prospects and Challenges », p.
23.

[5] W. Xia, Y. Wen, C. H. Foh, D. Niyato, et H. Xie, « A
Survey on Software-Defined Networking », IEEE
Commun. Surv. Tutor., vol. 17, n° 1, p. 27-51, 2015.

[6] M. Jammal, T. Singh, A. Shami, R. Asal, et Y. Li,

« Software defined networking: State of the art and
research challenges », Comput. Netw., vol. 72, p.
74-98, oct. 2014.

[71 «Software-Defined Networking (SDN) Definition »,
Open Networking Foundation. [En ligne]. Disponible
sur: https://www.opennetworking.org/sdn-definition/.
[Consulté le: 19-nov-2018].

[8] «openflow-switch-v1.5.1.pdf ». [En ligne].
Disponible sur: https://www.opennetworking.org/wp-

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

content/uploads/2014/10/openflow-switch-v1.5.1.pdf.
[Consulté le: 29-nov-2018].

J. Halpern et J. Hadi, « Forwarding and Control
Element Separation (ForCES) Forwarding Element
Model », RFC Editor, RFC5812, mars 2010.

B. Pfaff et B. Davie, « The Open vSwitch Database
Management Protocol », RFC Editor, RFC7047, déc.
2013.

R. T. Fielding, « in Information and Computer
Science », p. 180, 2000.

[En ligne]. Disponible sur:
https://www.ietf.org/archive/id/draft-yin-sdn-sdni-
00.txt. [Consulté le: 30-nov-2018].

« SDN Technical Specifications », Open Networking
Foundation. [En ligne]. Disponible sur:
https://www.opennetworking.org/software-defined-
standards/specifications/. [Consulté le: 29-nov-2018].
F. Benamrane, M. Ben mamoun, et R. Benaini,

« Performances of OpenFlow-Based Software-Defined
Networks: An overview », J. Netw., vol. 10, n® 6, juin
2015.

N. O. X. Repo, The POX network software platform.
Contribute to noxrepo/pox development by creating an
account on GitHub. 2018.

« What is Ryu Controller? - SDxCentral ». [En ligne].
Disponible sur:
https://www.sdxcentral.com/sdn/definitions/sdn-
controllers/open-source-sdn-controllers/what-is-ryu-
controller/. [Consulté le: 24-déc-2018].

D. Erickson, « The beacon openflow controller », in
Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking -
HotSDN ’13, Hong Kong, China, 2013, p. 13.

« Les réseaux SDN transforment le Big Data en
capital informationnel ». [En ligne]. Disponible sur:
https://www.decideo.fr/Les-reseaux-SDN-
transforment-le-Big-Data-en-capital-
informationnel_a6699.html. [Consulté le: 31-déc-
2018].

S. K. Routray et K. P. Sharmila, « Software defined
networking for 5G », in 2017 4th International
Conference on Advanced Computing and
Communication Systems (ICACCS), Coimbatore,
India, 2017, p. 1-5.

I. F. Akyildiz, P. Wang, et S.-C. Lin, « SoftAir: A
software defined networking architecture for 5G
wireless systems », Comput. Netw., vol. 85, p. 1-18,
juill. 2015.

J. S. B. Martins, « Towards Smart City Innovation
Under the Perspective of Software-Defined
Networking, Artificial Intelligence and Big Data »,
ArXiv181011665 Cs, oct. 2018.

N. Gude et al., « NOX: towards an operating system
for networks », ACM SIGCOMM Comput. Commun.
Rev., vol. 38, n° 3, p. 105, juill. 2008.

A. Tootoonchian, S. Gorbunov, Y. Ganjali, M.
Casado, et R. Sherwood, « On Controller Performance
in Software-Defined Networks », p. 6.

A. Tootoonchian et Y. Ganjali, « HyperFlow: A
Distributed Control Plane for OpenFlow », p. 6, 2010.
T. Koponen et al., « Onix: A Distributed Control
Platform for Large-scale Production Networks », p.
14, 2010.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

« OpenDaylight | A Linux Foundation Collaborative
Project ». [En ligne]. Disponible sur:
http://archivel5.opendaylight.org/. [Consulté le: 31-
mars-2019].

T. Tsou, P. Aranda, H. Xie, R. Sidi, H. Yin, et D.
Lopez, « SDNi: A Message Exchange Protocol for
Software Defined Networks (SDNS) across Multiple
Domains ». [En ligne]. Disponible sur:
https://tools.ietf.org/html/draft-yin-sdn-sdni-00.
[Consulté le: 31-mars-2019].

« Benamrane et al. - 2017 - Etude des Performances
des Architectures du Plan d.pdf ». .

M. Yu, J. Rexford, M. J. Freedman, et J. Wang,

« Scalable Flow-Based Networking with DIFANE »,
p. 12.

A. R. Curtis, J. C. Mogul, J. Tourrilhes, P.
Yalagandula, P. Sharma, et S. Banerjee, « DevoFlow:
Scaling Flow Management for High-Performance
Networks », p. 12.

S. Shin et G. Gu, « Attacking Software-Defined
Networks: A First Feasibility Study », p. 2.

D. M. Ferrazani Mattos et O. C. M. B. Duarte,

« AuthFlow: authentication and access control
mechanism for software defined networking », Ann.
Telecommun., vol. 71, n® 11-12, p. 607-615, déc.
2016.

P. Porras, S. Shin, V. Yegneswaran, M. Fong, M.
Tyson, et G. Gu, « A security enforcement kernel for
OpenFlow networks », in Proceedings of the first
workshop on Hot topics in software defined networks -
HotSDN ’12, Helsinki, Finland, 2012, p. 121.

S. Shin et al., « Rosemary: A Robust, Secure, and
High-performance Network Operating System », in
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security - CCS ’14,
Scottsdale, Arizona, USA, 2014, p. 78-89.

S. Shin, V. Yegneswaran, P. Porras, et G. Gu,

« AVANT-GUARD: scalable and vigilant switch flow
management in software-defined networks », in
Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security - CCS 13,
Berlin, Germany, 2013, p. 413-424.

G. Yao, J. Bi, et P. Xiao, « Source address validation
solution with OpenFlow/NOX architecture », in 2011
19th IEEE International Conference on Network
Protocols, Vancouver, AB, Canada, 2011, p. 7-12.

M. Obadia, M. Bouet, J. Leguay, K. Phemius, et L.
lannone, « Failover mechanisms for distributed SDN
controllers », in 2014 International Conference and
Workshop on the Network of the Future (NOF), Paris,
France, 2014, p. 1-6.

Yi-Chen Chan, Kuochen Wang, et Yi-Huai Hsu,

« Fast Controller Failover for Multi-domain Software-
Defined Networks », in 2015 European Conference on
Networks and Communications (EUCNC), Paris,
France, 2015, p. 370-374.

S. Moazzeni, M. R. Khayyambashi, N. Movahhedinia,
et F. Callegati, « On reliability improvement of
Software-Defined Networks », Comput. Netw., vol.
133, p. 195-211, mars 2018.

