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ABSTRACT
Machine learning is yielding unprecedented interest in research and industry, due to recent success in
many applied contexts such as image classification and object recognition. However, the deployment
of these systems requires huge computing capabilities, thus making them unsuitable for embedded
systems. To deal with this limitation, many researchers are investigating brain-inspired computing,
which would be a perfect alternative to the conventional Von Neumann architecture based comput-
ers (CPU/GPU) that meet the requirements for computing performance, but not for energy-efficiency.
Therefore, neuromorphic hardware circuits that are adaptable for both parallel and distributed com-
putations need to be designed. In this paper, we focus on Spiking Neural Networks (SNNs) with a
comprehensive study of information coding methods and hardware exploration. In this context, we
propose a framework for neuromorphic hardware design space exploration, which allows to define
a suitable architecture based on application-specific constraints and starting from a wide variety of
possible architectural choices. For this framework, we have developed a behavioral level simulator
for neuromorphic hardware architectural exploration named NAXT. Moreover, we propose modified
versions of the standard Rate Coding technique to make trade-offs with the Time Coding paradigm,
which is characterized by the low number of spikes propagating in the network. Thus, we are able to
reduce the number of spikes while keeping the same neuron’s model, which results in an SNN with
fewer events to process. By doing so, we seek to reduce the amount of power consumed by the hard-
ware. Furthermore, we present three neuromorphic hardware architectures in order to quantitatively
study the implementation of SNNs. One of these architectures integrates a novel hybrid structure:
a highly-parallel computation core for most solicited layers, and time-multiplexed computation units
for deeper layers. These architectures are derived from a novel funnel-like Design Space Exploration
framework for neuromorphic hardware.

1. Introduction
Over the past decade, Artificial Intelligence (AI) has been

increasingly attracting the interest of industry and research
organizations. Artificial Neural Networks (ANNs) are de-
rived and inspired from the biological brain, and have be-
come the most well-known and frequently used form of AI.
Even though ANNs have garnered a lot of interest in re-
cent years, they stem from the 1940s with the apparition
of the first computer. Subsequent work and advancements
have lead to the development of a wide variety of ANN
models. However, many of these models settled for theory
and were not implemented for industrial purposes back then.
Recently, those algorithms became competitive because of
two factors: first, modern computers have reached sufficient
computing performance to process ANN training and infer-
ence; second, the amount of data available is growing expo-
nentially, satisfying the extensive training data requirements
for ANNs. However, the energy and hardware-resources
intensiveness imposed by computation in complex form of
ANNs are not matching with another current emerging tech-
nology: IoT (Internet of Things) and Edge Computing. To
allow for ANNs to be executed in such embedded context,
one must deploy dedicated hardware architectures for ANN
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acceleration.
In this case, the design of neuromorphic architectures is par-
ticularly interesting when combined with the study of spik-
ing neural networks. Spiking Neural Networks for Deep
Learning and Knowledge Representation is a current is-
sue [1] that is particularly relevant for a community of
researchers interested in both neurosciences and machine
learning. Our work is part of this approach and attempts
to contribute by studying more precisely the question of the
hardware design of these models. These networks are all the
more advantageous as we plan to execute them in dedicated
accelerators. They then take full advantage of the event-
driven nature of data flows, the simplicity of its elementary
operators and its local and distributed computing and learn-
ing properties. Several specific hardware solutions have al-
ready been proposed in the literature, but they are only solu-
tions isolated from the overall design space where network
topologies are often constrained by the characteristics of the
circuit architecture. We recommend the opposite approach,
which consists in generating the architecture that best sup-
ports the network topology. Through this study, we therefore
propose an exploration framework that makes it possible to
evaluate the impact of different spiking models on the effec-
tiveness of their hardware implementation.
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1.1. Spiking neurons for inference
The recent achievements of Deep Neural Networks

(DNNs) on image classification have given them the leading
role in machine learning algorithms and AI research. After
the first phase of offline experiments, these methods began
to proliferate in our daily lives through autonomous appli-
cations close to the user. Thus, more and more applications
such as smart devices, IoT or autonomous vehicles require
embedded and efficient implementation. However, their ini-
tial implementation on CPU were too resource-intensive for
such constrained systems. Indeed, generic sequential pro-
cessors are not adapted to intrinsically parallel neural al-
gorithms. Therefore, it became essential to deploy them
onto dedicated neuromorphic systems. These architectures
are designed to fit the parallel and distributed computation
paradigm of ANNs, permitting their implementation in em-
bedded systems.

ANNs could be separated into three different generations,
distinguished by neural computation and information cod-
ing. The first generation is characterized by the traditional
McCulloch and Pitts neuron model, which outputs discrete
binary values (’0’ or ’1’) [2]. The second generation is char-
acterized by the use of continuous activation functions in
neural networks forming more complex architectures, such
as Boltzmann Machines [3], Hopfield Networks [4], Percep-
trons, Multi-Layer Perceptrons (MLP) [5] andConvolutional
Neural Networks (CNN) [6]. Finally, the third generation of
neural algorithms, on which this paper is focused, is Spiking
Neural Networks (SNNs). In this model, information is en-
coded into spikes, inspiring from neuroscience. Indeed, this
neuron model mimic biological neurons and synaptic com-
munication mechanisms based on action potentials. The in-
formation is thus represented as a flow of spikes, with a wide
variety of information coding techniques (see section 2).

According to this information coding paradigm, SNN pro-
cessing is performed in an event-based fashion: computa-
tion is operated by a spiking neuron when and only when it
receives an input spike. Without any stimulation, the neu-
ron remains idle. Hence, computation is strictly performed
for relevant information propagation, in contrast to Formal
Neural Networks (FNNs), where the states of every neuron
are updated periodically. Moreover, the computation is usu-
ally much simpler in spiking neurons than in formal neurons.
Indeed, even though several models have been identified in
neuroscience studies, in a machine learning context, spiking
neurons are most often based on a simple (Leaky) Integrate
and Fire (IF) model [7]. Let us compare IF computation
rule with Formal computation rule. The computation rule
for Formal Neurons is presented in equation 1, and the com-
putation rule for Spiking Neurons (IF model) is shown in
equation 2:

ylj(t) = f (s
l
j(t)), slj(t) =

Nl−1−1
∑

i=0
wij ∗ yl−1i (t) (1)

With ylj(t) being the output of the jtℎ neuron of layer l, f ()
a non-linear activation function, slj(t) the membrane poten-

tial of the jtℎ neuron of layer l and wij the synaptic weight
between itℎ neuron of layer l − 1 and jtℎ neuron of layer l.

 lj(t) =

{

1 if slj(t) ≥ �
0 otherwise ,

plj(t) =

{

slj(t) if slj(t) ≤ �
slj(t) − � otherwise

,

slj(t) = p
l
j(t − 1) +

Nl−1−1
∑

i=0
(wij ∗  l−1i (t))

(2)

With  lj(t) being the binary output of the jtℎ neuron of layer
l, plj(t) the membrane potential of the jtℎ neuron of layer l,
and � the activation threshold of the jtℎ neuron of layer l.
The multiplicative operation and the non-linear func-

tion f () in eq. 1 are very resource-intensive when con-
sidering hardware implementation, whereas the simple ac-
cumulation, comparison and reset operations found in eq.
2 are much more competitive. Hence, SNNs are much
more promising for low-power embedded hardware im-
plementations than FNNs, considering the advantages in
terms of event-driven computation and resource consump-
tion brought by the Integrate and Fire model. Other spik-
ing models exist, such as the slightly more complex Leaky
Integrate and Fire (LIF) [8], which implies a continuously
decreasing membrane potential; or the Izhikevich neuron
model [9], which reproduces more realistic biological neu-
ron behaviors. Other neuron models are described in [1],
which introduces details about spiking neuron models found
in literature, alongside a wide variety of learning methods in
spiking domain. However, we have chosen to use the sim-
pler IF neuron model in our work, due to increased compu-
tational cost with more complex neuron models. Moreover,
the IF neuron model is already known to be sufficient for
spike-based classification applications [10, 11, 12, 13, 14].
1.2. Neuromorphic hardware

In this subsection, we introduce some of the most re-
cent SNNs hardware implementations found in the litera-
ture. Those systems consist of ASIC1 or FPGA2 chips, de-
signed to simulate large numbers of spiking neurons. We
give a brief description of their features, alongside energy
consumption information. Those informations are summed
up in table 1.
SpiNNaker

SpiNNaker [15] is a fully digital system aiming to simu-
late very large spiking networks in real-time, and in an event-
driven processing fashion. A SpiNNaker board is composed
of 864 ARM9 cores, divided into 48 chips containing 18
cores each. The memory is highly distributed, as there is
no global memory unit, but one small local memory unit for
each core and a shared memory for each chip. The main fea-
ture of SpiNNaker is its efficient communication system: all

1Application Specific Integrated Circuits
2Field Programmable Gate Arrays
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the nodes are interconnected through high-throughput con-
nections designed for small packet routing, which contain
Address Event Representation (AER) spikes, i.e., the ad-
dress of the transmitter neuron, the date of the emission,
and the destination neuron. This communication scheme has
been conceived to tolerate the intrinsic massive parallelism
of the ANNs. The SpiNNaker board is programmable thanks
to the PyNN interface, PyNNbeing a Python library for SNN
simulation [16, 17], which provides various neuron models
(LIF, Izhikevich, etc.) and synaptic plasticity rules such as
STDP (Spike-Time-Dependent Plasticity)[18][19]. In terms
of energy usage, a SpiNNaker board has a peak power con-
sumption of 1W.

SpiNNaker is used to implement massively parallel hard-
ware SNNs in the litterature, such as NeuCube in [20],
where a SNN is implemented on SpiNNaker to capture and
classify spatio-temporal information from EEG (Electro-
EncephaloGram). Notably, this architecture offers the possi-
bility to pause classification process to learn new samples or
classes, in an Incremental Learning [21] [22] fashion, which
is an interesting property.

Configurable event-driven convolutional node
The authors in [23] proposed a configurable event-driven

convolutional node with rate saturation mechanism in or-
der to implement arbitrary CNNs on FPGAs. The designed
node consists of a convolutional processing unit formed by
a bi-dimensional array of IF neurons and a router allow-
ing to build large 2D arrays dedicated for ConvNets infer-
ence. In this structure, each node is directly connected to
four other neighboring nodes through ports that carry bidi-
rectional flow of events. Internally, all input and output
ports are connected to a router, which dispatches events to
its local processing unit or to the appropriate output port.
The network described by Pérez-Carrasco et al. [24] for
high-speed poker symbol recognition was implemented on
®Xilinx ®Spartan 6 FPGA. With more than 5 K neurons
and 500 K synapses, the generated circuit occupied 21,465
slices, 38,451 registers and 202 of block RAMs. The slower
versions of the architecture showed recognition rates around
96% when all the input events were processed by the net-
work, while less than 20% of the events were processed at
real time, obtaining a recognition rate higher than 63% with
a power consumption of 7.7 mW when the stimulus was be-
ing processed at real time, and even lower consumptions for
slower processing: 5.25 mW when it was 10 times slower,
and 0.85 mW for a slow-down factor of 100.

Conv core
This paper [25] proposes a pipe-lined architecture for pro-

cessing spiking 2D convolutional layers in a fully event-
driven system. Indeed, this system takes asynchronous in-
put data from a Dynamic Vision Sensor (DVS) [26] [27], a
bio-inspired vision sensor which outputs a continuous flow
of spikes corresponding to brightness gradient variations
in a dynamic image. This architecture benefits from the
parallelism offered by FPGAs by implementing a 3-stages-

pipeline, thus reaching the great performance of updating
128 pixels of the layer in 12ns; while running on ®Xilinx
®Spartan 6 FPGA. On the same board, the implementation
of a spiking convolution layer with a 128x128 pixel input and
a 23x23 convolution kernel occupies 48% of logic resources
and 68% of block RAM. This architecture uses the LIF neu-
ron model, a bit more complex than our simple IF neu-
ron. This system is adapted to asynchronous spiking input,
whereas our system is adapted to conventional CCD (Charge
CoupledDevice) vision sensors, however we could adapt our
architecture to DVS to benefit from the asynchronous input
in parallel implementations (FPA architecture, see 5.2).
HFirst

HFirst [28] is a Spiking CNN architecture. It is based on a
frame-free paradigm, as it takes inputs from a DVS. HFirst’s
particularity is to focus on relative timing of spikes across
neurons, benefiting from the continuous flow of input data.
Hence, HFirst is dedicated to temporal pattern recognition,
whereas our architecture is dedicated to static image recogni-
tion, and uses the accessible CCD sensor. Moreover, HFirst
uses another IF neuron version which is more complex than
ours, emulating physical behavior of an IF Neuron. This
model uses several multiplications, which results in a more
resource intensive implementation (17 DSP in HFirst versus
0 for ours). HFirst runs on Xilinx®’s Spartan® 6 FPGA,
with a 100MHz clock, and consumes between 150mW and
200mW. It performs 97.5% accuracy on HFirst Cards data-
set (4 classes), and 84.9% on HFirst Characters data-set (36
classes).
Minitaur

Minitaur [29] is an event-driven neural network accelera-
tor dedicated to high performance and low power consump-
tion. This is an SNN accelerator on ®Xilinx ®Spartan 6
FPGA board. The example LIF-based network implemented
on the board performs 92% accuracy on MNIST dataset and
71% on 20 newsgroups dataset. The Minitaur architecture
consists of 32 LIF-based cores dedicated to parallel process-
ing of spikes. The input spikes arrive from a queue where
they are stored as packets through USB interface. Those
packets are encoded on 6 Bytes : 4 Bytes for timestamp,
1 Byte for layer index and 2 Bytes for the neuron address
(Address-Event-Representation). This is a semi-parallel ar-
chitecture, where some layer are processed in parallel, and
some layer are processed sequentially. Minitaur achieves 19
million neuron update per second on 1.5 W of power and it
supports up to 65K neurons per boardwithin fully-connected
layers based SNN.
Loihi

Loihi [30] is again a fully-digital chip containing 128
cores, each of which are able to simulate up to 1024 different
neurons. The memory is also largely distributed, with each
core having a local 2MB SRAMmemory unit. The chip also
contains 2x86 cores and 16MB of SRAM synaptic memory.
Accordingly, it is able to support up to 130 000 neurons and
130 million synapses. In contrast with previous systems, the
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Loihi board is able to perform learning. The chip can be
programmed to implement various learning rules, notably
STDP. The chip is able to simulate up to 30 billion SOPS,
with an average of 10pJ per spike.
TrueNorth

TrueNorth [31] is another fully-digital system, capable of
simulating up to 1 million spiking neurons. A TrueNorth
board is composed of 4096 Neurosynaptic cores dedicated
to LIF neuron emulation. Each core contains a 12.75 KB
of local SRAM memory, and is time-multiplexed up to 256
times so that one core can simulate 256 different neurons.
Similarly to SpiNNaker, the communication scheme is asyn-
chronous, event-based and able to tolerate a very high level
of parallelism. TrueNorth can perform 46 billion synaptic
operations per second (SOPS) per Watt, with a power con-
sumption of 100mW when running a 1 million neurons net-
work. The system is programmable thanks to the Corelet
programming language [32], allowing to tune neuron param-
eters, synapse connectivity and inter-core connectivity.
DYNAPs

DYNAPs [33] is a reconfigurable hybrid analog/digital
architecture. Its hierarchical routing network allows the
configuration of different neural network topologies. This
interesting method also tries to solve the compromise be-
tween point-to-point communications and request broad-
casting in large neural topologies. The use of mixed-mode
analog/digital circuits allowed to distribute the memory ele-
ments across and within the computing modules. As a coun-
terpart, this requires the addition of conversion circuits. The
analog parts are operated in subthreshold domain to min-
imize dynamic power consumption and to implement bio-
physically realistic behaviors. The approach is validated by
a VLSI design implementing a three-layer CNN network. If
the circuit consumption is low (about ten pJ per data move-
ment in the network), the implementation of the 2560 neu-
rons of the targeted spiking CNN requires the use of a PCB
composed of 9 circuits. The overall consumption and scala-
bility of the approach therefore remains to be confirmed.
BrainScaleS

BrainScaleS [34] is a mixed digital-analog system. The
processing units (neuron cores) are analog circuits, whereas
the communication units are digital. BrainScaleS imple-
ments the adaptive exponential IF neuron model, which can
be configured to reproduce many biological firing patterns.
BrainScaleS is composed of HiCANN (High-Input Count
Analog Neuronal Network) chips, which are able to simulate
224 spiking neurons and 15 000 synapses. Several HiCANN
units can be placed on a wafer, so that a single wafer can sim-
ulate up to 180 000 neurons and 40 million synapses. The
system also integrates general purpose embedded proces-
sors, which are able to measure relative spike timings, thus
plasticity rules such as STDP can be implemented. Other
plasticity rules can also be programmed, and a PyNN inter-
face allows users to program the network in a similar fashion
to SpiNNaker. The BrainScaleS platform consumes between

0.1nJ and 10nJ per spike depending on the simulated net-
work model, and reaches a maximum of 2kW of peak power
consumption per module.
NeuroGrid

NeuroGrid [35] is also a mixed digital-analog system,
which targets real-time simulation of large SNNs. It employs
subthreshold circuits, to model neural elements. The synap-
tic functions are directly emulated thanks to the physics of
the transistors operating in the subthreshold regime. The
board is composed of 16 NeuroCore chips, interconnected
by an asynchronous multicast tree routing digital commu-
nication system. Each core is composed of 256*256 analog
neurons, so that NeuroGrid is able to simulate up to 1million
neurons and billions of synaptic connections. Concerning
energy, NeuroGrid consumes an average of 941pJ per spike
and has a peak power consumption of 3.1W.
1.3. Contributions

The hardware accelerators presented so far are largely des-
tined to conduct large-scale simulations of brain-like neural
networks, with a bio-mimetic implementation offering sev-
eral neuron and synapse models (table 1). Therefore, they
are either designed for general purpose simulation of bio-
inspired neural models, or for processing data coming from
event-based cameras. They are not easily programmable
from classical machine learning frameworks. This enables
us to combine the efficiency of unsupervised learning and
the efficiency of spiking neurons applied to prevalent frame-
based sensors. Indeed, in embedded AI applications, the so-
lution has to offer state-of-the-art prediction accuracy. Pre-
vious work [36] has shown that SNNs cost about 50% less
in terms of hardware, while having approximately the same
accuracy compared to MLP (FNNs). In other words, map-
ping a traditional neural network to a spiking one does not
severely impact the recognition rate [37][24], and results
in more economical hardware. Therefore, in this paper we
adopt the same approach, consisting in transcoding FNNs to
SNNs to solve classification problems. Such an approach has
been studied in [24][37] but few studies have explored the
impact of spike coding on both performance and power effi-
ciency [11, 38]. Indeed, our network is first trained in formal
domain, and its weights are then exported to be used in an
SNNwith the same topology, which is then directly ready for
inference. Note that there exist learning methods directly in
spike domain, such as SpikeProp or STDP [18][39][19][40].
Additional information concerning spiking learning meth-
ods is available in [1], which presents a complete survey
of Spiking Neural Network training techniques. In this pa-
per, we are dealing with supervised feed-forward networks
trained with back-propagation learning, because they are the
most dominant deployedmodels when considering hardware
integration[41][10]. In our study we will also focus on infor-
mation coding, spike generation and their impact on neuro-
morphic system efficiency. Our intuition is that using Time
Coding rather than Rate Coding, as is widely used in related
studies, leads to a system with reduced power consumption.
When transcoding an image in spike domain with Time Cod-
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Table 1
Neuromorphic hardware architectures

Work Electronics Technology Online Learning Programmability Network Neuron model Input data Application domain

NeuroGrid [35] - 2014
Analog /
Digital

ASIC - CMOS
180nm yes NGPyton Programmable

Dimensionless
model Spikes NeuroSciences

BrainScales [34] - 2017
Analog /
Digital

ASIC - CMOS
180nm yes PyNN FC exp IF Frame-based

NeuroSciences /
Classification

Loihi [30] - 2018 Digital
ASIC - CMoS
14 nm yes Loihi API Conv / FC / RNN CUBA LIF Spikes

LASSO /
classification

TrueNorth [31] - 2014 Digital
ASIC - CMoS
28 nm no Corelets Conv / FC / RNN LIF Frame-based

Multi-object
detection

SpiNNaker CMP
Chip [15]- 2010 Digital

ASIC - CMoS
130 nm yes PyNN Programmable LIF, IZH, HH Spikes NeuroSciences

Minitaur [29] - 2014 Digital
FPGA - Spartan 6
LX150 no RTL FC LIF Frame-based Classification

ConfConvNode [23] - 2018 Digital
FPGA - Xilinx
Spartan 6 no RTL Conv / Pool LIF DVS

DVS-based
calssification

Fast pipeline [25] - 2015 Digital
FPGA - Xilinx
Spartan 6 no RTL Conv / Pool LIF DVS

DVS-based
calssification

HFirst [28] - 2015 Digital
FPGA - Xilinx
Spartan 6 no RTL Conv / Pool Complex IF DVS

DVS-based
object recognition

DYNAPS [33] - 2017
Analog /
Digital

FPGA - CMoS
180 nm no CHP language Conv / Pool AdExp-IF DVS Classification

This work - 2019 Digital
FPGA - Cyclone
V 28 nm no N2D2, TF, Keras FC IF Frame-based

Embedded-AI
Classification

ing, for example, each pixel will fire at most once (figure
1b). With rate coding, however, spike trains are emitted
for each input pixel (1a), which results in a greater activity
in the network, thus increasing resource and energy inten-
siveness of the system. Therefore, we developed innovative
spike coding method based on Time Coding paradigm, such
as Spike-Select and First-Spike. In the context of hardware
SNN implementation, we have also developed NAXT (Neu-
romorphic Architecture eXploration Tool), which is a soft-
ware for high-level neuromorphic system simulation. Devel-
oped in SystemC [42], this software provides coarse energy
consumption, latency and chip surface estimations for vari-
ous built-in architectural configurations. Thus, NAXT acts
as the first evaluation tool in our architectural exploration
of neuromorphic systems for fast but coarse evaluation of
architectural choices. More details will be given in section
4. We have chosen to develop our own high-level hardware
SNN simulator, as existing simulators did not allow to per-
form hardware estimations with such high-level description,
which makes our simulator innovative. High-level explo-
ration with NAXT provides information on the suitable ar-
chitectural choices, such as parallelism and memory distri-
bution. From those results, architectures are built in VHDL
to be tested at Register Transfer Level, thus furnishing pre-
cise timing, logic resources and energy measures. Notably,
we propose a novel Hybrid Architecture, which combines
the advantages of both multiplexed and parallel hardware
implementations.

1.4. Outline of the paper
The remainder of this paper is organized across four sec-

tions. First, we deal with methods for encoding information
into Spikes in section 2. Novel Information Coding meth-
ods are described and evaluated alongside common Rate and
Time coding methods. In the four next parts of the paper,
our funnel-fashioned Design Space Exploration framework
is described in chronological order : In section 3, we give a
brief description of the framework’s philosophy, alongside

Time

Intensity

(a) Rate Coding paradigm

Time

Intensity

(b) Time Coding paradigm
Figure 1: Information coding methods

preliminary steps of our Design Flow. In section 4, we deal
with the high-level exploration step, describing the novel
NAXT (Neuromorphic Architecture eXploration Tool) soft-
ware and its simulation results on a typical SNN for MNIST
classification. The section 5 is dedicated to low-level imple-
mentation of SNN hardware architectures based on NAXT
results, and their RTL (Register Transfer Level) simulation
information. An innovative hybrid architecture with both
parallel and multiplexed computation cores will be intro-
duced and evaluated. Lastly, we discuss the work while pre-
senting some perspectives in section 6, and conclude the pa-
per in section 7.

2. Information Coding
In this section, we are going to focus on Information Cod-

ing methods : those are the different ways in which informa-
tion can be encoded into spikes. Existing and novel coding
methods will be presented.

2.1. Rate Coding versus Time Coding
In SNN architectures, information is encoded in spikes.

The spikes, also called "action potentials" or "nerve pulses"
in biology, are generated by a spiking neuron, in a pro-
cess called "firing". In a feed-forward SNN with Fully-
Connected (FC) layers, these spikes are transmitted to all the
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neurons of the next layer. Several information coding meth-
ods have been proposed by neuroscientists, including Rate
Coding, Time Coding, Phase Coding, Rank Coding, Popu-
lation Coding, etc. [43]. In this study, we focus on Rate
Coding and Time Coding for two reasons:
1. Rate Coding: for its maturity. When using this method,

SNNs reach State-of-the-Art performance on classifica-
tion applications [36][11];

2. Time Coding: when used, fewer spikes are propagated
in the SNN, which reduces computation and resource
intensiveness during inference [39][44].

Based on thesemethods, we propose somemodified versions
of the standard Rate Coding to make trade-offs with the tem-
poral coding paradigm: maintain high accuracy and reduce
the number of spikes flowing in the network. Indeed, the
energy consumption of an SNN hardware implementation is
directly proportional to the number of spikes it generates. As
mentioned in [11], an estimation of the energy consumed by
processing an image is calculated using the equation 3.

Etotal = Nspikes∕image ∗ � (J∕image) (3)
Where Etotal the average energy consumed for the process-
ing of an image, Nspikes∕image the total number spike emis-
sion per input pattern, and � the energy consumption of a
spike emission. Note that the spiking-activity-related en-
ergy consumption varies from one accelerator to another and
obviously depends on the specific architecture. In this pa-
per, we consider three different amounts: �_FPA, �_TMA
and �_HA related to the three architectures that will be de-
scribed in section 5.
2.1.1. Rate Coding

Rate Coding is the most widespread method for convert-
ing formal data into spike trains. The spike train’s period
is computed based on the formal data value following equa-
tion 4. In figure 1a, three pixels of a gray-scale image are
transformed into spike trains: each pixel is represented by a
spike train whose frequency is proportional to its intensity
(image processing). Note that some Rate Coding techniques
such as Jittered Periodic apply a random factor to spike emis-
sion times, which increases network’s prediction accuracy.
Among several rate coding techniques presented in a pre-
vious work [45], we are using Jittered Periodic method as
it reaches the highest performances while not increasing the
spiking activity compared to the other rate-based techniques.
2.1.2. Time Coding

The Time Coding method encodes information into spike
emission date, which allows to use only one spike per in-
put pixel (for image processing example).Unlike rate cod-
ing, a gray-scale image is encoded by signals holding only
one spike per pixel. This latter is emitted in a time t that
is inversely proportional to the pixel’s intensity[39][44], as
depicted in figure 1b. In this model, spikes are dependent
on each other, because their arrival times can be interpreted
only relatively to other spikes.

Initially, we were interested in the work proposed by H.
Mostafa in 2017[39], with a supervised learning algorithm
based on temporal coding. The SNN processes input data
that are first binarized and then transformed to the so-called
Z-domain (change of variable : exp(t) = z), where all the
computations are held. In this approach, a typical neuron has
a function called Get_Causal_Set(), which returns a set of
neurons from its previous layer participating in the process
of firing (causal neurons). Indeed, this function uses all the
previous layer’s spiking times to deduce this group of causal
neurons. Thus, if we suppose that it processes the spiking
times to compute the emission time temission, then this latter
would be greater than all the processed spiking times. Mean-
while, it is mentioned in the paper [39] that the spike emitted
at temission is fired after that the causal neurons have fired, butnot after all the previous layer neurons. Hence, the informa-
tion exchanged between neurons does not correspond to the
real time that we can measure in event-based system. There-
fore, from a hardware perspective, this method is not viable
as the hardware implementation would not operate in real
time. Thus, the methods presented in the following section
seems more appropriate for hardware implementation.

2.2. Exploring novel information coding methods
In this subsection, we will describe innovative informa-

tion coding methods we have developed.
2.2.1. Spike Select

Statistical results from Rate Coding SNNs are shown in
figure 13, where most of the spiking activity is located in the
input layer. We note that only a few spikes are emitted by the
deeper layers, which is sufficient for classification. In other
words, most of the spikes generated by the input layer does
not impact the winner class selection process. Therefore,
we propose a novel kind of Rate Coding : the Spike Select
method. This methods consists in identifying the spikes di-
rectly involved in the classification process, by filtering them
within the first hidden layer neurons. In doing so, we en-
sure that only the spikes intended to excite the winning class
neuron are emitted. Fewer spikes will propagate to the out-
put layer, but everyone of them will be exciting the winning
class neuron. Thus, the Terminate Delta (see Part 5.1.3) pro-
cedure is still valid, even if it often takes longer to complete
the Terminate Delta condition. In this regard, the latency of
the whole process is increased, resulting in a higher number
of spikes generated before the filter. However, the number
of spikes propagating after the filter remains low. From the
hardware perspective, this is a very promising method that
allows for efficient hardware usage, especially with the hy-
brid architecture presented in section 5.4. Indeed, in this ar-
chitecture, the first hidden layer is implemented in parallel,
and the deeper layer are time-multiplexed : this architectural
configuration fits well with the Spike Select coding method.

Figure 2 shows an example of some first hidden layer neu-
rons to which the Spike Select method has been applied. The
filter here consists in raising the threshold from 1 to 3, which
reduces the number of emitted spikes from 10 to 2.
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Rate coding Spike Select

Figure 2: Spike Select method effect on the first hidden layer
neurons. The applied filter consists in raising the threshold
value from 1 to 3.

The value of the new raised threshold is determined by
analyzing the SNN spike flow using standard Rate Coding.
2.2.2. Single Burst

With Single Burst coding method the input data stimu-
lus are mapped to temporal domain. An input data value is
represented using one spike, which is emitted at a specific
time t, computed by "t =∣ 1 − v ∣∗ wt", with t the emission
time,wt the time window dedicated for the generation of the
spikes, and v the input value. This method is an adaptation
of the existing Single Burst stimulus type in N2D2 [46].
2.2.3. First Spike

Derived from standard rate coding, the novel First Spike
method we have developed is an intermediate version be-
tween time and rate coding paradigms, having aspects in
common with both methods. On one hand, as for time cod-
ing, it only uses one spike to represent information. On an-
other hand, similar to rate coding, the compatible neuron
model is the IF-neuron.

The pseudo-algorithm in figure 3 shows how the informa-
tion (v) is converted to spike domain using the First Spike
method. First, we have to define some parameters which
will be used in the conversion process. A period is calcu-
lated based on value v with p = f (v), using the function f ()
in equation 4.

f (v) = 1∕(fmax + (1− ∣ v ∣) ∗ (fmin − fmax)) (4)
Where, fmin and fmax are minimum and maximum fre-
quency parameters. Then, period is used to compute the
time stepΔt, which corresponds to the date of the next spike
emission, thanks to the function Deviation() presented in
equation 5.

Deviation(p) = fUdist(fNdist(p, sdev)) (5)
With sdev being the standard deviation, fNdist() the Ran-
dom normal distribution function and fUdist() the Randomuniform distribution function.

Then, this Δt value is compared to Tmin, which is the
minimum spike delay (no spike can be emitted earlier than
Tmin). If Δt > Tmin, the spike will be emitted at time Δt,

Start

Define parameters:
Fmin, Fmax, StdDev, Tmin

Input: Value

Period = f(Value)
Δt = dev(Period)

Δt < Tmin

SpikingTime = TminSpikingTime = Δt

Emit the spiking event at:
t = SpikingTime

End

YesNo

Figure 3: First Spike method flow-chart. In this method, first,
a period corresponding to the input value is computed, which
is used to calculate the time step. The time step is the amount
by which the actual time is increased to get the spike emission
date (only one spike per input value). Fmin: minimum fre-
quency; Fmax: maximum frequency; Tmin: spikes minimum
separation time; Value: input value; Period: period equivalent
to input value; f(): period conversion function; dev(): devia-
tion function; SpikingTime: spike emission time.

whereas if Δt < Tmin, the spike will be emitted at time
Tmin.
This process is done only once, as this method consists of

only one spike emission per input pixel.
2.3. Results

In this subsection, we present the experimental results of
the different information coding methods. We first compare
the FNN accuracy results to Rate Coding based SNNs. Then,
we analyze performances of the different information coding
methods. For training, validating and testing the ANNs, we
have used the MNIST data-set, which is a handwritten digits
database of 70 000 images (60 000 for learning and valida-
tion, 10 000 images for testing) [47].
Spiking versus formal neural networks

We test the robustness of the mapping method through
several ANN topologies. For this purpose, we are using
N2D2 framework following the steps presented in section
3.3.

The ANN topologies are typical MNIST recognition
topologies (784 inputs, 10 outputs) with variable hidden
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Table 2
FNNs versus SNNs accuracy results on MNIST data-set. The
information coding method used the SNNs is Jittered Periodic.
The results correspond to an average of 10 simulations.

ANN topology Accuracy (%)
Formal Spiking

784-100-10 96.42 96.30
784-200-10 97.44 97.29
784-300-10 97.85 97.74
784-300-300-10 98.08 98.00
784-300-300-300-10 98.35 98.24

Table 3
Classification accuracy results of different SNNs

SNN topology Accuracy (%)
In [37]: 784-1200-1200-10 98.60
In [36]: 784-300-10 95.37
In [48]: 784-300-10 95.40
In [39]: 784-800-10 97,55
In this paper: 784-300-10 97.74
In this paper: 784-300-300-300-10 98.24

layer sizes. The table 2 shows the accuracy results for each
topology in both domains. These results are nearly the same
in both ANN domains, with a small loss in the spiking do-
main. Thus, the mapping from formal to spiking domain
does not significantly degrade the accuracy, which justifies,
in part, the adoption of SNNs instead of FNNs. In table 3, the
accuracy results obtained in this paper are compared to the
different SNNs that we found in literature. Indeed, we ob-
tained slightly higher accuracy compared to those in [48, 39].
However, with 1500 fewer neurons than in [37], we have an
accuracy loss of 0.36%.
Information coding methods

We present, in figure 4, an illustration of the results ob-
tained with the modified Rate Coding methods. The results
are presented in histogram format showing the evolution of
the number of propagating spikes in the network with respect
to the information coding method.

The First Spikemethod, due to the fact that it uses only one
spike per input value, mitigates the spike throughput when
compared to other methods. Meanwhile, the accuracy is kept
approximately the same as with Jittered Periodic method for
one hidden layer SNNs, but for the "784-300-300-300-10"
deeper SNN it has a loss of 11.32 %, as shown in table 4

On an other hand, the Spike Selectmethod is a well-tuned
method for SNN hardware implementation despite the fact
that it generates more spikes than Jittered Periodic and First
Spike methods. Indeed, when looking at the distribution of
these spikes over the SNN layers shown in table 4, we ob-
serve that they are condensed in the first hidden layer and,
compared to rate coding (Jittered Periodic), refer to figure
5, fewer spikes propagate in the deeper layers. Using this
method, with only one spike in the output layer, we reach
97.87% accuracy which is very close to the Jittered Periodic
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Figure 4: Information coding method impacts the accuracy
and the number of spikes processed by the SNN in average for
a pattern. The histogram represents results obtained for the
784-300-10 SNN topology using the MNIST test data.

equivalent (98.24%). Leaving only few spikes flowing in the
remaining layers of the network, only 35% of the spikes flow
in the hidden layers compared to rate coding, Spike Select is
therefore well-tailored for deep SNN hardware implemen-
tations, (cf table 4). From this perspective, as mentioned
before, the use of specific architecture with a massively par-
allel computation for the first hidden layer, combined with
multiplexed hardware for the remaining SNN layers would
be an optimized solution for the Spike Select method. Such
hardware architecture will be presented in section 5.4.

The authors in [19], proposed a Spiking Deep Neural Net-
work (SDNN) which consists in an STDP-based CNN com-
bined with an SVM3 classifier. For an MNIST image, about
600 spikes are propagated over the SDNN that correspond
to inhibitory events which occurred over the network. Since
these events occur only in convolutional layer neurons, the
input spikes (generated by DoG4 cells) and the ones prop-
agated in the classifier are not included in this amount of
spikes. Therefore, despite the fact that SDNN spends fewer
time steps compared to ours, the proposed SNN based on the
Spike Select information coding method is more efficient in
terms of hardware processing, because in average only 113.5
spikes are propagated over the network (refer to figure 5 and
table 4). Moreover, in [37] the Rate Coding based SDNN
generates from 103 to 106 spikes in the different layers for a
single MNIST image.

3. Methodology for Design Space Exploration
3.1. Description of the design flow

In this section, the adopted design flow methodology will
be described. This design flow is synthesized in figure 6. It
follows a funnel philosophy: knowing the application con-
text, we start from a wide variety of possible hardware im-
plementations and incrementally refine the scope to find the

3Support Vector Machine
4Difference of Gaussians
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Figure 5: Spike Select versus Jittered Periodic in terms of
accuracy and number of spikes generated for a pattern in SNN
deeper layers. The histogram represents results obtained for
the 784-300-300-300-10 SNN topology using the test data of
MNIST (cf table 4).

Table 4
Average number of spikes generated for processing one image
by the "784-300-300-300-10" SNN with the different informa-
tion coding methods. Where, JP stands for Jittered Periodic,
SS for Spike Select, SB for Single Burst and FS for First Spike.

Layer Spikes per pattern
JP SS SB FS

Input 724 1547 62,5 170
FC1 173 74,5 363,5 14
FC2 103,5 35 1055 61
FC3 39 4 1597,5 87
Output 4 1 181,5 4
Total 1043,5 1661,5 3260 336
Accuracy % 98.24 97.87 76.80 86.92

most suitable at the end. In our case, the example application
context will be image classification.

First, a behavioral software simulation using
the N2D2 framework [46] (available online at:
https://github.com/CEA-LIST/N2D2) is carried out to
perform learning, test and validation for several SNN
topologies with different information coding methods.
The most suitable model in terms of prediction accuracy
and spiking activity (the amount of spikes processed by
the SNN to perform classification inference) is selected
for the following steps, and the learned parameters are
extracted. A preliminary analytic study is carried to get
the first estimations of flat hardware resources and memory
intensiveness corresponding to the chosen SNN model:
these first results will serve as a frame for the next steps
of our design flow, giving indications for the most suitable
architectural choices and hardware target.

Second, we perform a high-level architectural exploration
aiming to confirm or invalidate the assumptions resulting
from the preliminary analytic study. The NAXT simulator

Architectural model
(Computing strategy, memory precision)

SNN model
(topology, learning, information coding)

Analytical 
resources 
evaluation

SNN functional 
evaluation

ANN framework
SNN

model / resources 
trade-off

SNN friendly hardware architectures

High level 
modeling
NAXT

SNN hardware 
architecture candidates

RTL design
HDL description

   ⇒ Flat resources
   ⇒ Memory size 

   ⇒ Accuracy
   ⇒ Spikes flow

Coarse estimation:
   ⇒ Latency
   ⇒ Power consumption
   ⇒ Resources occupation

Fine estimations:
   ⇒ Latency
   ⇒ Power consumption
   ⇒ Resources occupation

Final 
FPGA-based 

AI-Accelerator

Figure 6: Design Flow Diagram. First stage: Perform a func-
tional evaluation of different SNN models using an ANN frame-
work (N2D2). Simultaneously, using an analytic model evalu-
ate the cost (memory size and flat resources) of some archi-
tectural models. Then, make a model / resources trade-off
to select some SNN friendly hardware architectures; Second
stage: High-level simulation of the chosen topology with differ-
ent architectural choices, to select the architectural paradigm
for the last stage; Third stage: Develop RTL designs of the
SNN hardware architecture candidates to have finer cost esti-
mations. Then, based on these results select one architecture
as the final FPGA-based AI-Accelerator.

is configured with the model and parameters extracted from
N2D2. The software will generate systemC architectures
corresponding to different high-level architectural choices,
such as memory distribution, memory technology and pro-
cessing parallelism. It then performs high-level simulation
of their operation on the specific user-defined application
task. For each simulation, we obtain coarse estimations for
power consumption, surface and latency: those results allow
to discriminate suitable architectural choices which will be
used in following steps.

Third, a precise hardware description of the architecture
is made, according to NAXT results, and using the parame-
ters extracted from N2D2. The architecture is described in
VHDL [49], and a physical synthesis is performed. Thus,
this last step leads to a fine-grained evaluation of a suitable
architecture on FPGA (Field-Programmable Gate Arrays) or
on ASIC (Application Specific Integrated Circuit).

Abderrahmane et al.: Preprint submitted to Elsevier Page 9 of 25



Hardware Spiking Neurons for Embedded Artificial Intelligence

3.2. Hardware targets of the DSE
The present work aims to deliver an architecture for Spik-

ing Neural Network hardware implementation. To this
end, two digital hardware targets are considered: Field-
Programmable Gate Arrays (FPGA) and Application Spe-
cific Integrated Circuit (ASIC).
3.2.1. FPGA

In previous studies, FPGAs have been frequently em-
ployed for the design of neuromorphic computing circuits
[50] [51]. This technology can be used either for prototyp-
ing and delivering a sub-part of a greater system, or directly
as the final chip design implementation. The main advan-
tages of this technology are its high programmablity, high
reconfigurability, and moderate cost. As our objective is De-
sign Space Exploration, we are interested in a reconfigurable
platform : indeed, the chip must be reconfigured for each ar-
chitecture. Thus, an FPGA device is an adequate technology
for our purpose.

Some devices, namely SOCs (System On Chips), include
one or several CPUs of the alongside with the Programmable
Logic array, which offers possibilities for both software and
hardware programming. As we aim to develop a general-
purpose neuromophic IP capable of executing any feed-
forward SNN configuration, this type of device would suit
the programmability requirement. In the present work, only
Programmable Logic part has been used. However, we in-
tend to use both in future studies, with a CPU (ARM-based)
acting as a master responsible for FPGA reconfiguration and
computation scheduling, and the Programmable Logic act-
ing as a slave dedicated to inference processing.
3.2.2. ASIC

ASIC chips have also been widely employed for neu-
romorphic digital hardware implementations (see 1.2). In
contrast with conventional processor architectures, which
are designed to handle a wide variety of tasks, ASICs are
fully customized to run a particular type of application.
Some of those chips, such as TrueNorth [52] [31], are very
highly specific: they are designed for one particular neuron
model with very low programmability, whereas others such
as SpiNNaker [15] [53], are designed with a much higher ca-
pacity for flexibility. Usually, these chip architectures are de-
signed to support the high level of parallelism and distribu-
tion found in neural algorithms. Thus, most of the time they
are based on a massively parallel computation paradigm,
with great care given to the communication between com-
puting units. However, these ASICs focus not only on pure
computation acceleration, but also on the constraints of their
application domain.

For integration in embedded systems for example, partic-
ular attention has to be paid to the chip surface and energy
consumption limitations. These application-related con-
straints are also of major concern for ASIC design, and can
be found in the differences between TrueNorth and SpiN-
Naker: the first is focused on energy savings, whereas the
second is focused on flexibility. Even if the task is very sim-

ilar, the implementation design is dramatically different, and
so are performances: TrueNorth [52] [31] shows an energy
consumption of 12pJ per connection, in contrast to 20nJ for
SpiNNaker [15] [53]. In this paper, design space exploration
requires a high programmability and reconfigurability, and
we have thus targeted FPGA design instead of ASIC. By this
way, we favour the automatic generation architectures on a
reconfigurable substrate rather than the definition of a pro-
grammable architecture on a fixed one.

3.3. N2D2 framework description
The ANN models used in this paper are learned, vali-

dated and tested using the open source Neural Network De-
ployment and Design (N2D2) framework [46]. This soft-
ware is an event-based simulator for DNNs. A wide variety
of deep-learning frameworks for design and deployment of
ANNs have been described in the literature [54][55]. How-
ever, we selected N2D2 essentially for two reasons : First,
it is an open source solution that gives the ability to develop
new methods without designing a whole simulator. Second,
N2D2 offers the possibility to transcode and test ANNs into
spiking domain, which is essential for our purpose. In or-
der to perform simulations of SNN with N2D2, we followed
these steps:

1. Define FNN topology;
2. Learn, validate and test the defined FNN;
3. Define a transcoding method to generate the SNN;
4. Test the SNN defined in 3.
Note that our configuration parameters are listed in table

5. We have chosen Xavier Filler as a Weight Initialization
method as it is a popular methodwhich offers state-of-the-art
performance [56]. Moreover, we have chosen to implement
Rectifier activation function [57] [58] in our hidden layers as
this model offers state-of-the-art classification performance
according to literature [57]. Usually, in ANNs, a Softmax
layer is used at the output for classification purpose. How-
ever, Softmax layers are difficult, if not impossible to imple-
ment in spike domain [59]. For this reason, we replace this
classification method by a Linear activation function in the
output layer[37], completed by a Terminate Delta procedure
to determine the winning class (see Part 5.1.3).

Once the simulation is complete, if the network predic-
tion accuracy is satisfying, the network parameters are ready
to be extracted for use in the following steps of the Design
Space Exploration.

3.4. Analytic preliminary work
In this subsection, we will present some preliminary re-

sults that will drive our further investigations. These re-
sults deal with on-chip memory capacity and resource re-
strictions, which have to be taken in account upstream. In-
deed, both of these restrictions will have strong influence on
our future choices in terms of architectural model and hard-
ware target.
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Table 5
ANN learning hyperparameters used in this work. *LR =
Learning Rate

Hyperparameter Value
Weight Initialization Xavier Filler
Activation Function Linear (last layer), Rectifier (others)
Learning Rate 0.01
Momentum 0.9
Decay 0.0005
LR* Policy Step Decay
LR* Step Size 1
LR* Decay 0.993

Table 6
Memory footprint of synaptic weight storage with respect to
coding precision estimated with our analytic model

Weight coding precision Memory footprint
Binary (1 bit) 238 kb
Ternary (2 bits) 476 kb
8 bits (TF Lite minimum precision /
Our work) 1.9 Mb

16 bits 3.8 Mb
32 bits (Half Precision Floating Point) 7.6 Mb
64 bits (Floating Point) 15.2 Mb
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Figure 7: Required memory capacity for a 3 layers classifier
with respect to the number of neurons in the hidden layer.
Synaptic weights are coded on 1 Byte each. The network has
784 input neurons, and 10 output neurons (typical ANN for
testing on MNIST database).

3.4.1. Memory capacity: a limiting factor
On-chip memory capacity will always be limited, no mat-

ter which target hardware we choose. Indeed, even if the
most recent FPGA devices such as Xilinx® Virtex® Ultra-
scale™ + and Intel® Stratix® 10 reach huge on-chip mem-
ory capacity, it remains inadequate to deal with most of
the neural network models. For information, state-of-the-
art classifiers such as VGG16 require a total of 230 MB for
weight storage [60].

Consequently, we investigated the evolution of the re-
quired memory capacity with respect to the number of im-
plemented synaptic connections. Our analytical model for
memory capacity is based on the total memory footprint of
network parameters, in our case: synaptic weight storage.
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Figure 8: Required memory capacity for a n-layer-classifier,
1024 neurons per hidden layer, with respect to the number of
hidden layers. Note that, 1 Byte is used to encode 1 weight
and there are 784 input and 10 output neurons.

Hence, our analytical approach is related to the parameters
coding precision: in our case, we have chosen an 8 bits pre-
cision, as it offers a good trade-off between memory foot-
print and prediction accuracy; but our results can be gen-
eralized to other parameters-coding precision with a simple
cross product calculation. The analytical results are repre-
sented in figures 7 and 8. Figure 7 depicts the evolution of re-
quiredmemory capacity for a 3-layer-spiking-classifier, with
respect to the number of neurons in the hidden layer. On the
other hand, figure 8 depicts the evolution of required mem-
ory capacity for an n-hidden-layer-classifier, with respect to
the number of hidden layers (each hidden layer is 1024 neu-
rons wide). Note that the memory required to store synaptic
weights is the same for FNNs and SNNs: the transcoding
method presented in section 3.3 does not affect the synaptic
weights.

According to the results illustrated in figure 7 and 8, the
required memory capacity increases drastically with respect
to the number of neurons, reaching several MBs for large-
scale networks. The difference with our theoretical results
and VGG16 memory requirement is due to the difference
in number of neurons, weight coding precision, and the ab-
sence of convolutional layers in our estimations. Conse-
quently, on-chip memory capacity is a major limiting fac-
tor for hardware SNN implementation, and has to be taken
in account quite early in the design flow. Indeed, the hard-
ware target must offer sufficient on-chip memory capacity to
store model parameters. Those results also induce that intel-
ligent memory management policy might become necessary
(for example, cache hierarchies), when implementing very
large models such as VGG16. Such implementation would
mitigate memory footprint, even though this might result in
slowing down the system and increasing logic resources in-
tensiveness. Moreover, our model allows to evaluate the in-
fluence of weight coding precision on the memory footprint.
Results are presented for a classic 784-300-10 MNIST clas-
sifier in Table 6 for various coding precision, from Binary
coding to full-precision floating point (64 bits). Those re-
sults are interesting to choose a coding precision satisfying
hardware target requirements, or vice versa.
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3.4.2. FPGA occupation: towards multiplexing

Logic resources occupation is the second limiting factor
we encounter when implementing hardware SNN on FPGA
devices. The FPGA occupation statistics can be obtained by
FPGA synthesis simulation tools. However, this synthesis
requires a long processing time, especially when synthesiz-
ing a large-scale network. In order to bypass this long pro-
cessing time, we have built an analytical model capable of
estimating the number of logic cells occupied on an FPGA
according to the network topology and size.

To build our analytical model, we have separated a generic
SNN hardware architecture in elementarymodules (neurons,
spike generation cell, counter, etc.). For each elementary
element, we have measured corresponding hardware imple-
mentation cost in terms of logic cells, using Quartus Prime
18.1.0 Lite edition. Quite straightforwardly, every SNN
topology is then expressed as a combination of those ele-
mentary modules, and hence can be related to an estimation
of its flat hardware implementation cost (note that some part
of the system can be multiplexed in the final design, but this
model only outputs the flat hardware resources as an indi-
cator). The results of our analytic model for a fully-parallel
implementation of an SNNwith 784 inputs, 10 outputs and a
variable number of 100-neuron-hidden-layers, are shown in
figure 9. As depicted in the figure, FPGA occupation grows
drastically with respect to network size. Note that this model
does not reproduce organization optimization performed by
the synthesizer (for example, a single logic unit can be used
to perform two different functions in some cases), as it can
be seen in figure 26 which compares experimental and the-
oretical results. However, this model is sufficient to give a
proper estimation of FPGA occupation against network size
in the early stages of our design space exploration.

The analytic model shows that, consistent with our expec-
tations, such fully-parallel implementations face FPGA ca-
pacity limits: according to the model, a fully-parallel imple-
mentation of 900 IF-neurons would cover 5465 logic cells
on FPGA. Compared to real convolutional networks, which
present several tens of thousands of neurons (65,000 for
AlexNet [6]), it is quite obvious that the fully-parallel im-
plementation paradigm is not viable when using FPGA de-
vices. Moreover, when using ASIC technology instead of
FPGAs, chip size would drastically grow with network size,
as would production costs. Therefore, we assume that time-
multiplexed architectures are way more viable when dealing
with the hardware implementation of deep SNN.

On the other hand, time-multiplexing consists in imple-
menting fewer neurons in hardware than there is in themodel
: each hardware neuron will thus operate successively for
several neurons of themodel. This method results in slowing
down computation (as shown in section 4), but allows one
to implement large-scale networks with fewer resources, no-
tably for FPGA implementation or cost reduction purposes.
Those assumptions will be evaluated in further steps of our
design flow (see sections 4 and 5).
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4. High-level architecture exploration
In this section, we are going to introduce a tool devel-

oped by our research team, namely "NAXT" for Neuromor-
phic Architecture eXploration Tool, which aims to simulate
SNN hardware implementations with various architectural
choices, such as processing parallelism, memory distribu-
tion and memory technology. The goal is to match appli-
cation specific constraints (power, consumption, logic re-
sources) with high-level architectural choices. The simula-
tor is configured with the SNN parameters extracted from
N2D2 (topology and learned synaptic weights) and with
user-defined architectural choices (i.e., level of multiplex-
ing, level of memory distribution and memory technology).
It subsequently generates a SystemC code corresponding to
those parameters, and performs inference on a test data-set.
The simulator estimates the chip surface, average latency
and energy-consumption per inference. Hence, the role of
NAXT simulator in our funnel-like architectural exploration
workflow is to easily and quickly provide coarse estimations
for different architectural paradigms. Although RTL mod-
eling gives much finer results, it requires a long design and
development time. Therefore, NAXT simulator is used to
clear the path, as its results will guide further and finer ar-
chitectural exploration in following steps of the workflow.
Hence, the NAXT simulator is quite innovative as it brings
hardware estimation at a very early stage of a design flow,
basing on a functional description of the network. Note that
the chip surface estimations are relative to an ASIC target,
and are analogous to Gate Array occupation for an FPGA
target. Indeed, those two metrics are relative to the same
"hardware resource" evaluation: a hardware resource can be
seen as a piece of circuit from the ASIC point-of-view, or
as a group of logic cells from an FPGA point-of-view. Ac-
cordingly, chip surface estimations can be taken for FPGA
occupation qualitative estimations.
4.1. SystemC modeling

To develop our simulator, we used SystemC [42], a
behavioral-level hardware description library for C++. This
language is often chosen for architectural exploration pur-
poses at a high-description-level, as it enables simple
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functional system description, overcoming the usual finer-
description-level constraints (transaction modeling, etc.).
SystemC enables users to develop functional modules that
run concurrent processes and communicate with each other
via signals. Thus, we developed three different modules as
"elementary bricks" of our hardware architecture models: a
Neural Processing Unit module, aMemory Unit module, and
an Input module. Before we start a more precise description
of each module, it is important to note that our simulator
was developed according to a synchronous paradigm: every
process is executed at a clock rising edge. The clock signal
is generated by the Input module. Despite our enthusiasm
for asynchronous processing, we have chosen a synchronous
simulation paradigm for the purposes of coding ease. We
plan to enable asynchronous processing simulation in future
development of NAXT simulator.
4.1.1. Neural Processing Unit module

The Neural Processing Unit module (NPU) is basically
a digital implementation of a spiking neuron. Thus, it is
fully dedicated to the Integrate and Fire task. At every clock
rising edge, it integrates synaptic weights corresponding to
spikes received during the last cycle. The integration is done
in a simple accumulator. After integration, the accumulator
value is compared to the membrane’s threshold value: if the
threshold is exceeded, a spike is emitted at the neuron’s out-
put, and the accumulator is reinitialized. If not, it waits until
next clock rising edge to start a new integration, and so on.
4.1.2. Memory Unit module

Synaptic weights are stored in Memory Unit modules.
Thus, NPUs must access Memory Units whenever a spike
is integrated. As our architectures work on a synchronous
paradigm, integration processes are run simultaneously by
all NPUs. Consequently, aMemory Unit can receive several
access requests at the same time, but realMemory Units can
only answer one request at a time. Thus, our Memory Unit
model focuses on this aspect: this module must store incom-
ing requests in the right order, and answer those requests one
by one in that same order.
4.1.3. Input module

The Input module is dedicated to input image transcod-
ing. Indeed, we have to translate input data from the formal
domain to the spiking domain. Various spike coding tech-
niques exist, see section 2. Each input image pixel is associ-
ated with an input neuron. Thus, the Input module is respon-
sible for input data transcoding and spike train injection into
input neurons. Ultimately, this module should disappear as
we aim to simulate and evaluate a fully spiking implemen-
tation, with true spiking data coming from an asynchronous
camera, for example.
4.2. Parallelism and distribution

As previously described, there are two main exploration
rungs available in the NAXT simulator. The first is process-
ing parallelism. Indeed, as SNNs are intrinsically parallel al-
gorithms, computation parallelization should result in great

acceleration of processing. On the other hand, a high level of
parallelization requires a large number ofNPUs (ideally, one
per logical neuron), resulting in the drastic increase of chip
surface (i.e., FPGA occupation). This first level of explo-
ration thus allowed us to evaluate the trade-off between chip
surface savings and processing acceleration. In the NAXT
simulator, this exploration level is modeled by two different
architectural paradigms: Fully-Parallel Architectures, and
Layer-Multiplexed Architectures.
4.2.1. Fully-Parallel Architecture

Fully-Parallel Architecture (FPA) in NAXT stands for the
extreme case where every logical neuron in the algorithm
is implemented by an NPU on the chip. This architectural
choice should result in fast processing but a large area.
4.2.2. Time-Multiplexed Architecture

Time-Multiplexed Architecture (TMA) in NAXT simula-
tor stands for the case where each layer is composed of only
one NPU. This is quite an arbitrary choice, as we could have
chosen one single NPU for the whole network as an extreme
case, but this would be the equivalent to conventional Cen-
tral Processing Unit (CPU) architectures, which is not in-
teresting as we want to explore innovative neuromorphic ar-
chitectures. In future work, we plan to let the user choose
the number of NPUs per layer, for flexibility and finer ex-
ploration purposes. Multiplexed architectures should result
in slower processing, but will be interesting in terms of chip
area savings.
4.3. Memory organization

The second rung of architectural exploration in our sim-
ulator is memory distribution. Thus, three levels of mem-
ory distributions have been developed: a Centralized Mem-
ory architecture (one Memory Unit for the whole network),
a Layer-Shared Memory architecture (one Memory Unit
per layer), and Fully-Distributed Memory architecture (one
Memory Unit per NPU). Note that in the case of TMA, in the
current version of NAXT simulator, layer-shared and fully-
distributed memory organizations are the same (1 NPU per
layer = 1 Memory Unit per layer in both cases).

These three different memory architectures allow users to
evaluate, once again, the trade-off between processing la-
tency, energy consumption and chip surface (i.e., FPGA oc-
cupation). For example, a Centralized Memory architecture
will be more compact than a multitude ofDistributedMemo-
ries, but will slow down processing as it can only answer one
single NPU request at a time. Layer-Shared Memory archi-
tecture is an intermediate between both architectures. Figure
10 depicts all memory distribution levels for fully parallel ar-
chitectures, and figure 11 shows all memory distributions for
multiplexed architectures.
4.4. Latency, Power and Surface estimations

The aim of NAXT Simulator is to give an estimation of
power, latency and logic resources for a user defined SNN
topology considering different architectural paradigms. To
do so, estimations are performed a posteriori, using traces
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Figure 10: Representation of all memory organizations for
fully-parallel architectures: a) centralized memory unit, b)
layer-shared memory units, c) fully-distributed memory units

Figure 11: Representation of all memory organizations for
TMA: a) centralized memory unit, b) layer-shared/fully-
distributed memory units

generated during inference simulation. More precisely, dur-
ing inference, all events are recorded: spike emission, read
memory access, write memory access, etc.. These records,
alongside with the number of clock cycles spent for process-
ing, constitute the trace used for estimations.
4.4.1. Latency

Latency is calculated as the product of the number of clock
cycles spent for processing and the clock period. The num-
ber of clock cycles being recorded in the trace file, we only
have to estimate the clock period. To do so, we have cho-
sen to constrain the clock period to the maximum memory
access latency, as it is often the limiting factor in a non-
pipelined architecture like ours (worst-case critical path).
This latency is estimated using NVSim [61], an open-source
software aiming to simulate memory behavior for different
memory technologies and technology nodes, which returns
various estimations, including memory access latency.
4.4.2. Hardware Resources

The Hardware resources estimation is calculated in a sim-
ilar fashion than in 3.4.2: we separate our architecture in el-
ementary modules, for each of which we measure the hard-
ware implementation cost in terms of resources. Each archi-
tecture is expressed as a combination of elementary mod-
ules, and hence can be related to a global hardware resources
cost estimation.

Note that this estimation method does not take in account
placement and routing optimizations performed by FPGA
design softwares (®Quartus, ®Vivado, etc.).
4.4.3. Power

The power estimation is calculated as a sumof energy con-
sumption of the two main subparts of the system: memory
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Figure 12: Qualitative cost function for a 804 neurons hard-
ware SNN for the different architectures available in NAXT

and processing. Concerning memory, static and dynamic
energy consumption of Memory Units are extracted from
NVSim offline simulations. Static energy consumption of
Memory Unis are then multiplied by the total inference la-
tency, and summed together. Dynamic energy consump-
tion are multiplied by the number of memory accesses (read
and write), and summed together. Both of those results are
summed together to give the total power estimation for mem-
ory units. Concerning Neural Processing Units, we have
taken from literature ([62]) the average energy consumption
per spike of a state-of-the-art hardware digital spiking neu-
ron. This average energy consumption per spike is multi-
plied by the number of spike emitted during inference to ob-
tain a gobal power estimation of Neural Processing Units.
Although this power estimation method is not directly re-
lated to our developed Neural Processing Unit architecture,
it is a relevant approximation, as it concerns state-of-the-
art hardware digital spiking neurons. Finally, both power
estimations (for Memory Units and for Neural Processing
Units) are summed together to give a global power estima-
tion for the whole system. This power consumption eval-
uation method is quite approximate and thus gives coarse
estimations, hence it should be improved in future works.

4.5. Results
Here, we show some data obtained with the NAXT sim-

ulator. Note that these estimations are made a posteri-
ori thanks to the network activity traces (the number of
spikes processed by each NPU, the number of memory ac-
cesses per memory unit, etc.). Simulations have been run
for a relatively small network "784-10-10". Our simula-
tor achieves 62% accuracy, which roughly corresponds to
the equivalent N2D2 recognition accuracy for the same net-
work. NAXT performs latency, surface and power estima-
tions based on traces generated during processing: during
each inference, we record the spiking activity of each Neu-
ral Processing Unit, alongside all memory accesses for each
Memory Unit. Memory-related estimations have been com-
puted using SRAM technology.
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Table 7
Simulation results for a 784-10-10 SNN hardware for the avail-
able architectures in NAXT, with SRAM on-chip memories

Architecture Fully parallel Multiplexed
Memory

organization 5 FD LS C LS C

Chip area
(mm2) 13 13 13 1.3 1.3

Energy
consumption per
inference (uJ)

3.34 3.37 3.35 27.9 27.2

Latency per
inference (us) 0.042 0.24 0.25 6.32 6.19

Results are presented in table 7. For a better understand-
ing of these results, they are also depicted in figure 12 by
virtue of a qualitative cost function. This cost function is cal-
culated as the product of three parameters (latency, energy
and chip surface), as we seek to minimize those parameters
at the same time. Note that this representation is purely qual-
itative, but gives a good indication of which architectures are
the most suitable for embedded implementation.

The obtained results are consistent with our expectations:
the trade-off between chip surface on one side, and energy
consumption and latency on the other side, is clearly vis-
ible in these estimations. These results show that fully-
parallel architectures globally decrease latency and energy
cost at the expense of chip surface, while time-multiplexed
architectures have the opposite effect. This acknowledge-
ment is quite straightforward, as TMA is based on an op-
posite design paradigm compared to parallel architectures:
they are more compact, but processing serialization results
in higher latency, increasing energy consumption (notably
because of leakage power). Moreover, we confirmed that
the more memory is distributed among processing units, the
faster processing will be. Indeed, when memory is central-
ized, parallel access to stored data is impossible and must
be serialized as explained in subsection 3.4. This involves a
severe increase in latency when memory is centralized. On
the other hand, memory architecture does not significantly
influence energy consumption and chip surface.

Therefore, we found that both multiplexed and parallel ar-
chitectures have their own advantages and drawbacks, that is,
the trade-off between processing latency, energy consump-
tion and chip surface (i.e., FPGA occupation). In light of
these findings, we will develop three architectures: Fully-
Parallel, Time-Multiplexed, and the novel Hybrid Architec-
ture, which uses both paradigms to optimally fit the spiking
activity in the network.

Indeed, as shown in figure 13, in a feed-forward SNN,
the number of input spikes per layer decreases drastically as
we go deeper in the network: the first layers are much more
solicited than deeper layers during inference. This effect is
even more prominent when using our novel Spike Select in-
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Figure 13: Average number of spikes generated for one MNIST
pattern for each layer in the "784-300-300-300-10" SNN

formation coding method (see section 2). Consequently, we
assume that the first layers must be implemented in a fully-
parallel fashion to prevent spike bottlenecks, whereas deeper
layers can be implemented in a multiplexed fashion. From
this assumption, a hybrid architecture has been developed in
VHDL and simulated at the Register Transfer Level (RTL),
which provides finer estimations than the NAXT simula-
tor. This architecture will be presented in section 5, along-
sidewithFully-Parallel and Time-Multiplexed architectures,
which have also been developed and simulated at the RTL
level.

5. SNN hardware architecture design
In this section, we describe the hardware design imple-

mentation of the SNN architectures studied in section 4.
Indeed, among the different models we implement: Fully-
Parallel Architecture (FPA), Time-Multiplexed Architecture
(TMA), and Hybrid Architecture (HA) which is the major
contribution of the present work. We have selected those
three different architectural paradigms according to NAXT
simulation results, which enlightens how those three archi-
tectures are well suited to evaluate the trade-off between re-
source intensiveness, power consumption and latency. To
do so, we first present the different modules used to build
the different designs, then we describe the complete systems.
As mentioned in section 3.3, we use N2D2 to extract the dif-
ferent parameters of SNNs to move to the hardware imple-
mentation of the neuromorphic architectures. This phase is
realized with the Intel® Quartus® Prime 18.1.0 Lite edition
for FPGA prototyping, and ModelSim® for the validation
with simulation of the design behavior.
5.1. Hardware modules
5.1.1. Integrate-and-Fire neuron module

The IF-neuron hardware structure is illustrated with the
simplified schematic diagram in figure 14. In contrast to the
perceptron, it does not have a multiplier and thus results in
cheaper hardware with only elementary components. The
module has two inputs: the input spike and its correspond-
ing synaptic weight; and one output for output events. For
clarity purpose, only positive spikes are considered.
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Figure 14: IF neuron module internal structure

When the neuron receives a spike, it accumulates the
corresponding weight with the previous internal potential
stored in a register. Afterwards, it compares this accumu-
lated potential with the membrane potential threshold and
fires whenever it is exceeded. In the case of a firing, the
internal potential is decreased by the threshold amount, oth-
erwise it remains as it is.
5.1.2. Counter module

The counter modules are used for synchronization be-
tween layers and neurons. On one hand, they order the be-
ginning and ending of computations for neuron modules and
indicate the synapse addresses corresponding to input spikes
(in Time-Multiplexed Architectures). On the other hand,
they are linked to each other in series to ensure the coher-
ent flow of spikes in the network and thus synchronize the
different layers, referring to its usage with FPA (figure 20).
5.1.3. SNN class selection module

Before starting the description, let us give a quick re-
minder concerning class selection procedures. First of all,
note that each output neuron corresponds to a data class.
During inference, the winning class is selected as the most
spiking output neuron. In Terminate Delta procedure, the
class prediction is enacted when the most spiking neuron
has spiked delta times more than the second most spiking
neuron. On other hand, in Max Terminate, the classification
process is completed whenever an output neuron (the most
spiking neuron) reaches max-value spikes. Delta-value and
max-value are user-defined parameters, usually set at 4.
For the design of our architectures, to select the output

winner class we chose either Terminate Delta or Max Ter-
minate, for which the initial software versions are defined in
N2D2 framework 3.3. We have chosen those methods be-
cause they offer State-of-the-art accuracy and fast class se-
lection. The figures 15 and 16 show the internal structures
of these modules. The input of the module is a vector (Acti-
vations) containing the output activity of the SNN (number
of spikes emitted by each output neuron so far).

On one hand, in the Terminate Delta module two maxi-
mum sub-modules are designed to detect the maximum value
of an array, which are then used to determine the winning
class and to terminate the processing. The first maximum
sub-module, namely Max1, detects the maximum value of
the output activation vector, and the second, namely Max2,
detects the second maximum value of this same vector. The
difference between the outputs of Max1 module and Max2

Figure 15: Schematic diagram of the Terminate Delta module

Figure 16: Schematic diagram of the Max Terminate module

module is then computed. Finally, if the difference is greater
than a threshold (delta-value), the class corresponding to
Max1 Module is enacted as the winner.

On the other hand, the Max Terminate module integrates
only one maximum block that returns the index of the out-
put neuron with the highest spiking activity and its activity.
Then this activity is compared to a user-defined threshold
max-value. If the maximum spiking activity is greater than
max-value, the corresponding output neuron is enacted as
the winner class, and the processing is stopped.

5.1.4. Memory modules
First-in First-out (FiFo) module

The FiFo modules are used in the Neural Core (NC), Net-
work Controller and NPU modules that are described later.
They serve as buffers, where the output spikes of neurons
are interpreted as events and are stored in a sorted way, i.e.,
in an ascending order according to their times of arrival.
Figure 17a illustrates the schematic block of the designed
module, showing its I/O ports. Indeed, the input and output
data correspond to the neuron address (origin of the received
spike). They are stored in this format to facilitate the search
of related weights in the next layer, due to the huge num-
ber of weights. The other signals are for read/write enable,
clock/reset and FiFo memory empty/full.

ROM module
Memory blocks are required for the proper operation of the

neuromorphic system. In FPGA technology, they can be of
different types: RAM, ROM, registers or latches. The ROM
modules are used in the design of TMA (Time-Multiplexed
Architecture), and they store the weights of the NPU’s log-
ical neurons in an SNN layer. Therefore, the ROMs are of
different sizes depending on the number of emulated synap-
tic connections. The I/O ports of a ROM block are shown in
fig. 17b.
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(a) FiFo I/O ports (b) Memory I/O ports
Figure 17: FiFo and memory I/O port blocks

SDRAM
Memory usage is the common limitation for SNN archi-

tectures, as mentioned in section 3.4.1, which is due to all the
parameters and activities of the neurons that must be stored.
From that perspective, in order to deal with deeper networks
that require a significant memory size, the FPGA on-chip
memory will not be sufficient. Therefore, external memory
must be used to overcome this problem.

In this paper, we use SDRAM to reinforce the memory
capabilities of the FPGA fabric. To do so, we designed a
Network Controller module that connects the other modules
to this external memory.
5.1.5. Neural Core module

The Neural Core module is the computation unit which
emulates the two first layers (input and first hidden) of the
Hybrid Architecture (HA) presented in section 5.4. This
module includes an Input Neuron Module which forwards
input spikes to downstream neurons; IF Neuron Modules
which integrates incoming events from the Input Neuron
Module and generate spikes according to Integrate and Fire
rule. The weights are stored in registers, so that each IF Neu-
ron module has its weights in a dedicated register. There
are as many IF Neuron Module as logical neurons in the
layer. Their outputs are stored in a FiFo buffer as events,
with a Counter Module indicating the corresponding neuron
address to be stored.
5.1.6. Neural Processing Unit module

The Neural Processing Unit Module (NPU) is used to em-
ulate time-multiplexed layers. A single IF Neuron module
will operate successively for all neurons in the layer. More-
over, the NPU includes a FiFo Memory module,a Counter
module and an NPU controller. These modules are con-
nected as shown in figure 19 to form a NPU which pro-
cesses spiking events in a coherent way. However, besides
NPU controller, all the othermodules were presented before,
and they are used by the NPU to accomplish their dedicated
tasks. Consequently, only NPU controller will be described
in details. The goal of the NPU controller is to manage the
different NPU modules to trigger logical neurons in a coher-
ent way, allowing the hardware neuron to be fed with valid
weights and activities.

In addition, NPU controllers of different NPUs are con-
nected together in order to ensure synchronization at the net-
work level. This synchronisation is required as output clas-
sification process (Terminate Delta) depends on the arriving
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Figure 18: Neural Core simplified schematic diagram. The
input neuron forwards input spikes, spike by spike, to the 1st
hidden layer neurons. The 1st hidden counter is indicating to
that hidden neurons the address of the input spike in order to
retrieve their appropriate weights. Another counter (1:N) is
controlling a MUX component to store the 1st hidden layer’s
spikes in a FiFo memory.

Figure 19: Neural Processing Unit simplified block diagram.
When there is an input event to process by the NPU: first, the
hardware neuron is enabled by the NPU controller to retrieve
the address of the logical neuron it represents from the counter
and the corresponding weights from the memory block. Sec-
ond, do its computation, and whenever it fires, the output
spikes is stored in a FiFo as an event.

order of the spikes. Each NPU module can represent several
logical neurons thanks to time-multiplexing. Note that the
used weights memory type is ROMwith TMA, and SDRAM
with HA.
5.1.7. Network controller

The network controller module, used in the HA architec-
ture, is a combination of a FiFo module and a demultiplexer
(DEMUX); which is organized as shown in figure 22. The
FiFo module accesses the SDRAM according to the NPU
requests with a first-come-first-served policy, i.e., when an
NPU requests a weight, this request is put in the FiFo queue.
Then, whenever the weight is ready, it is sent via the DE-
MUX block by selecting the right NPU.
5.2. Fully-Parallel Architecture

This subsection describes the Fully-Parallel Architecture
(FPA) we have developped for present work. This archi-
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Figure 20: FPA simplified schematic diagram. In this archi-
tecture, from the 1st layer to the output layer all neurons are
implemented in hardware. Counters connected in series are
coordinating the processing of the different network spikes in
a coherent way.

tecture has been conceived alongside Time-Multiplexed Ar-
chitecture (TMA) to evaluate the trade-off between latency
and resource intensiveness at a much finer level than NAXT
Simulator. In the Fully-Parallel Architecture, all the logi-
cal neurons of the SNN are implemented in hardware. In
other words, the IF-neuron module is instantiated as many
times as the number of logical neurons. Figure 20 shows
the connectivity of the different components of the archi-
tecture. There is one Counter module for each layer, used
to synchronize the neuron computations in the network. In-
deed, in this architecture, each layer waits for the previous
one to finish all its processing before starting : all spikes
are processed layer by layer. The Input Neuron module for-
wards the data, spike by spike, to the first hidden layer where
a Hidden Counter is counting them. At each clock cycle,
the hidden layer IF Neuron modules integrate the incoming
spike and store their consequent output spikes in a buffer.
Then, when all the input spikes are processed, the Hidden
Counter sends an End Signal to the next layer Counter. All
the hidden layers accomplish the same process on their own
incoming spikes, layer after layer. The last hidden counter
enacts the end of the process to the output layer Counter.
At this level, it is up to this counter (output layer counter)
to trigger the output neurons to process the last hidden layer
output spikes. Finally, the outgoing spikes are processed by
the Winner Class Selection module, which decides whether
to end the computations or to repeat the process. This fully-
parallel architectural choice should result in fast processing
but high logic resource intensiveness. In the following sub-
section, we present the second developed architecture which
takes the opposite architectural choice : Time-Multiplexed
Architecture (TMA).

5.3. Time-Multiplexed Architecture
The TMA architecture is designed to save hardware re-

sources, in contrast with FPA architecture. In this imple-
mentation, the main computation unit is the NPU module
described in section 5.1.6. Contrary to FPA, the number of
hardware neurons is smaller than the number of logical neu-
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Figure 21: TMA simplified schematic diagram. Here, the input
neuron module forwards input spikes to NPUs connected in
series, each NPU represents a distinct layer, that execute the
SNN neurons to finally using the winner class selection module
output the SNN’s class.

rons: each layer is represented by one single NPU, instead
of oneNPU per neuron. The complete hardware architecture
consists of NPU modules, interconnected with each other as
shown in figure 21. As in FPA, the input layer is represented
by a dedicated Input Neuron module, which forwards input
spikes to the first hidden layer. Each one of the other layers
are represented by one singleNPU, which successively com-
pute the layer’s logical neurons in a time-multiplexed man-
ner. These NPUs have their own ROM memory containing
their parameters. This architecture should drastically dimin-
ish the hardware occupation, but increase the system latency
as a counterpart. In other words, TMA and FPA represent the
two extremes of the latency versus hardware intensiveness
trade-off. In the next subsection, we will describe a middle
ground between those two extremes, taking advantages from
both to fit the reality of spiking activity in an SNN : the novel
Hybrid Architecture (HA).

5.4. Hybrid Architecture
In section 4, it was mentioned that most of the spiking

activity in the network is located in the first layer. There-
fore, the first hidden layer is the most solicited layer dur-
ing processing. To take advantage of this aspect, the Hybrid
Architecture (HA) is designed, mixing both TMA and FPA.
Moreover, this novel hybrid architecture is appropriated for
the use of the novel Spike Select method described in 2, in
which spiking activity is concentrated in the first layer. This
implementation is the main novelty of the present work, and
it derives from the findings and observations wemade thanks
to our funnel-like Design Space Exploration framework. It
is a mixture of FPA and TMA, where: first, the initial two
layers are implemented using a Neural Core module as in
FPA; second, the remaining layers are time-multiplexed us-
ing one NPU per layer, as in TMA . The time-multiplexed
part is driven by a network controller, to retrieve the weights
from the external SDRAMmemory and forward them to the
corresponding NPUs. The complete hardware schematic di-
agram is illustrated in figure 22, showing its modules and
their connectivity.
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Figure 22: Hybrid architecture simplified schematic diagram.
The input and the 1st layers are implemented using a Neural
Core and NPUs are used for the remaining layers (one NPU
per layer). The output layer spikes are fed to the winner class
selection module for classification. A Network Controller is
used to manage and connect the NPUs to an SDRAM holding
their logical weights.
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Figure 23: FPA architecture: FPGA logic (ALM) utilization
versus the SNN number of neurons; Different SNN topologies
are used, see table 8.

5.5. Results: hardware resources occupation
In the design of AI-embedded architectures, it is impor-

tant to consider resources occupation due to the lack of sili-
con area. Therefore, we quantify and compare the hardware
cost estimations of the architectures presented in section 5.
They are described by three generic VHDL codes, which
are compatible with any fully-connected multi-layer SNN
topology. These VHDL codes use parameters extracted from
N2D2. Their hardware costs, latency and computation per-
formance on the "5CGXFC7C7F23C8" Cyclone®V FPGA
board were measured through a synthesis in Intel® Quar-
tus® Prime Lite 18.10 edition. Therefore, several SNN
topologies of different size are implemented with the three
hardware architectures.

The synthesis results using FPA are summarized in table
8, giving the logic (ALM) and registers occupation related
to the number of neurons. Then, those results are plotted
in two graphs showing the evolution of resource intensive-
ness against amount of neurons (figures 23 and 24). From
these results, we observe that the FPA logic occupation is
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Figure 24: FPA architecture: FPGA registers occupation ver-
sus the SNN number of neurons; Different SNN topologies are
used, see table 8.

Table 8
FPGA occupation (Logic ALMs and registers) of different net-
work topologies in the FPA architecture

SNN: Topology Logic Registers
784-100-10 13317 3836
784-200-10 26225 7048
784-300-10 31461 10974
784-300-300-10 47257 24008
784-300-300-300-10 60628 40600

Lo
gi

c 
(A

LM
)

0

10000

20000

30000

40000

FPA HA TMA

SNN : 784-300-10 SNN : 784-200-10

Figure 25: Logic occupation of two SNN topologies comparing
the three architectures (FPA, TMA and HA)

directly proportional to the SNN depth/size, i.e., increases
linearly with the amount of neurons. Nevertheless, the gen-
erated circuits are supported by the FPGA fabric when the
networks are smaller than the 784-300-300-10 topology, but
not for bigger ones. Therefore, our first intuition regarding
the limited scalability of FPA when used for deep SNNs is
confirmed. But, we are yet to confirm if the TMA or HA ar-
chitectures occupy less resources, and are thus more viable.

In this context, we have synthesized the same SNN topolo-
gies using these two architectures (TMA andHA), the results
are shown in tables 9 and 10. Different memory types and or-
ganizations are used, but the memory footprint should be the
same since the same SNN topologies are implemented, i.e.,
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Table 9
FPGA cyclone V resources occupation of different SNN topolo-
gies with the TMA architecture

SNN topology Logic Registers BRAM (KB)
784-100-10 690 1255 64
784-200-10 1192 2168 128
784-300-10 1714 3082 230
784-300-300-10 3235 5937 241
784-300-300-300-10 4736 8799 249

Table 10
FPGA cyclone V resources occupation of different SNN topolo-
gies with the HA architecture

SNN topology Logic Registers
784-100-10 2440 1383
784-200-10 7478 2434
784-300-10 21406 3455
784-300-300-10 22638 6318
784-300-300-300-10 22859 9336

equal amount of parameters and activities to store in memo-
ries. Therefore, we focus on the occupation of FPGA logic
cells, where the major difference between the three architec-
tures should be found. For improved clarity, we have plotted
the histogram shown in figure 25 representing the logic occu-
pation of the three architectures. As expected, FPA occupies
much more logic resources than the other architectures.

On the other hand, using average spikes generated for a
pattern with the same SNN topologies, we have estimated
the latency of each architecture, as shown in table 11. We ob-
serve that the processing latency is increased as hardware re-
sources are decreased. Indeed, time-multiplexing allows to
reduce the quantity of hardware resources, but relies on the
sequentialization of a parallel task, thus resulting in a higher
processing latency. This is why three different architectures
have been designed: to evaluate the trade-off between hard-
ware resources and processing latency. In this context, the
HA is an intermediary solution with a significant reduction
in the amount of hardware resources, while maintaining rea-
sonable latency. On average, it has a gain of 56.19% in terms
of latency compared to TMA and 57.05% in terms of logic
occupation compared to FPA6.
Finally, in order to analyze the computation performance

of our architectures, a measurement of SOPS (Synaptic Op-
eration per Second) was performed on all three architec-
tures for the 784-300-300-10 SNN topology on the same
FPGA board. The FPA achieves the best computation per-
formance with 51.02 billion SOPS, whereas the TMA only
achieves 283.80 million SOPS. TheHA is just below FPA, as
it achieves 23.12 billion SOPS with the same topology and
FPGA fabric. Their respective measured maximum com-
putation frequencies are 83.51 MHz for FPA, 76.3 MHz for
TMA and 70.95MHz forHA. An ongoing work concerns the

6Referring to: latency table 11 and logic occupation tables 8, 9 and 10

Table 11
Latency represented as the number of cycles spent in average
to process an input image by the different architectures. The
results correspond to the 784-300-300-300-10 SNN using the
different information coding methods.

Coding method Latency (cycles)
FPA HA TMA

Jittered Periodic 1039,5 84064 300540
Spike Select 1660,5 34437 496990
First Spike 332 23540 74370
Single Burst 3077 441432 459970

power consumption analysis of the different SNN hardware
architectures.

6. Discussion
Review of our design flow

In the present study, we have presented and explained a
thoughtful Design Space Exploration framework for neuro-
morphic hardware. This framework is based on a funnel
fashion: We start with high-level modeling leading to coarse
architectural choices, which will drive lower-level modeling
providing finer architectural choices. Here, we will validate
our design flow by showing the coherence between high-
level and low-level results, and the relevance of this funnel-
like design flow for neuromorphic architecture design for
specific embedded applications.

As a reminder, the high-level results obtained with the
NAXT simulator (in section 4) are summarized in table 7
and figure 12. As already explained, surface estimations
provided by NAXT correspond to an ASIC target, and can
be seen as qualitatively equivalent to logic occupation for
an FPGA target. In these results, the trade-off between la-
tency and FPGA occupation (i.e., chip surface in the figure
and table) was clearly visible: FPA had low latency but high
FPGA occupation, and the opposite was true for TMA. Fine-
grained results provided by RTL synthesis and latency es-
timations for the "784-300-300-300-10" SNN are summa-
rized in figure 27. This figure shows Pareto curves repre-
senting FPGA logic occupation versus latency (number of
cycles) for the three hardware architectures according to the
information coding methods described in section 2. These
results are consistent with the high-level estimations, where
the same trade-off can be seen between latency and logic oc-
cupation: FPA has a low latency but high logic occupation,
whereas TMA has high latency but low logic occupation. If
we consider the information coding method without look-
ing at the recognition rate, the First Spike method combined
with TMA architecture has the best "latency / chip surface"
trade-off. However, this method has a loss of around 10% in
terms of accuracy compared to Spike Select and Jittered Pe-
riodic methods. Therefore, taking into account the accuracy
criterion, the Spike Select method combined with HA archi-
tecture has the best latency / logic occupation trade-off. The
method, while performing 97.87% accuracy, allows only few
spikes propagating in the deeper layers of the SNN, which

Abderrahmane et al.: Preprint submitted to Elsevier Page 20 of 25



Hardware Spiking Neurons for Embedded Artificial Intelligence

Number of neurons

FP
G

A
 lo

gi
c 

ce
lls

 

0

20000

40000

60000

80000

900 1000 1100 1200 1300

Experimental (Quartus) Theoritical (x 20)

Figure 26: FPA theoretical versus experimental FPGA occu-
pation results with respect to the number of neurons.

fits well the HA architecture making this combination one of
the best choices for hardware implementation of deep SNNs.

The coherence of these results is shown in figure 26,
which depicts the evolution of FPGA occupation (in terms
of logic cells) against the number of neurons, for both theo-
retical estimations and Quartus® experimental results. The
considered network has a fully-parallel architecture in both
cases. Both curves are very similar for a low number of neu-
rons, which confirms coherency between estimations and ex-
perimental results. The divergence observed for higher num-
bers of neurons is due to synthesis optimizations performed
by Quartus®, which are not taken in account in our estima-
tions. However, the two curves remain qualitatively coher-
ent, as they follow similar linear growths. Hence, the results
are coherent between the high-level part and the low-level
part of our design-flow.

The main interest of our Design Space Exploration frame-
work lies in its funnel-like organization. The high-level sim-
ulations performed by the NAXT simulator are quite fast (a
few seconds to a few minutes, depending on network size
and architectural choices), and provide sufficiently precise
results to disqualify unsuitable architectural choices. In do-
ing so, we select a restrained number of potentially suitable
architectural choices. The RTL synthesis are longer (they
can take many hours for deep SNN topologies with FPA) but
more precise, and let us determine the best choices among
the pre-selected options. Indeed, operating low-level archi-
tectural exploration with RTL synthesis among the whole
design space would take too long, since the range of possi-
bilities is very wide. Thus, our presented funnel-like frame-
work allows for efficient and reliable Design Space Explo-
ration of Neuromorphic hardware.
Future architectures (CNN)

At this point, our work focused on fully-connected net-
works, the so-called classifiers [63]. However, this type of
neural networks is restrained to simple classification tasks:
they are not able to perform classification on complex data
(face recognition, for example), and are not resilient to im-
age rotation, scaling or translation. Thus, modern ANNs for
complex data recognition and classification involve convolu-

Logic occupation

La
te

nc
y 

- N
um

be
r o

f c
yc

le
s

0

110000

220000

330000

440000

550000

0 13000 26000 39000 52000 65000

Jittered Periodic - 98.24% Spike Select - 97.87% First Spike - 86.92%
Single Burst - 76.80%

HATMA
           FPA

Figure 27: Tradeoff between logic occupation and latency of
the hardware architectures according to the different informa-
tion coding methods. The graph corresponds to FPGA logic
occupation in tables 8, 9 and 10) and latency estimation in
table 11, which are the data recorded for the SNN of "784-
300-300-300-10" topology. The obtained recognition rates on
MNIST test dataset with the different methods are indicated
in the legend of the figure.

tion and pooling layers: these are the Convolutional Neural
Networks (CNN) [64] [6]. The Convolution and Pooling lay-
ers enable feature extraction and combination, resulting in a
Feature Map that can be fed to a simple classifier afterwards.

In order to simulate state-of-the-art ANN hardware im-
plementations, we aim to develop hardware architectures for
spiking Convolution and Pooling layers in future work.
Asynchronous sensor: towards frame-free SNNs
for video recognition

In this work, we have focused on static image recogni-
tion. Thus, we based our approach on a transcoding method
in which input data (pixel values) are translated into spikes
(see section 2). This transcoding step is one of the main
drawbacks of our approach to SNNs utilization, as it may
counterbalance the energy, latency and surface savings we
achieved thanks to spike-based processing. When it comes
to video recognition, however, this issue can be tackled by
using event-based cameras.

Indeed, in contrast to static images, videos can be di-
rectly recorded in an event-based fashion, with so-called
asynchronous cameras [27]. In contrast to classical cameras,
which output a succession of discrete frames, an event-based
camera emits a continuous flow of events: each pixel out-
puts a spike whenever an edge crosses its receptive field. In
other words, an asynchronous vision sensor outputs a flow
of spikes representing the movement happening in its field
of view. We expect that SNNs could benefit from the use
of such innovative sensor, as the processing would eliminate
the time-and-energy-consuming transcoding step.

Moreover, Farabet et al. [65] have proven that such a fully
event-based frame-free processing flow would bring input-
to-output pseudo-simultaneity, that is, real-time processing
ability. Thus, we expect that SNNs combined with asyn-
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chronous sensors would be very well suited to embedded ar-
tificial intelligence for real-time video recognition and clas-
sification. In light of these expectations, we aim to adapt our
current architectures to video processing and to develop an
asynchronous sensor interface for that purpose.

7. Conclusion
The present work describes an efficient novel workflow

for Design Space Exploration of Neuromorphic hardware.
This design flow follows a funnel-like structure: First, an
analytical preliminary study determines if an architecture
is feasible in terms of hardware resources (FPGA occupa-
tion) and memory footprint, which helps matching our ap-
plication with a hardware target; second, a high-level explo-
ration performed with the novel NAXT software indicates
suitable high-level architectural choices; third, a low-level
RTL simulation let us determine the best implementation
and provides a fine-grained evaluation of this architecture for
the FPGA target. The results obtained from all these steps
are consistent with the tested network models, indicating
that this workflow is suitable for Neuromorphic System De-
sign Space Exploration. In this paper, we chose the typical
application case of handwritten digits recognition (MNIST
dataset) to illustrate our workflow, which led to the realiza-
tion of three different SNN implementations: Fully Parallel
Architecture and Time-Multiplexed Architecture were devel-
oped to emphasize the two extremes of the latency versus
hardware resources trade-off; and a novel and innovativeHy-
brid Architecture was created as a middle ground, deriving
from the findings and observations of our Design Space Ex-
ploration work.

Moreover, the present work addresses the information
coding influence on accuracy and spiking activity. This
study shows that the most suitable information coding
paradigm was the novel Spike Select coding, as it ensures
high prediction accuracy and sparse spiking activity in the
network. Spike sparsity implies a lower number of spikes
per pattern, resulting in a shorter processing and a lower en-
ergy consumption, which is suitable for embedded system
applications. Moreover, this novel spike coding method is
tightly suited to our innovative Hybrid Architecture.

For deep SNNs, and according to our design flow, the
most suitable architecture is our novel Hybrid Architecture,
as it takes advantage of the increasing spiking activity spar-
sity as we go deeper into the network. This novel architec-
ture has been developed in our lab, and to the best of our
knowledge, is completely original. Combined with Spike
Select Coding, it appears to be one of the most suitable ap-
proaches for future Deep SNN implementation into embed-
ded systems.
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