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This paper introduces the f -EI(φ) algorithm, a novel iterative al-
gorithm which operates on measures and performs f -divergence min-
imisation in a Bayesian framework. We prove that for a rich family
of values of (f, φ) this algorithm leads at each step to a systematic
decrease in the f -divergence and show that we achieve an optimum.
In the particular case where we consider a weighted sum of Dirac
measures and the α-divergence, we obtain that the calculations in-
volved in the f -EI(φ) algorithm simplify to gradient-based computa-
tions. Empirical results support the claim that the f -EI(φ) algorithm
serves as a powerful tool to assist Variational methods.

1. Introduction. Bayesian statistics for complex models often induce
intractable and hard-to-compute posterior densities which need to be ap-
proximated. Variational methods such as Variational Inference (VI) [1, 2]
and Expectation Propagation (EP) [3, 4] consider this objective purely as a
(non-convex) optimisation problem. These approaches seek to approximate
the posterior density by a variational density qθ, characterized by a set of
variational parameters θ ∈ T, where T is the parameter space. In these meth-
ods θ is optimised such that it minimizes a certain divergence D between
the posterior and the variational density, typically the Kullback-Leibler (KL)
divergence [5].

Modern optimisation-based approximate inference methods improved in
three major directions [6, 7]. Firstly, Variational methods used to be lim-
ited to conditionally conjugate exponential family models [8]. Monte Carlo
methods and Black-Box inference techniques such as [9, 10] have since been
deployed, rendering Variational methods applicable to a wide range of mod-
els. These methods use gradients which are computed through automatic
differentiation tools and climb the Monte Carlo approximated Variational
Bound to the log-likelihood.

Secondly, classical Variational methods focused on the KL divergence as
an objective function. However, in the VI case, the KL is known to often
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underestimate the variance and may miss important local modes of the true
posterior [11, 6]. As for the EP algorithm, which performs local minimiza-
tion, it is not guaranteed to converge and does not provide an easy estimate
of the marginal likelihood [12]. Modern research consequently turned to
more flexible families of divergence in order to reach better accuracy, the
α-divergence [13, 14] and Renyi’s α-divergence [15, 16] being such examples
[17, 18, 19, 20, 21].

Thirdly, scalable methods such as Stochastic Variational Inference [11] or
Stochastic Expectation Propagation [22, 23] have been developed to enable
large scale learning. These methods rely on stochastic optimisation tech-
niques [24, 25] and have been applied to complex probabilistic models, e.g
Latent Dirichlet Allocation [26].

Framework. In this paper, we contribute in these three directions. The
divergence we choose to work with is the f -divergence [27, 28], as it is a gen-
eral family of divergences that encompasses the Kullback-Leibler, the reverse
Kullback-Leibler and the α-divergence. Furthermore, we offer to change the
space on which the minimization occurs. While the common approach con-
sists in minimizing over the set of densities

{y 7→ qθ(y) : θ ∈ T}

we consider instead a minimization over{
y 7→

∫
T
µ(dθ)qθ(y) : µ ∈ M

}
where M is a convenient subset of M1(T), the set of probability measures on
T (and in this case, we equip T with a σ-field denoted by T ). In doing so,
we extend the minimizing set to a larger space since a parameter θ can be
identified with its associated Dirac measure δθ. The paper is then organised
as follows:

• In Section 2, we briefly review basic concepts around the f -divergence.
We formulate explicitly the general form of the optimisation problem we
consider, which includes the particular case of f -divergence posterior density
approximation.
• In Section 3, we provide a new iterative scheme which we call the f -

EI(φ) algorithm that performs an update of measures. We establish sufficient
conditions on (f, φ) for this algorithm to lead at each step to a systematic
decrease in the f -divergence and we obtain its convergence to an optimum.
As the exact f -EI(φ) algorithm involves an integral which might be in-
tractable, we define its approximate version and show its convergence to the
exact algorithm.
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• In Section 4, we apply the f -EI(φ) algorithm to f -divergence density
approximation. In the particular case of the α-divergence and when µ is cho-
sen as a weighted sum of Dirac measures, we obtain that the computations
involved in the f -EI(φ) algorithm mostly rely on gradient-based calculations.
• Finally, Section 5 is devoted to numerical experiments, where we explore

the impact of the hyperparameter φ as well as the state space dimension d
and the parameter space dimension J on the convergence of the f -EI(φ)
algorithm.

2. Formulation of the optimisation problem. Let (Y,Y, ν) be a
measured space, where ν is a σ-finite measure on (Y,Y) and let f be a
convex function over (0,∞) that satisfies f(1) = 0. We start by defining the
f -divergence between two probability measures P1 and P2.

Definition 1 (f -divergence). Let P1 and P2 be two probability measures
on (Y,Y) that are absolutely continuous with respect to ν i.e. P1 � ν, P2 � ν.
Let us denote by p1 = dP1

dν and p2 = dP2
dν the Radon-Nikodym derivatives of

P1 and P2 with respect to ν. The f -divergence between P1 and P2 is defined
as follows :

Df (P1||P2) =

∫
Y
f

(
p1(y)

p2(y)

)
p2(y)ν(dy) .(1)

In (1), we adopt the conventional notation 0f(0
0) = 0 and 0f(a0 ) =

limt↓0 tf(at ) = a limu→∞
f(u)
u for all a > 0. We also extend the definition

of f at 0 by setting f(0) = limt↓0 f(t) ∈ (−∞,∞].

We now recall without proof a few results around the f -divergence and
we refer to [29, 30] and [31] for more details on the f -divergence family.

Proposition 2. The f -divergence is always non-negative and for f
strictly convex, it is equal to zero if and only if P1 = P2. Furthermore,
it is jointly convex in P1 and P2 and Df (P1||P2) = Df̃ (P2||P1), where

f̃(u) = uf( 1
u) is called the conjugate function.

Special cases include the Kullback-Leibler (KL) divergence DKL, the re-

verse Kullback-Leibler divergence DrKL and the α-divergence D
(α)
A , where

α ∈ R \ {0, 1} (see Table 1). The Hellinger distance [32, 33] and the χ2-
divergence [21] correspond respectively to order α = 0.5 and α = 2 of the
α-divergence. Moreover, the definition of the α-divergence can be extended
to α ∈ {0, 1} by continuity and we recover the Kullback-Leibler when α→ 1
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Table 1
Special cases in the f-divergence family

f(u) Corresponding divergence

u log(u) DKL(P1||P2) =
∫
Y

log
(
p1(y)
p2(y)

)
p1(y)ν(dy)

− log(u) DrKL(P1||P2) =
∫
Y
− log

(
p1(y)
p2(y)

)
p2(y)ν(dy)

1

α(α− 1)
[uα − 1] D

(α)
A (P1||P2) = 1

α(α−1)

[∫
Y

(
p1(y)
p2(y)

)α
p2(y)ν(dy)− 1

]

and the reverse Kullback-Leibler when α→ 0.

Now consider a measurable space (T, T ). Let p be a measurable positive
function on (Y,Y) and Q : (θ,A) 7→

∫
A q(θ, y)ν(dy) be a Markov transition

kernel on T × Y with kernel density q defined on T × Y. Moreover, for all
y ∈ Y, we denote µq(y) =

∫
T µ(dθ)q(θ, y) and we define, for all µ ∈ M1(T),

Ψ(f)(µ) =

∫
Y
f

(
µq(y)

p(y)

)
p(y)ν(dy) .(2)

Note that p, q and ν appear as well in Ψ(f)(µ) i.e Ψ(f)(µ) = Ψ(f)(µ; p, q, ν),
but we drop them for notational ease and when no ambiguity occurs. Notice
also that we replaced qθ(y) by q(θ, y) to comply with usual kernel notation.

We consider in what follows the general optimisation problem

arginfµ∈MΨ(f)(µ) ,(3)

where p is a measurable positive function on (Y,Y).

This framework includes the particular case of f -divergence posterior den-
sity approximation. Indeed, let us consider the posterior density of the latent
variables y given the data D :

p(y|D) =
p(D , y)

p(D)
,

where p(D) :=
∫
Y p(D , y)ν(dy) is marginal likelihood or model evidence

(whose value is unknown). Now denoting by P and µQ the probability mea-
sures on (Y,Y) with corresponding associated density p(·|D) and µq with
respect to ν and setting p = p(·|D) in Ψ(f)(µ), the optimisation problem
defined by (3) can be rewritten as

arginfµ∈MDf (µQ,P) .
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At this stage, a first remark is that the convexity of Ψ(f) is straightfor-
ward from the convexity of f . Therefore, a simple yet powerful consequence
of enlarging the variational family is that the optimisation problem now
involves the convex mapping

µ 7→ Ψ(f)(µ) =

∫
Y
f

(
µq(y)

p(y)

)
p(y)ν(dy) ,

whereas the initial optimisation problem was associated to the mapping

θ 7→
∫
Y f
(
qθ(y)
p(y)

)
p(y)ν(dy), which is not necessarily convex.

We now move on to Section 3, where we describe the f -EI(φ) algorithm
and state our main theoretical results.

3. The f-Expectation Iteration algorithm f-EI(φ) .

3.1. An iterative algorithm for optimising Ψ(f). The following set of as-
sumptions will be in force throughout the paper. We first gather the as-
sumptions on q, p and ν.

(A1) The density kernel q on T × Y, the function p on Y and the σ-finite
measure ν on (Y,Y) satisfy, for all (θ, y) ∈ T× Y, q(θ, y) > 0, p(y) > 0
and

∫
Y p(y)ν(dy) <∞.

The next assumption mostly retains the assumptions on the function f
used to define Ψ(f) in (2).

(A2) The function f : (0,∞)→ R is monotonous, strictly convex and contin-
uously differentiable, and f(1) = 0.

Under (A1) and (A2), we immediately obtain a lower bound on Ψ(f).

Lemma 3. Suppose that (A1) and (A2) hold. Then, for all µ ∈ M1(T),
we have

Ψ(f)(µ) > f̃

(∫
Y
p(y)ν(dy)

)
> −∞ ,

where f̃ is defined in Proposition 2.

Proof. Since f̃(u) = uf(1/u), we have

Ψ(f)(µ) =

∫
Y
f̃

(
p(y)

µq(y)

)
µq(y)ν(dy) .

Recalling that f and hence f̃ , is convex on R>0, Jensen’s inequality applied
to f̃ yields Ψ(f)(µ) > f̃

(∫
Y p(y)ν(dy)

)
> −∞.
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Remark 4. Assumption (A1) can be extended by discarding the assump-
tion that p(y) is positive for all y ∈ Y. As it complicates the expression of the
constant appearing in the bound without increasing dramatically the degree
of generality of the results, we chose to maintain this assumption for the
sake of simplicity.

Thus, if there exists a sequence of probability measures {µn : n ∈ N}
on (T, T ) such that Ψ(f)(µ0) < ∞ and Ψ(f)(µn) is non-increasing with n,
Lemma 3 guarantees that this sequence converges to a limit in R. We now
focus on constructing such a sequence {µn : n ∈ N}.

For this purpose, let φ ∈ R? := R \ {0}. The one-step transition of the
f -Expectation Iteration algorithm f -EI(φ) can be formally described as an
expectation step and an iteration step:

Algorithm 1: Exact f -EI(φ) one-step transition

1. Expectation step : bµ(θ) =

∫
Y

q(θ, y)f ′
(
µq(y)

p(y)

)
ν(dy)

2. Iteration step : Iφ(µ)(dθ) =
µ(dθ) · |bµ(θ)|φ

µ(|bµ|φ)

Given any initial measure µ ∈ M1(T) such that Ψ(f)(µ) < ∞, the iterative
sequence of probability measures (µn)n∈N is then defined by setting

(4)

{
µ0 = µ,

µn+1 = Iφ(µn) , n ∈ N .

Note that under (A1) and (A2), bµ is well-defined (since f ′ is of constant
sign) and |bµ| ∈ (0,∞] for all µ ∈ M1(T). Given φ ∈ R?, the iteration
µ 7→ Iφ(µ) is thus well-defined if moreover we have

0 < µ(|bµ|φ) <∞ .(5)

In the following part, we investigate some core properties of the afore-
mentioned sequence of probability measures (µn)n∈N. For all µ ∈ M1(T)
such that Ψ(f)(µ) < ∞, we identify couples (f, φ) such that (i) f satisfies
(A2), (ii) the sequence (µn)n∈N is well-defined and (iii) the f -EI(φ) algorithm
diminishes Ψ(f)(µn) at each iteration.
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3.2. Monotonicity. To establish that the f -EI(φ) algorithm diminishes
Ψ(f)(µn) at each iteration, we first derive a general upper-bound for the
difference Ψ(f)(ζ)−Ψ(f)(µ). Here, (ζ, µ) is a couple of probability measures
where ζ is dominated by µ, which we denote by ζ � µ.

This first result relies on the existence of an exponent % satisfying condi-
tion (A3) below, which will later on be used to specify a range of values for
φ satisfying (5) for any µ ∈ M1(T).

(A3) We have % ∈ R\[0, 1] and the function f% : u 7→ f(u1/%) is non-decreasing
and concave on R>0.

Proposition 5. Assume (A1), (A2) and (A3). Then, for all µ, ζ ∈
M1(T) such that µ(|bµ|) <∞ and ζ � µ,

(6) Ψ(f)(ζ) 6 Ψ(f)(µ) + |%|−1 {µ (|bµ|g%)− µ(|bµ|)} .

where g is the density of ζ wrt µ, i.e. ζ(dθ) = µ(dθ)g(θ). Moreover, equality
holds in (6) if and only if ζ = µ.

Proof. Under (A2) f ′ is of constant sign and under (A3), if % > 1, f is
non-decreasing and if % < 0, f is non-increasing. This implies that for all
u > 0 and all % 6= 0, %−1f ′(u) = |%|−1|f ′(u)|, which will be used later in the
proof.

Write by definition of f% in (A3) and ζ,

Ψ(f)(ζ) =

∫
Y
f

(
ζq(y)

p(y)

)
p(y)ν(dy)(7)

=

∫
Y
f%

([
ζq(y)

p(y)

]%)
p(y)ν(dy)

=

∫
Y
f%

([∫
T
µ(dθ)

q(θ, y)

µq(y)

(
g(θ)µq(y)

p(y)

)]%)
p(y)ν(dy)

6
∫
Y
f%

(∫
T
µ(dθ)

q(θ, y)

µq(y)

(
g(θ)µq(y)

p(y)

)%)
p(y)ν(dy)

where the last inequality follows from Jensen’s inequality applied to the
convex function u 7→ u% (since % ∈ R \ [0, 1]) and the fact that f% is non-
decreasing. Now set

uy =

∫
T
µ(dθ)

q(θ, y)

µq(y)

(
g(θ)µq(y)

p(y)

)%
vy =

(
µq(y)

p(y)

)%
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and note that

uy − vy =

(
µq(y)

p(y)

)%(∫
T
µ(dθ)

q(θ, y)

µq(y)
g%(θ)− 1

)
(8)

Since f% is concave, f%(uy) 6 f%(vy)+f ′%(vy)(uy−vy). Then, combining with
(7), we get

Ψ(f)(ζ) 6
∫
Y
f%(uy)p(y)ν(dy)(9)

6
∫
Y
f%(vy)p(y)ν(dy) +

∫
Y
f ′%(vy)(uy − vy)p(y)ν(dy)

Note that the first term of the rhs can be written as∫
Y
f%(vy)p(y)ν(dy) =

∫
Y
f

(
µq(y)

p(y)

)
p(y)ν(dy) = Ψ(f)(µ)(10)

Using now f ′%(vy) = %−1v
1/%−1
y f ′(v

1/%
y ) and (8), the second term of the rhs

of (9) may be expressed as∫
Y
f ′%(vy)(uy − vy)p(y)ν(dy)

= %−1

∫
Y

(
µq(y)

p(y)

)1−%
f ′
(
µq(y)

p(y)

)
(
µq(y)

p(y)

)%(∫
T
µ(dθ)

q(θ, y)

µq(y)
g%(θ)− 1

)
p(y)ν(dy)

= %−1

∫
T
µ(dθ)

(∫
Y
q(θ, y)f ′

(
µq(y)

p(y)

)
ν(dy)

)
g%(θ)

− %−1

∫
Y
µq(y)f ′

(
µq(y)

p(y)

)
ν(dy)

= |%|−1 {µ (|bµ|g%)− µ(|bµ|)} .

Combining this equality with (9) and (10) finishes the proof of the inequality.
If the equality holds in (6), then the equality in Jensen’s inequality (7)

shows that g is constant µ-a.e. so that ζ = µ, and the proof is completed.

We now plan on setting ζ = Iφ(µ) in Proposition 5 and obtain that
one iteration of the f -EI(φ) algorithm yields Ψ(f) ◦ Iφ(µ) 6 Ψ(f)(µ). For
this purpose and based on the upper bound obtained in Proposition 5, we
strengthen the condition (5) as follows to take into account the exponent %

0 < µ(|bµ|φ) <∞ and µ(|bµ|g%) 6 µ(|bµ|) with g =
|bµ|φ

µ(|bµ|φ)
(11)

This leads to our first main theorem.
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Theorem 1. Assume (A1), (A2) and (A3). Let µ ∈ M1(T) be such that
µ(|bµ|) <∞ and let φ ∈ R? satisfy (11). Then, the two following assertions
hold.

(i) We have Ψ(f) ◦ Iφ(µ) 6 Ψ(f)(µ).
(ii) We have Ψ(f) ◦ Iφ(µ) = Ψ(f)(µ) if and only if µ = Iφ(µ).

Proof. We apply Proposition 5 with ζ = Iφ(µ) so that ζ(dθ) = µ(dθ)g(θ)
with g = |bµ|φ/µ(|bµ|φ). Then,

(12) Ψ(f) ◦ Iφ(µ) 6 Ψ(f)(µ) + |%|−1 {µ (|bµ|g%)− µ(|bµ|)} 6 Ψ(f)(µ)

where the last inequality follows from condition (11).
Let us now show (ii). The if part is obvious. As for the only if part,

Ψ(f) ◦ Iφ(µ) = Ψ(f)(µ) combined with (12) yields

Ψ(f) ◦ Iφ(µ) = Ψ(f)(µ) + |%|−1 {µ (|bµ|g%)− µ(|bµ|)} ,

which is the case of equality in Proposition 5. Therefore, Iφ(µ) = µ.

We are now able to derive our second main theorem.

Theorem 2. Assume that p and q are as in (A1). Let (f, φ) belong to
any of the following cases.

(i) Reverse Kullback-Leibler: f(u) = − log(u), and φ ∈ (0, 1].
(ii) α-Divergence: f(u) = 1

α(α−1)(uα − 1),

(a) α ∈ (−∞,−1] and φ ∈ (0,−1/α];

(b) α ∈ (−1, 1) \ {0} and φ ∈ (0, 1];

(c) α ∈ (1,∞) and φ ∈ (1/(1− α), 0).

Then (A2) holds. Moreover, let µ ∈ M1(T) be such that Ψ(f)(µ) < ∞.
Then the sequence (µn)n∈N defined by (4) is well-defined and the sequence
(Ψ(f)(µn))n∈N is non-increasing.

The proof of this theorem requires intermediate results, which are derived
in Appendix A.1 alongside with the proof of Theorem 2.

Remark 6. In the proof of Theorem 2, we also prove along the way that
either Ψ(f)(µn+1) < Ψ(f)(µn) for all n > 0, or that there exists n0 <∞ such
that µn = µn0 for all n > n0 i.e µn0 = Iφ(µn0).

The results we obtained at this point are summarized in Table 2.
We now study the limiting behavior of the f -EI(φ) algorithm for the

iterative sequence of probability measure (µn)n∈N.
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Table 2
Allowed ranges for φ in the f-EI(φ) algorithm per divergence

Divergence considered Corresponding range

Reverse KL f(u) = − log(u) φ ∈ (0, 1]

α-divergence
f(u) = 1

α(α−1)
(uα−1)

α ∈ (−∞,−1] φ ∈ (0,−1/α]
α ∈ (−1, 1) \ {0} φ ∈ (0, 1]
α ∈ (1,∞) φ ∈ (1/(1− α), 0)

3.3. Limiting behavior of the Exact f -EI(φ) algorithm. Let µ ∈ M1(T)
and let us consider the iterative sequence of probability measures (µn)n∈N
defined by (4). We seek to identify the possible weak limits of (µn)n∈N. To
do so, we introduce the following additive set of assumptions

(A4) (i) T is a compact metric space and T is the associated Borel σ-field;

(ii) for all y ∈ Y, θ 7→ q(θ, y) is continuous;

(iii) we have

∫
Y

sup
θ∈T

∣∣∣∣f (q(θ, y)

p(y)

)∣∣∣∣ p(y)ν(dy) <∞;

(iv) we have

∫
Y

sup
θ∈T

q(θ, y)×
(

sup
θ′∈T

∣∣∣∣f ′(q(θ′, y)

p(y)

)∣∣∣∣) ν(dy) <∞.

Notice that conditions (A4)-(iii) and (A4)-(iv) act as a uniform majoration
of Ψ(f)(µ) and bµ(θ) with respect to µ and θ. In addition, these two condi-
tions are rather weak under (A4)-(i), since we consider in each a supremum
taken over a compact set (and T will always be chosen as such in practice).

We define M1,µ(T) as the set of probability measures dominated by µ.
We have the following theorem, which states that the possible weak limits
of (µn)n∈N corresponds to the global infimum of Ψ(f).

Theorem 3. Assume (A1), (A2) and (A4). Then, for all ζ ∈ M1(T) any
φ ∈ R? satisfies (5) and Ψ(f)(ζ) <∞.

Further assume that there exists µ, µ̄ ∈ M1(T) such that the (well-defined)
sequence (µn)n∈N defined by (4) weakly converges to µ̄ as n→∞. Then the
following assertions hold

(i) µ̄ is a fixed point of Iφ,
(ii) Ψ(f)(µ̄) = infζ∈M1,µ(T) Ψ(f)(ζ),

in any of the following cases:

(a) f non-increasing and φ > 0,
(b) f non-decreasing and φ < 0.
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The proof of Theorem 3 can be found in Appendix A.2. Note that any
couple (f, φ) described in Table 2 falls into one of the two categories (a) f
non-increasing and φ > 0 or (b) f non-decreasing and φ < 0.

Remark 7. In the particular case of the α-divergence, for which f(u) =
1

α(α−1) [uα − 1], Condition (A4)-(iv) can be rewritten as

∫
Y

sup
θ∈T

q(θ, y)× sup
θ′∈T

[(
q(θ′, y)

p(y)

)α−1
]
ν(dy) <∞ ,

which in turns, implies that Condition (A4)-(iii) is satisfied.

3.4. Approximate f -EI(φ) . As Algorithm 1 typically involves an in-
tractable integral in the Expectation step, we now turn to a practical version
of this algorithm.

Algorithm 2: Approximate f -EI(φ) one-step transition

1. Sampling step : Draw independently Y1, ..., YK ∼ µq

2. Expectation step : bµ,K(θ) =
1

K

K∑
k=1

q(θ, Yk)

µq(Yk)
f ′
(
µq(Yk)

p(Yk)

)
3. Iteration step : IφK(µ)(dθ) =

µ(dθ) · |bµ,K(θ)|φ

µ(|bµ,K |φ)

Algorithm 2 uses µq as a sampler instead of q(θ, ·). Indeed, as our algo-
rithm optimises over µ, sampling with respect to µq gives preference to the
interesting regions of the parameter space. Furthermore, picking a sampler
that is independent from θ is less costly from a computational point of view.

In the rest of this section, we consider i.i.d random variables Y1, Y2, ... with
common density µq w.r.t ν, defined on the same probability space (Ω,F ,P)
and we denote by E the associated expectation operator.

Proposition 8. Assume (A1) and (A2). Let µ ∈ M1(T), φ ∈ R? be such
that µ(|bµ|) ∨ µ(|bµ|φ) <∞ and

(13)

∫
T
µ(dθ)E

[{
q(θ, Y1)

µq(Y1)

∣∣∣∣f ′(µq(Y1)

p(Y1)

)∣∣∣∣}φ
]
<∞ .
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Then,

lim
K→∞

∥∥∥IφK(µ)− Iφ(µ)
∥∥∥
TV

= 0 , P− a.s.

Proof. By the triangular inequality, for all K ∈ N?, for all θ ∈ T,∣∣∣∣ |bµ,K(θ)|φ

µ(|bµ,K |φ)
− |bµ(θ)|φ

µ(|bµ|φ)

∣∣∣∣ 6 |bµ,K(θ)|φ

µ(|bµ,K |φ)

∣∣∣∣1− µ(|bµ,K |φ)

µ(|bµ|φ)

∣∣∣∣+ ||bµ,K(θ)|φ − |bµ(θ)|φ|
µ(|bµ|φ)

Thus, ∥∥∥IφK(µ)− Iφ(µ)
∥∥∥
TV

= µ

(∣∣∣∣ |bµ,K |φµ(|bµ,K |φ)
− |bµ|φ

µ(|bµ|φ)

∣∣∣∣)
6

∣∣∣∣1− µ(|bµ,K |φ)

µ(|bµ|φ)

∣∣∣∣+
µ(||bµ,K |φ − |bµ|φ|)

µ(|bµ|φ)

For the first term of the rhs, Lemma 21 yields

lim
K→∞

∣∣∣∣1− µ(|bµ,K |φ)

µ(|bµ|φ)

∣∣∣∣ = 0(14)

As for the second term of the rhs, first note that for all K ∈ N?, for all θ ∈ T

0 6 ||bµ,K(θ)|φ − |bµ(θ)|φ| 6 |bµ,K(θ)|φ + |bµ(θ)|φ ,(15)

and since µ(|bµ|φ) <∞ the LLN for µ-almost all θ ∈ T yields

lim
K→∞

|bµ,K(θ)|φ = |bµ(θ)|φ .(16)

Furthermore, since µ(|bµ|φ) <∞, Lemma 21 and (16) imply

lim
K→∞

µ
[
|bµ,K |φ + |bµ|φ

]
= µ

[
lim
K→∞

(
|bµ,K |φ + |bµ|φ

)]
<∞

Combining with (15) and (16), we apply Lemma 22 and obtain

lim
K→∞

µ(||bµ,K |φ − |bµ|φ|)
µ(|bµ|φ)

= 0

which, along with (14), finishes the proof.

Note that since Algorithm 2 is to be repeated multiple times until the
convergence is reached, Ψ(f)(µ) needs to be approximated as well, as it
measures the convergence. In particular, the expression of Ψ(f)(µ) given
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in (2) legitimates the choice of µq as the sampler, as the closest available

approximation of p. Let us denote by Ψ
(f)
K (µ) the corresponding unbiased

approximation of Ψ(f)(µ)

Ψ
(f)
K (µ) =

1

K

K∑
k=1

f

(
µq(Yk)

p(Yk)

)
p(Yk)

µq(Yk)
.

Lemma 9. Assume (A1) and that (f, φ) belongs to any of the cases stated
in Table 2. Let µ ∈ M1(T) be such that Ψ(f)(µ) <∞. Then for all K ∈ N?,

Ψ
(f)
K ◦ I

φ
K(µ) 6 Ψ

(f)
K (µ) .

Furthermore,

lim
K→∞

Ψ
(f)
K (µ) = Ψ(f)(µ) , P− a.s.

Proof. The first point is a straightforward adaptation of the proof of
Theorem 2.

As for the second point, we know from Lemma 3 that E[|f(µq(Y1)
p(Y1) )| p(Y1)

µq(Y1) ]

is finite if and only if Ψ(f)(µ) is finite. We can thus apply the LLN which
yields the desired result.

In the next section, we investigate how our algorithm can be applied to
density approximation for the divergences identified in Theorem 2.

4. f-EI(φ) applied to density approximation.

4.1. Reformulation of the optimisation problem. Let p̃ be a probability
density function on (Y,Y) and assume that we only have access to an un-
normalized version p∗ of the density p̃, that is for all y ∈ Y,

p̃(y) =
p∗(y)

Z
,(17)

where Z :=
∫
Y p
∗(y)ν(dy) is called the normalizing constant or partition

function.
Let us denote by P̃ the probability measure on (Y,Y) with density p̃ with

respect to ν and let us recall that for all µ ∈ M1(T), µQ corresponds to the
probability measure on (Y,Y) with density µq with respect to ν. We then
have the following lemma, whose proof can be found in Appendix C.
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Lemma 10. Assume (A1). Then, for both the reverse Kullback-Leibler
and the α-divergence, optimising the objective Df (µQ||P̃) (with respect to
µ) is equivalent to optimising the objective Ψ(f)(µ; p) with p = p∗.

If we now rewrite Lemma 3 for p = p∗ in the particular case of the reverse
Kullback-Leibler and of the α-divergence, we obtain, as f̃(u) = u log(u) and
f̃(u) = 1

α(α−1) [u1−α − u] respectively,∫
Y
− log

(
µq(y)

p∗(y)

)
p∗(y)ν(dy) > Z log(Z) ,(18) ∫

Y

1

α(α− 1)

(
µq(y)

p∗(y)

)α
p∗(y)ν(dy) >

1

α(α− 1)
Z1−α .(19)

Here, the normalizing constant Z only appears in the r.h.s of (18) and
(19). An interesting aspect is that optimising Ψ(f)(µ; p) with p = p∗ is
equivalent to optimising the bound (18) for the reverse Kullback-Leibler
and the bound (19) for the α-divergence, where the optimisation does not
involve the (unknown) normalizing constant Z anymore.

As it turns out, (18) is of little help to provide an explicit bound on
the normalizing constant Z, however (19) can be used to provide either an
upper or lower bound on Z, depending on the sign of α. To see this, let
α ∈ R \ {0, 1}. Then, for any measurable positive function q̃ on (Y,Y), set

ξ(α)(q̃) :=

[∫
Y

(
q̃(y)

p∗(y)

)α
p∗(y)ν(dy)

] 1
1−α

.(20)

We call α-bound the function q̃ 7→ ξ(α)(q̃). The next lemma is a straightfor-
ward consequence of (19).

Lemma 11. Assume (A1). Let µ ∈ M1(T). Then, for all α+ ∈ (0, 1) ∪
(1,+∞) and all α− < 0, we have

ξ(α+)(µq) 6 Z 6 ξ(α−)(µq) .

Of course, the two previous lemmas go beyond the case q̃ = µq. No-
tably, Lemma 11 holds for any probability density function q̃ on (Y,Y) such
that supp(p∗(y)) ⊆ supp(q̃(y)), as previously established in [17, Theorem 2].
Furthermore, α 7→ ξ(α)(q̃) is continuous on

{
α : ξ(α)(q̃) < +∞

}
, which is a

straightforward consequence of [20, Theorem 1] using Renyi’s α-divergence.

Remark 12. The Bayesian framework described in Section 2 corre-
sponds to the case p = p(·|D), p̃ = p(D , ·) and Z = p(D). Note that in
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this particular configuration, Lemma 11 allows to upper and lower bound
the marginal likelihood [20, Theorem 1].

In conclusion, we acquire additional information by using the α-divergence
instead of the reverse Kullback-Leibler, since the α-bound can be used as a
bound for the normalizing constant Z. Then, under the assumptions of The-
orem 2, we can apply Algorithm 1 iteratively and benefit from the fact that
(i) the α-bound acts as a measure of convergence and (ii) the monotonicity
property can be observed through (ξ(α)(µnq))n∈N, as for all µ ∈ M1(T),

Ψ(f)(µ; p) =
[
ξ(α)(µq)

]1−α
− Z

α(α− 1)
with p = p∗ .

We now focus on rewriting Algorithm 2, which is the algorithm that we
use in practice, in the special case of the α-divergence and with p = p∗.

4.2. Approximate f -EI(φ) for the α-divergence. From here on, we only
consider the particular case of the α-divergence with p = p∗. Let (α, φ) be
as in Table 2 and let µ ∈ M1(T). Using that f ′(u) = 1

α−1u
α−1, we obtain

Algorithm 3.

Algorithm 3: α-Approximate f -EI(φ) one-step transition

1. Sampling step : Draw independently Y1, ..., YK ∼ µq

2. Expectation step : bµ,K(θ) =
1

K(1− α)

K∑
k=1

q(θ, Yk)µq(Yk)α−2p∗(Yk)1−α

3. Iteration step : IφK(µ)(dθ) =
µ(dθ) · |bµ,K(θ)|φ

µ(|bµ,K |φ)

Now recall that ξ(α)(µq) acts as a surrogate to Ψ(f)(µ; p) which does not
involve the normalizing constant Z anymore. If we are to apply Algorithm
3 repeatedly, we thus need to approximate this quantity in order to assess
the convergence. Consequently, we define the Monte Carlo approximation

ξ
(α)
K (µq) of ξ(α)(µq) by

ξ
(α)
K (µq) =

[
1

K

K∑
k=1

(
p∗(Yk)

µq(Yk)

)1−α
] 1

1−α

.

where Y1, ..., YK are drawn independently from µq as in Algorithm 3. This
estimator converges to ξ(α)(µq) as K → ∞ and while it is biased, the bias
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can be characterized using [20, Theorem 2].

Finally, Algorithm 3 requires us to know how to sample from µq. We
address the case where µ corresponds to a weighted sum of Dirac measures.
This case is of particular interest to us since, as we shall see, it provides
a gradient-based update formula for the mixture weights. To this end, let
J ∈ N? and let us introduce the simplex of RJ

SJ =

λ = (λ1, ..., λJ) ∈ RJ : ∀j ∈ {1, ..., J} , λj > 0 and
J∑
j=1

λj = 1

 .

Let θ1, ..., θJ ∈ T be fixed. For all λ ∈ SJ , we define µλ ∈ M1(T) by

µλ =

J∑
j=1

λjδθj .

Then, for all λ ∈ SJ , µλq(y) =
∑J

j=1 λjq(θj , y) corresponds to a mixture
model. Let (µn)n∈N be defined by{

µ0 = µλ ,

µn+1 = IφK(µn) , n ∈ N .

An immediate induction yields that for every n ∈ N, µn can be expressed
as µn =

∑J
j=1 λj,nδθj where λn = (λ1,n, . . . , λJ,n) ∈ SJ satisfies the initiali-

sation λ0 = λ and the update formula: for all n ∈ N and all j ∈ {1, . . . , J},

λj,n+1 = λj,n
|bµn,K(θj)|φ

µn(|bµn,K |φ)
,(21)

with Y1,n, ..., YK,n drawn independently from µnq and

bµn,K(θj) =
1

K(1− α)

K∑
k=1

q(θj , Yk,n)µnq(Yk,n)α−2p∗(Yk,n)1−α .

We are thus able to derive Algorithm 4 below, where (21) is iterated un-
til the convergence is reached and the α-bound is used at each step as a
tractable measure of convergence and as a bound on the normalizing con-
stant Z.
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Algorithm 4: Mixture α-Approximate f -EI(φ)

Input: p∗: unnormalized version of the density p̃, Q: Markov transition kernel, K:
number of samples, ΘJ = {θ1, ..., θJ} ⊂ T: parameter set.

Output: Optimised weights λ.

Set λ = [ 1
J
, ..., 1

J
].

while the α-bound has not converged do

Sampling step : Draw independently K samples Y1, ..., YK from µλq.

Expectation step : Compute Aλ = (aj)16j6J where

aj =
1

K

K∑
k=1

q(θj , Yk)µλq(Yk)α−2p∗(Yk)1−α(22)

and deduce Bλ = (λja
φ
j )16j6J , bλ =

∑J
j=1 λja

φ
j and cλ =

∑J
j=1 λjaj .

Iteration step : Set

ξ
(α)
K (µλq)← c

1/(1−α)
λ

λ ← 1

bλ
Bλ

end

In this particular framework, most of the computing effort at each step
lies within the computation of the vector (bµn,K(θj))16j6J , or equivalently
the vector Aλ = (aj)16j6J where the aj are defined as in (22). Interestingly,
these computations are similar to the ones required in typical gradient-based
variational methods involving the α-divergence or Renyi’s α-divergence [19,
20, 21]. Indeed, the objective function in these methods has a straightforward
connection with the function

q̃ 7→ L(α)
A (q̃) :=

∫
Y

1

α(α− 1)

(
q̃(y)

p∗(y)

)α
p∗(y)ν(dy) ,

and in our case, the score gradient of L(α)
A (µλq) is directly linked to the

quantities that are approximated in the Mixture α-Approximate f -EI(φ)
algorithm, since under the proper (differentiation) assumptions

∇λL
(α)
A (µλq) = (bµλ (θj))16j6J ,

where for all j ∈ {1, ..., J}, bµλ (θj) = 1
α−1

∫
Y q(θj , y)

(
µλq(y)
p∗(y)

)α−1
ν(dy) .

Remark 13. Our (exact) mixture weights update rule states that for all
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n ∈ N, for all j ∈ {1, . . . , J},

λj,n+1 = λj,n
|bµλn (θj)|φ

µλn(|bµλn |
φ)
,

In the particular case where (α, φ) = (0, 1) or (α, φ) = (−1, 1), notice that
we recover respectively the weights update rules from the Population Monte
Carlo algorithm for mixtures applied to reverse Kullback-Leibler minimisa-
tion [34] and to Variance minimisation [35].

We now move on to numerical experiments in the next section.

5. Numerical experiments. To illustrate Algorithm 4, we first con-
sider an example where p∗ corresponds to a mixture of two one-dimensional
Gaussian densities multiplied by a positive constant Z, such that

p∗(y) = Z × [γ1N (y;−s, 1) + γ2N (y; s, 1)] ,

where γ1, γ2 > 0, γ1 + γ2 = 1 and Z = 2.

This simple framework allows us to visualize and characterize the behavior
of the algorithm with respect to φ. Looking back at (21), we are prone to
think that φ acts as a learning rate, as large values of |φ| amplify the impact
of each |bµ,K(θj)| in the update process while φ = 0 corresponds to no
update at all. Let γ1 = 0.8, γ1 = 0.2, Q be a Gaussian kernel with variance
1, J = 2 with {θ1, θ2} = {−2, 2} and K = 5000. We perform 50 iterations
of the α-Approximate f -EI(φ) algorithm. The results for α = −2 (with
corresponding range (0, 0.5] for φ) can be seen on Figure 1 and several more
examples are available in Appendix D.

As expected, we obtain faster convergence rates as φ gets bigger in abso-
lute value. However, if |φ| is too large, the algorithm may oscillate around
the true value of the parameters due to the discretization, as exemplified
in Figure 1-(1). Thus, the hyperparameter φ behaves like a learning rate.
Secondly, we are able to observe the monotonicity property from Theorem 2
in Figure 1-(2), which plots the α-bound at each time step for various values
of φ. Here, as we have picked α negative and as the conditions of support
are met (supp(p∗) = supp(µλq)), Z is upper-bounded by the α-bound. Fur-
thermore, since the true value of the parameters belongs to the optimisation
set, the bound is attained as the optimisation is carried out.
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Figure 1. Impact of the hyperparameter φ. Here α = −2 with corresponding range (0, 0.5]
for φ and the grey dotted line corresponds to the exact density p̃.

(1) (2)

(3) (4) (5)

Towards an adaptive algorithm. Algorithm 4 leaves {θ1, ..., θJ} unchanged
throughout the optimisation of the mixture weights (we call it an Exploita-
tion Step). A natural idea is to combine this algorithm with an Exploration
step that modifies the parameter set.

We offer to derive the new parameter set from the old one using the follow-
ing simple update rule: assume that the mixture weights have been optimised
using Algorithm 4. We first resample among {θ1, ..., θJ} according to the op-
timised mixture weights. The obtained sample

{
θ′1, ..., θ

′
J ′
}

is then perturbed
stochastically using a Gaussian transition kernel Qr with covariance matrix
rId (r > 0) and density qr, which gives us our new parameter set. The goal
is then to iterate this Exploitation-Exploration procedure whilst using a de-
caying r (to ensure the convergence of the parameter set). As for the initial
parameter set, it is generated randomly from an initial density q0, where we
have in mind that q0 should allow to explore the space extensively.

The complete algorithm is summed up in Algorithm 5. Note that we kept
K and J fixed for convenience, but that they could be set according to a
policy (Ki)i and (Ji)i and similarly we could consider a sequence of Markov
transition kernels (Qi)i.
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Algorithm 5: Complete Exploitation-Exploration Algorithm
Input: p∗: unnormalized version of the density p̃, α: α-divergence parameter, φ:

tuning parameter, q0: initial sampler, Q,Qr: Markov transition kernels, K:
number of samples, J : dimension of parameter set, (ri)i: rate policy

Output: Optimised weights λ and parameter set ΘJ .
Draw θ1, ..., θJ from q0. Set i = 0.
while the α-bound has not converged do

Exploitation step : Set ΘJ = {θ1, ..., θJ}. Perform Mixture α-Approximate

f -EI(φ) and obtain λ and ξ
(α)
K (µλq).

Exploration step : Draw independently J samples θ1, ..., θJ from µλqri and set
i = i+ 1.

end

We now want to assess how Algorithm 5 performs in a higher dimensional
setting. Notably, we aim at observing the impact of the dimension d as well
as the parameter set dimension J .

Toy example revisited. The target p∗ now corresponds to a mixture of two
d-dimensional Gaussian densities multiplied by a positive constant Z such
that

p∗(y) = Z × [0.5N (y;−sud, Id) + 0.5N (y; sud, Id)]

where ud is the d-dimensional vector whose coordinates are all equal to 1,
Id is the identity matrix, s = 2 and Z = 2.

The first aspect that we need to consider is the choice of the divergence
measure. The hyperparameter α allows to choose between mass-covering
divergences which tends to cover all the modes (α � 0) and mode-seeking
divergences that are attracted to the mode with the largest probability mass
(α � 1), the case α ∈ (0, 1) corresponding to a mix of the two worlds.
Depending on the learning task, the optimal α may differ and understanding
how to select the value of α is still an area of ongoing research. In our case,
since the targeted density is multimodal, we prefer having α < 1 and we set
(α, φ) = (0.5, 1) in our experiments.

We set the initial sampler to be a centered normal distribution with co-
variance matrix 5Id, Q to be a Gaussian kernel with variance Id and (ri)i
which satisfies r0 = 2.5 and ri = r0/

√
i+ 1 for all i ∈ N. Let K = 500,

J ∈ {50, 100, 200, 400, 800}, d = {2, 4, 8, 16}. We run 10 iterations of Al-
gorithm 5, with 25 inner iterations each time the Mixture α-Approximate
f -EI(φ) algorithm is called. We replicate the experiment 100 times and cal-
culate the average α-bound computed over the 100 replicates. The results
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Figure 2. Impact of the dimension d and of the parameter set dimension J . Plotted is
the α-bound computed for each pair of (J, d) over 100 replicates.

can be seen on Figure 2.
Observe that the jumps in the α-bound correspond to an update of the

parameter set. As expected, the optimisation becomes harder as the dimen-
sion grows. Yet, we are still able to climb to the normalizing constant Z up
to the dimension 8 with J = 800, even though the Exploration step has not
been optimised.

6. Conclusion and perspectives. We introduced the f -EI(φ) algo-
rithm, an iterative algorithm which operates on measures. We proved that
for a rich family of values of (f, φ) this algorithm leads at each step to a
systematic decrease in the f -divergence and obtained its convergence to an
optimum. In the particular case of the α-divergence with µ set as a weighted
sum of Dirac measures, we obtained that the mixture weights update rule
mostly relied on gradient-based calculations. Empirical results confirmed
that the hyperparameter φ acted as a learning rate for our algorithm. They
also demonstrated that the f -EI(φ) algorithm serves as a powerful Exploita-
tion step, which shall be combined with an appropriate Exploration step to
form a fully adaptive algorithm.

To conclude, we state several directions to extend our work on both a
theoretical and a practical level.
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Learning rate. We maintained φ constant in the f -EI(φ) algorithm. Explor-
ing variants of the algorithm with different decaying learning rate policies
(φn)n and investigating convergence rates might result in more accurate and
more stable results in practice.

Large scale learning. By noticing that the f -EI(φ) algorithm falls into the
category of gradient-based algorithms when µ is chosen as a weighted sum
of Diracs, we paved the way for large scale learning by using stochastic
optimisation techniques, as deployed in [19] or more recently in [20, 21].

Exploration Step. The f -EI(φ) algorithm allows us to extend the parameter
set and to work with a population of particles {θ1, ..., θJ} instead of just one
particle θ. In this regard, many more evolved methods could be envisioned
as an Exploration step and combined with the f -EI(φ) algorithm.

Monte Carlo Approximation. One may want to resort to more advanced
Monte Carlo methods in the estimation of bµn at each step. For example,
we did not reuse any of the past samples so far in our calculations. Since we
kept the allocation policy (Kn)n constant equal to K in this paper, another
interesting aspect would be to investigate how different allocation policies
affect the performances of the algorithm.
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APPENDIX A

A.1. Proof of Theorem 2. In Proposition 5, the difference Ψ(f)(ζ)−
Ψ(f)(µ) is split into two terms

Ψ(f)(ζ)−Ψ(f)(µ) = A(µ, ζ) + |%|−1 {µ (|bµ|g%)− µ(|bµ|)} ,

where g = dζ/dµ. Moreover, Proposition 5 states that A(µ, ζ) is always
non-positive.

It turns out that the second term is minimal over all positive probability
densities g when it is proportional to |bµ|1/(1−%), as we show in Lemma 14
below.

Lemma 14. For any positive probability density g w.r.t µ, we have

µ (|bµ|g%) >
[
µ
(
|bµ|1/(1−%)

)]1−%
,

with equality if and only if g ∝ |bµ|1/(1−%).

Proof. The function x 7→ x1−% is strictly convex for % ∈ R \ [0, 1]. Thus
Jensen’s inequality yields, for any positive probability density g w.r.t. µ,

µ (|bµ|g%) =

∫
T
µ(dθ)

(
|bµ(θ)|1/(1−%)

g(θ)

)1−%

g(θ) >
[
µ
(
|bµ|1/(1−%)

)]1−%
(23)

which finishes the proof of the inequality. The next statement follows from
the case of equality in Jensen’s inequality: g must be proportional to |bµ|1/(1−%).

The next lemma shows that this choice leads to a non-positive second
term, thus implying that Ψ(f)(ζ) 6 Ψ(f)(µ).

Lemma 15. Assume (A1), (A2) and (A3). Then φ = 1/(1 − %) satisfies
(11) for any µ ∈ M1(T) such that µ(|bµ|) <∞.

Proof. We apply (23) with g = 1 and get that[
µ
(
|bµ|1/(1−%)

)]1−%
6 µ(|bµ|) <∞ .(24)

Then (11) can be readily checked with φ = 1/(1 − %). Furthermore using
µ(|bµ|) <∞ when φ < 0 and (A1) combined with (A2) for φ > 0, we obtain
µ(|bµ|φ) > 0, which concludes the proof.
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While Lemma 15 seems to advocate for g = dζ/dµ to be proportional
to |bµ|1/(1−%), notice that this choice of g might not be optimal to mini-
mize Ψ(f)(ζ)−Ψ(f)(µ), as A(µ, ζ) also depends on g through ζ. In the next
lemma, we thus propose another choice of the tuning parameter φ, which
also satisfies (11) for any µ ∈ M1(T) such that µ(|bµ|) <∞.

Lemma 16. Assume (A1), (A2) and (A3). Let µ ∈ M1(T) such that
µ(|bµ|) < ∞. Assume in addition that |%| > 1, then the real number φ =
−1/% satisfies (11).

Proof. Setting g ∝ |bµ|−1/%, we get

µ(|bµ|g%) = µ(|bµ|1−%/%)[µ(|bµ|−1/%)]−% = [µ(|bµ|−1/%)]−% 6 µ(|bµ|)

where the last inequality follows from Jensen’s inequality applied to the
convex function u 7→ u−% (since |%| > 1). Since µ(|bµ|) < ∞, the parameter
φ = −1/% satisfies (11). Furthermore using µ(|bµ|) < ∞ when φ < 0 and
(A1) combined with (A2) for φ > 0, we obtain µ(|bµ|φ) > 0, which concludes
the proof.

Lemma 15 and Lemma 16 allow us to define a range of values for φ that
decreases Ψ(f)(µn) at each iteration step. Now, in order to prove Theorem 2,
we need to check that the reverse Kullback-Leibler and the α-divergence are
f -divergences with a function f that satisfies (A2) and (A3).

Proof of Theorem 2. The proof consists in verifying that we can ap-
ply Theorem 1, that is, for the two considered functions f , we must check
(A2) and find a range of constants % which satisfy (A3). We then use Lemma 15
or Lemma 16 to deduce that, for the provided constants φ, (11) holds for all
µn with n > 0.

(i) Assumption (A2) readily holds and so does (A3) for all % < 0, with
f%(u) = − log(u)/%. Moreover, by definition of bµn , we get for all n ∈ N,

µn(|bµn |) =

∫
Y
µnq(y)

p(y)

µnq(y)
ν(dy) =

∫
Y
p(y)ν(dy) <∞ .

Combining with Lemma 15 and Lemma 16, (11) holds for all µn with n > 0
and for any φ ∈ (0, 1].

(ii) Again (A2) can be readily checked. Observing that for α /∈ {0, 1},

f%(u) =
1

α(α− 1)

(
uα/% − 1

)
,
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we get that (A3) holds for
% 6 α if α < 0,

% < 0 if α ∈ (0, 1),

% > α if α > 1.

Lemmas 15 and 16 provide the corresponding ranges for φ in Cases (a), (b)
and (c). To finish the proof, we now show by induction that for all n ∈ N,
Ψ(f)(µn) and µn(|bµn |) are finite, so that Lemmas 15 and 16 can indeed be
applied.
Since uf ′(u) = αf(u) + 1/(α− 1), we have, for all n ∈ N,

µn(|bµn |) =

∫
Y

∣∣∣∣(µnq(y)

p(y)

)
f ′
(
µnq(y)

p(y)

)∣∣∣∣ p(y)ν(dy)(25)

6 |α|
∫
Y

∣∣∣∣f (µnq(y)

p(y)

)∣∣∣∣ p(y)ν(dy) +
1

|α− 1|

Using Lemma 3, the rhs is finite if and only if Ψ(f)(µn) is finite. We can now
check that Ψ(f)(µn) and µn(|bµn |) are finite by induction on n:

• Start with n = 0. Then µ0 = µ and by assumption, Ψ(f)(µ) < ∞ and
we deduce µ(|bµ|) <∞ by (25).

• Now, under the induction assumption and using Lemma 15 and Lemma 16,
Theorem 1 can be applied and Ψ(f)(µn+1) 6 Ψ(f)(µn) < ∞. Using
again (25) with n replaced by n+ 1, we get µn+1(|bµn+1 |) <∞.

A.2. Proof of Theorem 3. In the following, we use the notation µn ⇒
µ̄ for the weak convergence of measures in M1(T). We first derive four useful
lemmas.

Lemma 17. Assume (A1), (A2) and (A4). Suppose that µn ⇒ µ̄. Then
the following assertions hold.

(i) For all y ∈ Y, µnq(y) tends to µ̄q(y) as n→∞.
(ii) For all ζ ∈ M1(T), the function θ 7→ |bζ(θ)| is continuous. Furthermore

for all θ ∈ T, |bµn(θ)| tends to |bµ̄(θ)| as n→∞.
(iii) There exist 0 < m− < m+ < ∞ such that, for all ζ ∈ M1(T) and

θ ∈ T, |bζ(θ)| ∈ [m−,m+].
(iv) For all continuous, positive and bounded function h,

lim
n→∞

∫
T
µn(dθ)|bµn(θ)|φh(θ) =

∫
T
µ̄(dθ)|bµ̄(θ)|φh(θ) .
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Proof. We prove the assertions successively.
Proof of (i). For all y ∈ Y, the function θ 7→ q(θ, y) is continuous on a
compact set, hence bounded. The weak convergence µn ⇒ µ̄ thus implies
the pointwise convergence of µnq to µ̄q.
Proof of (ii). For all θ ∈ T and ζ ∈ M1(T), we write

|bζ(θ)| =
∫
Y
aζ(θ, y)ν(dy) ,

where we set for all (θ, y) ∈ T×Y, aζ(θ, y) = q(θ, y)
∣∣∣f ′ ( ζq(y)

p(y)

)∣∣∣ (the absolute

value can be put inside the integral since f ′ is of constant sign by (A2)). The
continuity of |bζ | follows from the Dominated Convergence Theorem, since
for all y ∈ Y, the function θ 7→ aζ(θ, y) is continuous on T by (A4)-(ii) and
for all (θ, y) ∈ T× Y, we have

|aζ(θ, y)| 6 sup
θ′∈T

q(θ′, y)×
(

sup
θ′′∈T

∣∣∣∣f ′(q(θ′′, y)

p(y)

)∣∣∣∣) ,(26)

which is integrable w.r.t ν(dy) by (A4)-(iv). The second part of (ii) is ob-
tained similarly. Using (i) and that f is C1 by (A2), we get that, for all
(θ, y) ∈ T× Y,

lim
n→∞

q(θ, y)

∣∣∣∣f ′(µnq(y)

p(y)

)∣∣∣∣ = q(θ, y)

∣∣∣∣f ′( µ̄q(y)

p(y)

)∣∣∣∣ ,
i.e lim

n→∞
aµn(θ, y) = aµ̄(θ, y). The bound (26) and (A4)-(iv) provide a domi-

nation criterion and we get that |bµn(θ)| tends to |bµ̄(θ)| as n → ∞, which
concludes the proof of (ii).
Proof of (iii). For all (θ, ζ) ∈ T×M1(T), we have |bζ(θ)| ∈ [m−,m+] where

m− :=

∫
Y

inf
θ′∈T

q(θ′, y)×
(

inf
θ′′∈T

∣∣∣∣f ′(q(θ′′, y)

p(y)

)∣∣∣∣) ν(dy) ,(27)

m+ :=

∫
Y

sup
θ′∈T

q(θ′, y)×
(

sup
θ′′∈T

∣∣∣∣f ′(q(θ′′, y)

p(y)

)∣∣∣∣) ν(dy) .

We have that m+ is finite by (A4)-(iv). Now recall that under (A2), f ′ does
not vanish on (0,∞). Together with (A1), we thus have that for any y ∈ Y,
the functions θ 7→ q(θ, y) and θ 7→ |f ′ (q(θ, y)/p(y)) | are continuous and
positive on the compact set T, from which we deduce that m− > 0.
Proof of (iv). Using (ii) the function θ 7→ |bµ̄(θ)|φh(θ) is continuous, and,
since T is compact, µn ⇒ µ̄ gives that

lim
n→∞

∫
T
µn(dθ)|bµ̄(θ)|φh(θ) =

∫
T
µ̄(dθ)|bµ̄(θ)|φh(θ) .(28)
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Next we show that

lim
n→∞

∫
T
µn(dθ)

∣∣∣|bµn(θ)|φ − |bµ̄(θ)|φ
∣∣∣h(θ) = 0(29)

Using (iii), since u 7→ uφ is Lipschitz on [m−,m+], there exists a constant
C such that

µn

[∣∣∣|bµn |φ − |bµ̄|φ∣∣∣h] 6 C sup
θ∈T

h(θ)

∫
T
µn(dθ) ||bµn(θ)| − |bµ̄(θ)||

= C sup
θ∈T

h(θ)

∫
Y
|an(y)|ν(dy)

where an(y) := µnq(y)
{∣∣∣f ′ (µnq(y)

p(y)

)∣∣∣− ∣∣∣f ′ ( µ̄q(y)
p(y)

)∣∣∣}. Now, for all y ∈ Y,

|an(y)| 6 2 sup
θ∈T

q(θ, y)×
(

sup
θ′∈T

∣∣∣∣f ′(q(θ′, y)

p(y)

)∣∣∣∣)
which is integrable w.r.t ν by (A4)-(iv). Moreover, by (i) and by continuity of
f ′, we have limn→∞ an(y) = 0, and (29) follows by dominated convergence.
Finally, combining (28), (29) and

µn

[
|bµn |φh

]
= µn

[
|bµn |φh− |bµ̄|φh

]
+ µn

[
|bµ̄|φh

]
,

we obtain (iv), and the proof is concluded.

Lemma 18. Assume (A1) and (A2). Let ζ, ζ ′ ∈ M1(T). Then,∫
T

[ζ − ζ ′](dθ)bζ′(θ) 6 Ψ(f)(ζ)−Ψ(f)(ζ ′) .(30)

Let µ̄, µ ∈ M1(T) and assume that there exists µ? ∈ M1,µ(T) such that
Ψ(f)(µ?) < Ψ(f)(µ̄). Then, for f non-increasing (resp. non-decreasing), there
exists δ > 1 (resp. δ < 1) and such that

µ?(bµ̄ < δµ̄(bµ̄)) > 0 .(31)

Proof. By definition of bζ′ ,∫
T

(ζ − ζ ′)(dθ)bζ′(θ) =

∫
T

(ζ − ζ ′)(dθ)
∫
Y
q(θ, y)f ′

(
ζ ′q(y)

p(y)

)
ν(dy)

=

∫
Y

ζq(y)− ζ ′q(y)

p(y)
f ′
(
ζ ′q(y)

p(y)

)
p(y)ν(dy) .
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Now set uy =
ζq(y)

p(y)
and vy =

ζ ′q(y)

p(y)
. Since f is convex, f ′(vy)(uy − vy) 6

f(uy)− f(vy) and we obtain∫
T

(ζ − ζ ′)(dθ)b′ζ(θ) 6
∫
Y

[
f

(
ζq(y)

p(y)

)
− f

(
ζ ′q(y)

p(y)

)]
p(y)ν(dy)

= Ψ(f)(ζ)−Ψ(f)(ζ ′) ,

which proves (30).
We now prove (31) in the case where f is non-increasing. First note that

for all δ > 1, (δ − 1)µ̄(bµ̄) 6 0. Let us define Aδ = {bµ̄ < δµ̄(bµ̄)} and show
that µ?(Aδ) > 0 for some δ > 1. To do so, we proceed by contradiction.
Suppose that µ?(Aδ) = 0 for all δ > 1, so that

µ?[bµ̄ − µ̄(bµ̄)] = µ?[(bµ̄ − µ̄(bµ̄))1Acδ ] > (δ − 1)µ̄(bµ̄) .

Using (30), we get that, for all δ > 1,

0 > Ψ(f)(µ?)−Ψ(f)(µ̄) > µ?[(bµ̄ − µ̄(bµ̄))] > (δ − 1)µ̄(bµ̄) .

Letting δ ↓ 1, we obtain a contradiction, which finishes the proof. The
alternative case where f is non-decreasing is obtained similarly by taking
δ ↑ 1.

Lemma 19. Assume (A1) and (A2). Let µ̄ ∈ M1(T) be a fixed point of
Iφ, let gµ̄ := |bµ̄|φ and φ ∈ R?. Let µ ∈ M1(T) and assume that there exists
µ? ∈ M1,µ(T) such that Ψ(f)(µ̄) > Ψ(f)(µ?). Then, there exists δ > 1 such
that

µ?(gµ̄ > δµ̄(gµ̄)) > 0

in the cases (a) and (b) of Theorem 3.

Proof. Note that (5) holds for any φ and ζ (in particular ζ = µ̄) by
Lemma 17-(iii). As µ̄ is a fixed point of Iφ, gµ̄ is µ̄-almost all constant. Con-
sequently, µ̄(|bµ̄|φ)1/φ = µ̄(|bµ̄|). We separate the two cases f non-increasing
and f non-decreasing:

(i) Let f be non-increasing and φ > 0. Then, |bµ̄| = −bµ̄ and u 7→ u1/φ is
increasing. For all δ > 1, δ′ := δ1/φ > 1 and

µ?(gµ̄ > δµ̄(gµ̄)) = µ?(|bµ̄| > δ1/φ[µ̄(|bµ̄|φ)]1/φ)

= µ?(|bµ̄| > δ′µ̄(|bµ̄|))
= µ?(bµ̄ < δ′µ̄(bµ̄)) .
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(ii) Let f be non-decreasing and φ < 0. Then, |bµ̄| = bµ̄ and u 7→ u1/φ is
decreasing. For all δ > 1, δ′ := δ1/φ < 1 and

µ?(gµ̄ > δµ̄(gµ̄)) = µ?(|bµ̄| < δ1/φ[µ̄(|bµ̄|φ)]1/φ)

= µ?(|bµ̄| < δ′µ̄(|bµ̄|))
= µ?(bµ̄ < δ′µ̄(bµ̄)) .

We conclude by applying Lemma 18 in the two separated cases.

Lemma 20. Assume (A1), (A2) and (A4). Let φ ∈ R? and denote gζ :=
|bζ |φ for any ζ ∈ M1(T). Let µ ∈ M1(T) and define the sequence (µn)n∈N
according to (4). Suppose that µn ⇒ µ̄ for some fixed point µ̄ ∈ M1(T) of
Iφ. Further assume there exists µ? ∈ M1,µ(T) such that Ψ(f)(µ̄) > Ψ(f)(µ?).
Then, there exist δ > 1 and n ∈ N∗ such that

µ?

( ⋂
m>n

{gµm > δµm(gµm)}

)
> 0 ,

in the cases (a) and (b) of Theorem 3.

Proof. First note that the sequence (µn)n∈N is well-defined for any φ ∈
R? by Lemma 17-(iii), which implies µn(gµn) > 0 for all n. We further have
that

lim
n→∞

µ?

( ⋂
m>n

{gµm > δµm(gµm)}

)
= µ?

(⋃
n>1

⋂
m>n

{gµm > δµm(gµm)}

)

= µ?
({

θ ∈ T : lim inf
n→∞

gµm(θ)

µn(gµm)
> δ

})
.

Furthermore, applying (ii) and (iv) in Lemma 17, we have, for all θ ∈ T,
limn→∞ gµn(θ) = gµ̄(θ) and limn→∞ µn(gµm) = µ̄(gµ̄). Hence, for all θ ∈ T,

lim inf
n→∞

gµm(θ)

µm(gµm)
=
gµ̄(θ)

µ̄(gµ̄)
.

The proof is concluded by applying Lemma 19.

Proof of Theorem 3. Assume (A1), (A2) and (A4).
Lemma 17-(iii) is exactly the first result we want to obtain, that is: for

all ζ ∈ M1(T), any φ ∈ R? satisfies (5) for ζ. Furthermore, |Ψ(f)(ζ)| <∞ by
(A4)-(iii).



32 K. DAUDEL ET AL.

Assume that (µn)n∈N weakly converges to µ̄ ∈ M1(T). First note that
Lemma 17-(iii) implies that for any φ ∈ R? the sequence (µn)n∈N is well-
defined and µ̄ satisfies (5).

We now prove Assertions (i) and (ii) successively.

Proof of (i). For all ζ ∈ M1(T) and all y ∈ Y, set aζ(y) = f
(
ζq(y)
p(y)

)
p(y),

leading to

(32) Ψ(f)(ζ) =

∫
Y
aζ(y)ν(dy) .

Then, for all y ∈ Y,

|aζ(y)| 6
(

sup
θ∈T

∣∣∣∣f (q(θ, y)

p(y)

)∣∣∣∣) p(y) ,(33)

which is integrable w.r.t ν(dy) by (A4)-(iii).
Furthermore, recall that for all y ∈ Y,

[Iφ(µn)q](y) =

∫
T µn(dθ)|bµn(θ)|φq(θ, y)∫

T µn(dθ)|bµn(θ)|φ
.

By applying twice Lemma 17-(iv) with h(θ) = 1 and h(θ) = q(θ, y), we have
that for all y ∈ Y,

lim
n→∞

[Iφ(µn)q](y) = [Iφ(µ̄)q](y) .(34)

Now, since f is C1 by (A2), we obtain from Lemma 17-(i) and (34) respec-
tively that for all y ∈ Y, limn→∞ aµn(y) = aµ̄(y) and limn→∞ aIφ(µn)(y) =
aIφ(µ̄)(y). Combining with (33) and (32) we can thus apply the Dominated
Convergence Theorem to obtain

lim
n→∞

Ψ(f)(µn) = Ψ(f)(µ̄)(35)

and

lim
n→∞

Ψ(f)(µn+1) = lim
n→∞

Ψ(f)(Iφ(µn)) = Ψ(f)(Iφ(µ̄)) .(36)

Finally, (35) and (36) together yield Ψ(f)(µ̄) = Ψ(f)◦Iφ(µ̄), which in turn
implies that µ̄ is a fixed point of Iφ according to Theorem 1-(ii).
Proof of (ii). We prove (ii) by contradiction. Suppose that µn ⇒ µ̄, where
µ̄ is a fixed point of Iφ that satisfies

Ψ(f)(µ̄) > inf
ζ∈M1,µ(T)

Ψ(f)(ζ) .
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Then, there exists µ? ∈ M1,µ(T) such that Ψ(f)(µ̄) > Ψ(f)(µ?). Now for all
n ∈ N, set

Bn =

{
θ ∈ T :

⋂
m>n

{gµm(θ) > δµm(gµm)}

}
,

where for all ζ ∈ M1(T), gζ := |bζ |φ. There exists, according to Lemma 20,
for a well chosen δ > 1, a sufficiently large n0 such that µ?(Bn0) > 0.

Furthermore µ? ≈ µ by definition, where ζ ≈ µ if and only if for all A ∈ T :
ζ(A) > 0 is equivalent to µ(A) > 0. Since 0 < |bµ(θ)|φ <∞ for µ-almost all

θ ∈ T and dµ1
dµ ∝ |bµ|

φ, we also have µ1 ≈ µ. Then by induction, µn ≈ µ for
all n ∈ N. Finally, µn0(Bn0) > 0. Moreover, for all θ ∈ Bn0 and all m > n0,
gµm (θ)
µm(gµm ) > δ and consequently

µm(Bn0) =

∫
Bn0

µm−1(dθ)
gµm−1(θ)

µm−1(gµm−1)
> δµm−1(Bn0) .

By induction on m we get that, for all m > n, µm(Bn0) > δm−n0µn0(Bn0).
This contradicts the previously obtain facts that δ > 1 and µn0(Bn0) > 0.
Therefore we get a contradiction and the proof is concluded.

A.3. Lemma 21 : statement and proof. Recall that Y1, Y2, ... are
i.i.d random variables with common density µq w.r.t ν, defined on the same
probability space (Ω,F ,P) and we denote by E the associated expectation
operator.

Lemma 21. Assume (A1) and (A2). Let µ ∈ M1(T), φ ∈ R? be such that
µ(|bµ|) <∞ and

(37)

∫
T
µ(dθ)E

[{
q(θ, Y1)

µq(Y1)

∣∣∣∣f ′(µq(Y1)

p(Y1)

)∣∣∣∣}φ
]
<∞ .

Then,

(38) lim
K→∞

µ(|bµ,K |φ) = µ(|bµ|φ) , P− a.s.

Proof. Set g(θ, y) = q(θ,y)
µq(y) |f

′(µq(y)
p(y) )| and note that E[g(θ, Y1)] = |bµ(θ)|

since f ′ is of constant sign.

(i) We start with the case φ /∈ [0, 1]. Our goal is to apply Lemma 22,
which is a generalized version of the Dominated Convergence Theorem. To
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do so, first note that |bµ|φ is positive and combining with the convexity of
the mapping u 7→ uφ, we have for all K ∈ N? and for all θ ∈ T,

0 6 |bµ,K(θ)|φ 6 K−1
K∑
k=1

[g(θ, Yk)]
φ .(39)

Since µ(|bµ|) <∞, the LLN for µ-almost all θ ∈ T yields

lim
K→∞

bµ,K(θ) = bµ(θ) .(40)

Now applying successively (a) the LLN for µ-almost all θ ∈ T (as stated in
Lemma 23), which is valid under (37), (b) Fubini’s Theorem and (c) again
the LLN

(41)

∫
T
µ(dθ) lim

K→∞
K−1

K∑
k=1

{g(θ, Yk)}φ
(a)
=

∫
T
µ(dθ)E

[
{g(θ, Y1)}φ

]
(b)
= E

[∫
T
µ(dθ)[g(θ, Y1)]φ

]
(c)
= lim

K→∞

∫
T
µ(dθ)K−1

K∑
k=1

[g(θ, Yk)]
φ

That is

µ

(
lim
K→∞

K−1
K∑
k=1

{g(·, Yk)}φ
)

= lim
K→∞

µ

(
K−1

K∑
k=1

[g(·, Yk)]φ
)
<∞

Combining with (39) and (40), we apply Lemma 22 and obtain

µ
(
|bµ|φ

)
= µ

(
lim
K→∞

|bµ,K |φ
)

= lim
K→∞

µ(|bµ,K |φ) .

(ii) We now turn to the case φ ∈ (0, 1]. Let M > 0. Since

∫
T
µ(dθ)

(
K−1

K∑
k=1

g(θ, Yk)1{g(θ,Yk)6M}

)φ
6 µ(|bµ,K |φ) ,

the LLN for µ-almost all θ ∈ T (Lemma 23) and the Dominated Convergence
Theorem yields

(42)

∫
T
µ(dθ)

(
E[g(θ, Y1)1{g(θ,Y1)6M}]

)φ
6 lim inf

K→∞
µ(|bµ,K |φ) .
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Using now (u+ v)φ 6 uφ + vφ and then Jensen’s inequality for the concave
mapping u 7→ uφ,

µ(|bµ,K |φ) 6
∫
T
µ(dθ)

(
K−1

K∑
k=1

g(θ, Yk)1{g(θ,Yk)6M}

)φ

+

(∫
T
µ(dθ)K−1

K∑
k=1

g(θ, Yk)1{g(θ,Yk)>M}

)φ

By invoking the LLN for µ-almost all θ ∈ T (Lemma 23) and the Dominated
Convergence Theorem for the first term of the rhs and the LLN combined
with Fubini for the second term, we get

lim sup
K→∞

µ(|bµ,K |φ) 6
∫
T
µ(dθ)

(
E[g(θ, Y1)1{g(θ,Y1)6M}]

)φ
+

(∫
T
µ(dθ)E[g(θ, Y1)1{g(θ,Y1)>M}]

)φ
Letting M go to infinity both in this inequality and in (42) completes the
proof of (38).

APPENDIX B: TECHNICAL RESULTS

B.1. General Dominated Convergence Theorem. We state and
prove a generalized version of the Dominated Convergence Theorem, adapted
from [36, Theorem 19]. We provide here a full proof for the sake of complete-
ness.

Lemma 22 (General Dominated Convergence Theorem). Let ζ ∈ M1(T).
Assume there exist (aK), (bK), (cK) three sequences of (T ,B(R))-measurable
functions such that the limits limK→∞ aK(θ), limK→∞ bK(θ), limK→∞ cK(θ)
exist for ζ-almost all θ ∈ T and

ζ| lim
K→∞

aK |+ ζ| lim
K→∞

cK | <∞

Assume moreover that for all K ∈ N? and for ζ-almost all θ ∈ T

aK(θ) 6 bK(θ) 6 cK(θ)



36 K. DAUDEL ET AL.

and

ζ( lim
K→∞

aK) = lim
K→∞

ζ(aK)(43)

ζ( lim
K→∞

cK) = lim
K→∞

ζ(cK)(44)

Then,

ζ( lim
K→∞

bK) = lim
K→∞

ζ(bK)

Proof. We apply Fatou’s Lemma combined with (43) and (44) to the
two non-negative, (T ,B(R))-measurable functions θ 7→ bK(θ) − aK(θ) and
θ 7→ cK(θ)− bK(θ) and we obtain

ζ(lim inf
K→∞

bK) 6 lim inf
K→∞

ζ(bK)

ζ(lim inf
K→∞

−bK) 6 lim inf
K→∞

ζ(−bK)

which proves the lemma, as lim infK→∞ bK(θ) = lim supK→∞ bK(θ) for ζ-
almost all θ ∈ T.

B.2. Integrated Law of Large Numbers. Let Y1, Y2, . . . be i.i.d.
random variables on the same probability space (Ω,F ,P) and let h be a non-
negative real-valued (T ⊗F ,B(R>0))-measurable function. We are interested
in showing ∫

T
ζ(dθ) lim

K→∞
K−1

K∑
k=1

h(θ, Yk) =

∫
T
ζ(dθ)E[h(θ, Y1)](45)

for ζ ∈ M1(T) satisfying
∫
T ζ(dθ)E[h(θ, Y1)] < ∞. While this result follows

easily if we can show that

(46) P

(
∀θ ∈ T, lim

K→∞
K−1

K∑
k=1

h(θ, Yk) = E[h(θ, Y1)]

)
= 1

unfortunately the LLN only yields

P

(
lim
K→∞

K−1
K∑
k=1

h(θ, Yk) = E[h(θ, Y1)]

)
= 1

for ζ-almost all θ ∈ T. The following lemma allows to show (45) without
resorting to the much stronger identity (46).



THE F -EXPECTATION ITERATION SCHEME 37

Lemma 23. Let ζ ∈ M1(T) and assume that
∫
T ζ(dθ)E[h(θ, Y1)] < ∞.

Then, P− a.s.∫
T
ζ(dθ) lim

K→∞
K−1

K∑
k=1

h(θ, Yk) =

∫
T
ζ(dθ)E[h(θ, Y1)] .

Proof. Set

B =

{
(θ, ω) ∈ T× Ω : lim

K→∞
K−1

K∑
k=1

h(θ, Yk(ω)) = E[h(θ, Y1)]

}
,

Let γ0 : (θ, ω) 7→ 1Bc(θ, ω) and γ1 = 1−γ0. According to the Fubini Theorem
and the LLN for K−1

∑K
k=1 h(θ, Yk) where θ is such that E[h(θ, Y1)] < ∞

(which is satisfied for ζ-almost all θ ∈ T by assumption),

E
[∫

T
ζ(dθ)γ0(θ, ·)

]
=

∫
T
ζ(dθ)E [γ0(θ, ·)] = 0 .

Therefore,
∫
T ζ(dθ)γ0(θ, ·) is P − a.s. null that is, there exists Ω1 such that

P(Ω1) = 1 and for all ω ∈ Ω1, A 7→
∫
A ζ(dθ)γ0(θ, ω) is the null-measure on

(T, T ), which in turn implies that the measures ζ and A 7→
∫
A ζ(dθ)γ1(θ, ω)

coincide. The latter property implies for all ω ∈ Ω1,∫
T
ζ(dθ)E[h(θ, Y1)] =

∫
T
ζ(dθ)E[h(θ, Y1)]γ1(θ, ω)

=

∫
T
ζ(dθ)

[
lim
K→∞

K−1
K∑
k=1

h(θ, Yk(ω))

]
γ1(θ, ω)

=

∫
T
ζ(dθ) lim

K→∞
K−1

K∑
k=1

h(θ, Yk(ω)) .

APPENDIX C: α-BOUND FOR Z

Proof of Lemma 10. We derive the explicit link between Df (µQ||P̃)
and Ψ(f)(µ; p) with p = p∗ for each of the two divergences:

(a) Reverse Kullback-Leibler: f(u) = − log(u) and

Df (µQ||P̃) =

∫
Y
− log

(
µq(y)

p̃(y)

)
p̃(y)ν(dy)

=
1

Z

∫
Y
− log

(
µq(y)

p∗(y)

)
p∗(y)ν(dy)− logZ

=
1

Z
Ψ(f)(µ; p)− logZ



38 K. DAUDEL ET AL.

(b) α-divergence: For all α /∈ {0, 1}, f(u) = 1
α(α−1) [uα − 1] and

Df (µQ||P̃) =

∫
Y

1

α(α− 1)

[(
µq(y)

p̃(y)

)α
− 1

]
p̃(y)ν(dy)(47)

= Zα−1

∫
Y

1

α(α− 1)

(
µq(y)

p∗(y)

)α
p∗(y)ν(dy)− 1

α(α− 1)

= Zα−1Ψ(f)(µ; p) +
1

α(α− 1)
[Zα − 1]

APPENDIX D: MORE ILLUSTRATIONS

Figure 3. Dimension 1: Impact of the parameter φ. Here α = 0.5 with corresponding
range (0, 1] for φ.

Figure 4. Dimension 1: Impact of the parameter φ. Here α = 1.2 with corresponding
range (−5, 0) for φ.
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LTCI, Télécom Paris
Institut Polytechnique de Paris
46, rue Barrault, 75013 Paris
E-mail: kamelia.daudel@telecom-paris.fr

francois.portier@telecom-paris.fr
francois.roueff@telecom-paris.fr

Département CITI, Télécom SudParis
Institut Polytechnique de Paris
9 rue Charles Fourier, 91000 Evry
E-mail: randal.douc@telecom-sudparis.eu

mailto:kamelia.daudel@telecom-paris.fr
mailto:francois.portier@telecom-paris.fr
mailto:francois.roueff@telecom-paris.fr
mailto:randal.douc@telecom-sudparis.eu

	Introduction
	Formulation of the optimisation problem
	The f-Expectation Iteration algorithm f-EI() 
	An iterative algorithm for optimising 
	Monotonicity
	Limiting behavior of the Exact f-EI() algorithm
	Approximate f-EI() 

	f-EI() applied to density approximation
	Reformulation of the optimisation problem
	Approximate f-EI() for the -divergence

	Numerical experiments
	Conclusion and perspectives
	References
	Appendix A
	Proof of thm:admiss
	Proof of thm:repulsive
	lem:discretize : statement and proof

	Technical Results
	General Dominated Convergence Theorem
	Integrated Law of Large Numbers

	-bound for Z
	More illustrations
	Author's addresses

