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A B S T R A C T

In this paper, we developed membrane scaffolds to mimic the biochemical and biophysical properties of human

mesenchymal stem cell (hMSC) niches to help direct self-renewal and proliferation providing to cells all ne-

cessary chemical, mechanical and topographical cues. The strategy was to create three-dimensional membrane

scaffolds with double porosity, able to promote the mass transfer of nutrients and to entrap cells. We developed

poly (Ɛ-caprolactone) (PCL)/chitosan (CHT) blend membranes consisting of double porous morphology: (i)

surface macrovoids (big pores) which could be easily accessible for hMSCs invasion and proliferation; (ii) in-

terconnected microporous network to transfer essential nutrients, oxygen, growth factors between the macro-

voids and throughout the scaffolds. We varied the mean macrovoid size, effective surface area and surface

morphology by varying the PCL/CHT blend composition (100/0, 90/10, 80/20, 70/30). Membranes exhibited

macrovoids connected with each other through a microporous network; macrovoids size increased by increasing

the CHT wt%. Cells adhered on the surfaces of PCL/CHT 100/0 and PCL/CHT 90/10 membranes, that are

characterized by a high effective surface area and small macrovoids while PCL/CHT 80/20 and PCL/CHT 70/30

membranes with large macrovoids and low effective surface area entrapped cells inside macrovoids.

The scaffolds were able to create a permissive environment for hMSC adhesion and invasion promoting

viability and metabolism, which are important for the maintenance of cell integrity. We found a relationship

between hMSCs proliferation and oxygen uptake rate with surface mean macrovoid size and effective surface

area. The macrovoids enabled the cell invasion into the membrane and the microporosity ensured an adequate

diffusive mass transfer of nutrients and metabolites, which are essential for the long-term maintenance of cell

viability and functions.

1. Introduction

An important challenge in tissue engineering and regenerative

medicine is the design of a biomaterial able to provide all necessary

physical, chemical and mechanical cues that promote cell colonization

and tissue regeneration. Design approach for biomaterials are driven to

the interest to reproduce the natural niche of cells that implies cell-cell

and cell-extracellular matrix (ECM) contacts in a 3-D environment

which ensure both the maintenance of cell polarity and cell-cell bio-

chemical communication. In this context, a great interest is focused on

the development of materials able to boost the proliferation and

maintenance of mesenchymal stem cells (MSCs) secreting a broad

spectrum of macromolecules [1,2] which represent a promising source

for cell therapy and regenerative medicine. It has been reported that the

hMSCs viability and functions highly depend on environmental cues

such as oxygen and nutrient availability, pore size, scaffold mechanical

property, surface morphology and more notably the administration of

soluble factors [3,4]. Moreover, the hMSCs incorporation in a three-

dimensional bulk environment, that ensure the mass transfer of nu-

trients and growth factors to and from the entrapped cells, represents a

further challenging strategy in next advanced co-culture systems with

other target cells. Microporous membranes with suitable topographical,

mechanical, physico-chemical and permeability properties can act as an

artificial stem cell niche providing a bio-instructive extracellular en-

vironment characterized by micro- and nano-architecture [5,6]. Mem-

branes enable to provide an adequate structure in terms of porosity and

interconnected pores, which is important for the selective mass transfer

of nutrients and metabolites, and on the other hand favour cell
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casting knife in order to achieve a thickness of 250 μm, at room tem-

perature. Then the track-etched membrane, a polyethylene ter-

ephthalate (PET) isoporous membrane (Sterlitech, USA) with pore

diameter 10 μm, was rinsed by the solvent, slowly wiped to remove

excess solvent, and gently applied on the casted polymer solution (Fig.

S1).

The glass plate was then slowly immersed inside the non-solvent

bath containing NaOH aqueous solution at room temperature. Just after

immersion, solvent exchange started by forming a flat sheet membrane

due to de-mixing of the polymer solution. A homogeneous solvent-ex-

change, on the casted solution not covered by the track-etched mem-

brane, led to a single and closed porous structure. On the other hand,

two different solvent-exchange rates took place in polymer solution

covered by the track-etched membrane, which led to the double porous

morphology. The macrovoids were formed where the non-solvent could

manage a direct access inside the casted solution through the pores of

the track-etched membrane and an interconnected microporous net-

work was formed where the non-solvent was not able to make a direct

entry.

CHT was dissolved in the solvent at 55 °C for 12 h. PCL was suc-

cessively added when the temperature was below 35 °C. Within 2 h a

clear, viscous and a faint yellow solution was obtained. After mixing,

the polymeric solutions were kept in stand for 10–20min and then cast.

Due to high viscosity of CHT in the solvent, it was quite difficult to

make a homogeneous solution by mechanical stirrer condition with

PCL/CHT ratio beyond 70/30, which could cause phase segregation

between the two polymers. Double porous membrane formation with

pure CHT was also not possible as dissolving CHT more than 4wt% was

difficult by mechanical stirring condition and that wt % is not enough

to make a practically workable membrane due to lack of good en-

tanglement between the polymer chain.

After formation of the membrane the track-etched membrane was

removed gently and the newly formed membrane was washed several

times in pure water. Then, the membranes were stored in ultrapure

water at 4 °C temperature. The surface where the macrovoids were open

towards the non-solvent are denoted as top surface and the other sur-

face, which was facing the glass plate, denoted as the bottom surface.

2.2. Membrane characterization

After the preparation, membranes were characterised in order to

determine their morphological, physico-chemical, permeability and

mechanical property.

The surface morphology and cross section were analysed by scan-

ning electron microscopy (SEM, Quanta 200F, FEI, USA). Diameter of

the macrovoids and micropore size distribution were evaluated by

ImageJ software on the SEM images by considering at least 10 micro-

graphs of each membrane with minimum average area 104 μm2. The

mean diameter of the passing pores was determined by Capillary Flow

Porometer (CFP 1500 AEXL, Porous Materials Inc., PMI, Ithaca, New

York, USA).

The membrane permeability was evaluated in an Amicon cell by

pure water flux (Jsolvent) measurements in the absence of solutes and at

transmembrane pressures (ΔP™) ranging from 20 to 60 kPa. The hy-

draulic permeance Lp was measured assuming a linear correlation be-

tween the water flux (Jsolvent) and the convective driving force, ac-

cording the equation:

Lp= (Jsolvent/ΔP™)Δc= 0. (1)

The mechanical properties were determined by Zwich/Roell Z2.5

tensile testing machine (Germany), by applying a pre-load of 0.05MPa

at constant 4mm/min elongation rate [13]. Tensile strength (N/mm2),

Young’s modulus E (N/mm2) and elongation at break ε (%) were de-

termined at room temperature on ten different samples (1×5 cm) from

each batch, considering the different cross-section thickness, in dry and

attachment on the surface and invasion inside the bulk, increasing the 
effective area for cell accommodation [7,8]. However, this balance 
between the optimal pore size and effective cell adhesion area is often 
compromised in the case of small pores suitable for the transfer of 
nutrients, growth factors and waste products that limit the cell pro-
liferation to the surface. Conversely, in the case of big pores, it implies 
an increase of area for cell invasion and migration within the bulk 
limiting the selective transport of molecules and the initial interaction 
with the surface, which is crucial to mediate all subsequent events such 
as proliferation and differentiation [9,10]. Big pores are also re-
sponsible to reduce the mechanical strength and can drive a faster de-
gradation in vivo before finishing the tissue construct. To overcome 
these drawbacks, membranes with double porosity can be a further step 
forward where the macrovoids (big pores) are responsible for the in-
vasion and proliferation of the cells, and the transport of nutrients and 
growth factors can be accomplished by interconnected micropores, re-
sulting a higher effective surface area than a single big porous surface. 
Previously, we developed a polysulfone (PSU) membrane with double 
porosity level for cell culture that supported only partially the cell 
adhesion and migration owing to the hydrophobic and non-degradable 
character of the PSU [11]. Based on this previous concept here we 
developed more biocompatible and biodegradable membranes with 
double porosity through the modified liquid induced phase inversion 
process, by applying commercial track-etched membrane. The idea was 
to create new blended double porous membranes that can combine the 
features of chitosan (CHT) (e.g., bioactive functionality, hydrophilicity, 
degradation rate, chemical structure resemblance of the native tissue 
ECM) and polycaprolactone (PCL) (e.g., good mechanical properties, 
easy processing ability) [12–14], reducing the limitations of a single 
component and providing a greater level of control over the overall 
material properties for cell guidance and biocompatibility [15,16]. In-
terestingly, the bioactive functionality, biocompatibility, degradation 
and mechanical properties of the polymeric PCL-CHT blends have dis-
closed promising results in comparison to that on the separate culturing 
substratum [12–14]. Membranes must have an appropriate architecture 
to host cells at high density and to ensure an adequate transport of 
nutrients and metabolites [17,18]. To achieve this goal, membranes 
should have macrovoids to accommodate cells, and a microporosity for 
diffusion of nutrients. These requirements are essential for cell nutri-
tion, proliferation and invasion inside the bulk for vascularization and 
formation of new tissues. For the first time we report here the design 
and application of a 3D double porous membrane scaffold of PCL-CHT 
prepared by modified liquid induced phase inversion technique for the 
culture of hMSCs. The scaffolds consist of macrovoids (22–46 μm) 
which are open towards the surface for cell proliferation and invasion, 
and interconnected micropores to transfer essential nutrients, growth 
factors and cell catabolites. Membranes were characterised in order to 
evaluate the structural, mechanical and physico-chemical properties 
before their use in contact with cells. In particular, we explored the 
capability of the double porous membranes to create a physical and 
chemical niche for hMSCs through investigation of cell adhesion, pro-
liferation and invasion as well as the metabolic oxygen requirements.

2. Materials and methods

2.1. Membrane fabrication with 3D double porosity

The membranes were prepared using a liquid induced modified 
phase inversion technique by diffusion between solvent as formic acid 
(FA)/acetic acid (AA) mixture and non-solvent NaOH solution. In par-
ticular, poly (Ɛ-caprolactone) (MW 80 KDa, CAPA™ 6800, Perstorp 
Holding AB, Sweden) and CHT (MW 190–310 KDa, 75–85 % degree of 
de-acetylation, Sigma-Aldrich), with ratio 100/0 (15 wt%), 90/10 
(14 wt%), 80/20 (14 wt%) and 70/30 (10 wt%) (w/w %) were dis-
solved in FA/AA (w/w %) mixture until complete dissolution. The 
polymer solutions were individually cast on a glass plate by a handle-
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2.3. Cell culture

Human bone marrow mesenchymal stem cells (hMSCs) StemPro™

BM (Thermo Fisher Scientific) were cultured on sterilised double

porous membranes with culture medium constituted by MesenPRO RS™

(Thermo Fisher Scientific) supplemented with 2mM glutamine, 1%

gentamycin sulphate/amphotericin-B, and 2% serum. hMSCs were

seeded on the membrane scaffolds at 3.5*103 cell/cm2 density, and

incubated at 37 °C in a 5% CO2/20% O2 atmosphere (v/v) with 95%

relative humidity. Culture medium was changed every 48 h, and cells

maintained up to 21 days.

2.3.1. Effective surface area (ESA%) for cell viability

We determined the effective surface area (ESA%) on the SEM

images of the scaffolds by imageJ analysis. We calculated the total area

of the macrovoids on a unit surface and subtract it from the total unit

surface area as follows:
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2.3.2. Cell morphology

Cell morphology was investigated after 7 and 21 days of culture on

double porous membrane scaffolds by Scanning Electron Microscopy

and Confocal Laser Scanning Microscopy.

hMSCs were examined by SEM (SEM, Quanta 200F, FEI, USA) after

proper fixation and dehydration, as previously described [1]. Samples

were gently washed with PBS buffer, and then incubated for 30min in

3% glutaraldehyde and 1% formaldehyde mixture. Successively, they

were fixed for 30min in 1% OsO4, and progressively dehydrated in

ethanol solutions.

For Confocal Laser Scanning Microscopy (CLSM, Fluoview FV300,

Olympus Italia) analysis hMSCs were immunostained for specific mar-

kers [12]. In order to visualize the cell distribution on the membranes,

the cytoskeleton protein vimentin and cell surface antigen CD90 were

stained. Vimentin was stained by using a rabbit polyclonal anti-human

vimentin (Santa Cruz Biotechnology, Santa Cruz, CA), and a Cy™2-

conjugated AffiniPure donkey anti-rabbit IgG (Jackson Im-

munoResearch Europe Ltd., Cambridge, UK); CD90 was marked by

using a mouse monoclonal anti-human CD90 (eBioscience, San Diego,

CA), and a Cy™3-conjugated AffiniPure donkey anti-mouse IgG

(Jackson ImmunoResearch Europe Ltd., Cambridge, UK). Primary an-

tibodies were incubated overnight at 4 °C, the secondary ones for 2 h at

room temperature. Counterstaining of nuclei was performed with

0.2 μg/ml of 4′,6-diamidin-2 phenyl indole (DAPI) (Molecular Probes

Inc., Eugene, OR) for 30min.

The presence of hMSCs inside the macrovoids of the double porous

membranes and the change of cell morphology from the surface to-

wards the bulk of the membrane scaffolds were monitored with scan

depth determination by CLSM in the z-scan mode (step size: 0.5 μm)

(Fluoview 5.0 software, Olympus Corporation). Quantitative measure-

ments of cell invasion and cell morphology along the z-axis were cal-

culated by image analysis of CLSM micrographs (Fluoview 5.0 software,

Olympus Corporation). Cell invasion was reported in terms of percen-

tage of cell distribution on the top surface and in the bulk, at a distance

of 15 μm. The change in cell morphology was measured and reported as

frequency of cell surface area, by analysing overlapped CLSM images

from all the double porous membrane scaffolds.

2.3.3. Cell proliferation

Cell viability and proliferation was assessed by the 3-(4,5-di-

methylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) assay.

After 7, 14 and 21 days of culture on the different double porous

membranes, hMSCs were incubated in 5mg/ml of MTT solution for 4 h

at 37 °C. The yellow tetrazolium MTT salt was reduced by the mi-

tochondrial dehydrogenase in living cells to purple formazan crystals.

This precipitate was extracted by using 1ml per sample of a lysis so-

lution constituted of 10% sodium dodecyl sulphate, 0.6% acetic acid in

DMSO, in mild stirring for 30min at 37 °C. Then formazan product was

quantified by spectrophotometry at 570 nm wavelength.

2.3.4. Oxygen uptake rate (OUR) measurements

The Oxygen uptake rate (OUR) of hMSCs cultured on the different

double porous membrane scaffolds was continuously monitored up to

21 days by the pre-calibrated sensor dish reader (SDR; OxoDish®-DW,

PreSens Precision Sensing GmbH), a high-throughput, 24-channel

reader for non-invasive detection of O2 in special multi-dishes. O2 de-

tecting sensors, placed at the bottom of each well, and containing a

luminescent dye, were excited every 5min by the SDR placed below the

multi-dish. The luminescence lifetime was read out noninvasively

through the transparent bottom, and the dissolved oxygen detected

with a resolution of± 0.4% O2 at 20.9% O2, and a response time<

30 s. Tests were done in the 24 well special multi-dishes in which

samples with cells and samples without cells (as controls) were placed.

2.4. Statistical analysis

All tests were performed in triplicate and repeated three times. Data

are reported as mean ± standard deviation. Statistical significance of

collected data was determined according to ANOVA followed by

Bonferroni t-test (p < 0.05).

3. Results

3.1. Membrane properties

The developed membrane scaffolds displayed different morpholo-

gical, physico-chemical, mechanical, permeability and biodegradation

properties (Table 1). SEM images revealed on the top surface macro-

voids that are interconnected with a highly microporous spongy net-

work (Fig. 1). Macrovoids with mean size of 13 ± 4 μm were found on

PCL double porous membrane. The increase of CHT concentration in

the polymeric blend increased gradually the mean diameter of macro-

voids at the active surface to values of 15 ± 5 μm, 21 ± 11 μm and

35 ± 25 μm for PCL/CHT 90/10, PCL/CHT 80/20 and PCL/CHT 70/

30, respectively (Table 1). The cross section of the membranes revealed

inside the bulk macrovoids with bigger volume and mean diameters of

wet conditions. Wet samples were analysed after an incubation of 6 h in 
PBS buffer. Real-time longitudinal deformation measurements were 
obtained and analysed by testXpert® testing software.

The membrane biodegradation was evaluated by enzymatic in-
cubation in two different solutions of Lipase from Aspergillus oryzae 
(0.12 U/ml) and human Lysozyme (1300 U/ml), respectively, in PBS 
buffer and 0.5 mg/ml NaN3, to emulate the enzymatic activities of 
human serum [19]. Before the incubation, three different samples 
(2 × 1.5 cm) from each batch were dried in vacuum oven at 37 °C for 
72 h and then their initial weight (Wi) precisely measured. Then the 
samples were immersed in 1 ml of enzymatic solutions that were freshly 
changed every seven days. At predetermined time intervals, the samples 
were washed with copious distilled water, dried in vacuum oven at 
37 °C for 72 h, and their final weight (Wf) precisely measured. The 
weight loss index (Wloss %) was determined by the following equation:



22 ± 3 μm, 34 ± 10 μm, 27 ± 13 μm and 46 ± 4 μm for PCL/CHT

100/0, PCL/CHT 90/10, PCL/CHT 80/20 and PCL/CHT 70/30, re-

spectively. Interconnected micropores in the range of 1–5 μm were

visible for all membranes and size distribution become wider with the

increase of CHT concentration in the blended membranes (Fig. S2).

Mean passing pore diameters of 0.02 μm, 0.07 μm, 0.05 μm and 1.55 μm

were measured by capillary flow porometer for PCL/CHT 100/0, PCL/

CHT 90/10, PCL/CHT 80/20 and PCL/CHT 70/30 membranes, re-

spectively. Consistently the surface porosity was also depending on the

ratio of CHT reaching values of 56% for PCL/CHT 70/30 membranes.

The observed steady-state hydraulic permeance of the membranes cal-

culated as slope of the pure water flux measurements versus trans-

membrane pressure (ΔP™) straightline follows the same trends of pore

size and porosity: membrane permeability increased with increasing

pore size and porosity, as expected.

Depending upon the mean macrovoids size and their density on the

surface area, we calculated the effective surface area (ESA%) to relate

to the cell adhesion and proliferation. We found a decrease of ESA with

increasing the percentage of CHT reaching values ranging from

88 ± 1% for PCL/CHT 100/0 to 69 ± 2% for PCL/CHT 70/30 mem-

branes.

The mechanical properties of the membranes evaluated in dry and

in wet conditions are reported in Table 1. PCL/CHT 100/0 membranes

displayed stable elastic properties in both dry and wet conditions, as

evidenced by the moderate tensile modulus E (143.6 ± 14.1 and

131.6 ± 2.2 N/mm2 in dry and wet conditions, respectively) in com-

bination with elongation at break higher than 100%. The increase of

CHT wt% in the blended membranes caused a gradual decrease of all

the mechanical properties, including the tensile modulus, with respect

to the pure PCL ones, reaching low values on the membrane of PCL/

CHT 70/30, as a result of the gain of more fragile properties. Passing

from the dry to the wet conditions, the tensile modulus and the ultimate

tensile strength decreased, and the elongation at break increased

(Table 1).

The biodegradable properties of the membranes were investigated

by using separately lipase and lysozyme solutions at concentrations

similar to human serum. The weight loss of all membranes increased

with time as shown in Fig. 2. As expected, the degradation of mem-

branes augmented with the decrease of PCL concentration giving rise

the highest percentage of weight loss with the PCL/CHT 70/30 mem-

branes. The membrane weight loss in lipase solution was quite fast and

higher than that in lysozyme solution. After 17 days of incubation in

lipase the blended PCL/CHT membranes were completely degraded. On

the contrary, low percentage of weight loss was measured in lysozyme

solution.

3.2. Adhesion and invasion of hMSCs in the double porous membranes

The capability of the developed membranes to promote the adhe-

sion, invasion and proliferation of mesenchymal stem cells was eval-

uated in the culture time. Cells adhered over the membrane surfaces

and appeared flattened with elongated filopodia as highlighted by

SEM’s images (Fig. 3). During the culture time they proliferated cov-

ering the membrane surfaces as shown in Fig. 3. In the case of PCL/CHT

100/0 and PCL/CHT 90/10 the hMSCs adhered on the surface and

exhibited a spindle-like morphology. On the other two membranes

(PCL/CHT 80/20 and PCL/CHT 70/30), which are characterised by

large macrovoids at the surface (21 and 35 μm, respectively) and

smaller effective surface area, cells beside adhere to the surface they

were entrapped into the macrovoids and displayed a more spherical

shape.

We investigated the expression of CD90 and vimentin as specific

markers of undifferentiated status and proliferation/migration cap-

ability of MSCs, respectively. Cells on all investigated membranes were

positive for the cytoskeleton protein vimentin (in green) and cell sur-

face protein CD90 (in red) (Fig. 4). In agreements with the SEM ob-

servations, here we also found that cells attached to PCL/CHT 100/0

and PCL/CHT 90/10 surfaces exhibited a high degree of spreading. It is

interesting to note that in the case of PCL/CHT 80/20 and PCL/CHT 70/

30 membranes the most of cells were entrapped inside the macrovoids

and acquired a globular morphology due to the limited area available

for cell adhesion and organization. Since the spreading is characterized

by a substantial flattening of the cells and an increase in overall surface

area we evaluated the distribution of the cell surface area on the dif-

ferent membranes (Fig. 5). The frequency distribution of the cell surface

area confirmed that on PCL/CHT 100/0 and 90/10 the most of cells

achieved a very widely surface area (between 2400 and 5000 μm2) on

the contrary on PCL/CHT 80/20 and 70/30 a peak of surface area is

around 60–100 μm2 as an indication of unspread cells entrapped inside

the macrovoids.

For a deeper understanding of the cell invasion phenomenon inside

the scaffolds, we accrued the CLSM images in z-scanning mode from

surface towards the bulk (Fig. 6). Quantitative image analysis estab-

lished that 95 ± 1.8% and 97 ± 2.2% of cells adhered on the surface

of PCL/CHT 100/0 and PCL/CHT 90/10 membranes, respectively, and

few cells invaded the bulk. On the other hand, on PCL/CHT 80/20 and

PCL/CHT 70/30 cells were distributed on both surface and bulk, ac-

quiring spread and globular morphology, respectively. We calculated

16 ± 0.4% and 15 ± 3.1% of cells on PCL/CHT 80/20 and PCL/CHT

70/30 surfaces, respectively. For both membrane scaffolds 84 ± 0.4%

and 85 ± 3.1% of cells were inside the bulk, at a distance of 15 μm

from the top surface of PCL/CHT 80/20 and PCL/CHT 70/30 mem-

branes. Moreover, the cell invasion in the latter two scaffolds increased

Table 1

Morphological, physico-chemical and mechanical properties of the PCL/CHT double porous membranes. Data statistically significant according to ANOVA followed

by Bonferroni t’test (p < 0.05): (*) vs PCL/CHT 80/20 and 70/30; (θ) vs PCL/CHT 70/30; (§) vs all; (◊) vs PCL/CHT 100/0 and 90/10; (‡) vs PCL/CHT 100/0; (†) vs

PCL/CHT 80/20.

PCL/CHT ratio 100/0 90/10 80/20 70/30

Polymer wt (%) 15 14 14 10

Macrovoids Diameter (μm) 13 ± 4 (surface) 15 ± 5 (surface) 21 ± 11 (surface) 35 ± 25◊ (surface)

22 ± 3 (bulk) 34 ± 10‡ (bulk) 27 ± 13 (bulk) 46 ± 4§ (bulk)

Mean Flow Pore Diameter (μm) 0.02 0.07 0.05 1.55

Effective Surface Area (%) 88 ± 1.0∗ 84 ± 1.0∗ 74 ± 2.0θ 69 ± 2.0

Porosity (%) 40 ± 1.3 45 ± 1.2 48 ± 1.9‡ 56 ± 5.0§

Thickness (μm) 45 ± 0.9 50 ± 1.0‡ 60 ± 0.4§ 55 ± 0.6◊

Tensile Modulus E (N/mm2) 143.6 ± 14.1§ (dry) 128.2 ± 4.8† (dry) 125.3 ± 11.8 (dry) 111.9 ± 4.6† (dry)

131.6 ± 2.2§ (wet) 58.5 ± 4.1∗ (wet) 29.5 ± 0.8θ (wet) 10.1 ± 2.7 (wet)

Ultimate Tensile Strenght Rm (N/mm2) 8.3 ± 0.7§ (dry) 3.7 ± 0.4∗ (dry) 2.4 ± 0.2θ (dry) 2.1 ± 0.2 (dry)

8.1 ± 0.2§ (wet) 2.5 ± 0.3∗ (wet) 1.3 ± 0.1θ (wet) 0.5 ± 0.2 (wet)

Elongation at break ε (%) 127.6 ± 50§ (dry) 13.1 ± 2.2 (dry) 6.9 ± 0.8 (dry) 2.1 ± 0.4 (dry)

146.9 ± 68.4§ (wet) 17.6 ± 8.8 (wet) 15.8 ± 5.1 (wet) 9.1 ± 1.2 (wet)

Hydraulic Permeance (m/Pa s 10−5) 0.1 ± 0.001 0.11 ± 0.002 0.14 ± 0.003 0.19 ± 0.004



from 7 days to 21 days.

3.3. Cell proliferation and oxygen uptake rate of hMSCs in the double

porous membranes

The cell experiment results demonstrated a remarkable effect of

macrovoids size and surface morphology on cell proliferation and be-

haviour. Fig. 7a reports the quantitative cell viability by MTT assay

after 7, 14 and 21 days. Here we found that cells grew on all mem-

branes, especially on PCL/CHT 100/0 that showed the highest rate of

cell viability after 14 days. The cell growth was slower on membranes

with high CHT wt% that are characterised by greater mean macrovoid

size and surface porosity. However, after 21 days all the membranes

(except PCL/CHT 70/30) displayed almost similar cell viability. This

result suggests that the scaffolds created a permissive microenviron-

ment for hMSCs and after 21 days they reached confluence on the

surface, even if differences in cell proliferation rates were observed as a

function of macrovoids size and surface porosity.

Considering that oxygen deficiency is a serious problem for the cells

and inadequate oxygenation induces a decrease of cell metabolism, we

Fig. 1. SEM images: top surface and cross sections of PCL/CHT double porous membranes made by using the track-etched membrane, and with single porosity made

without the track-etched membrane.



evaluated the cellular oxygen uptake rate (OUR) with time until 21

days in Fig. 7b. Cells on PCL/CHT 100/0 displayed the highest OUR

rate followed by PCL/CHT 90/10, which was also increased with time

compared to the other two blended membranes. For PCL/CHT 80/20

and PCL/CHT 70/30 the oxygen consumption remained significantly

high throughout experiment. The OUR values of the different blends

after 20 days reached values of 38 ± 7 μmol/L min, 33 ± 2 μmol/L

min, 15 ± 3 μmol/L min and 10 ± 2 μmol/L min for PCL/CHT 100/0,

PCL/CHT 90/10, PCL/CHT 80/20 and PCL/CHT 70/30 membranes,

respectively.

These results are in agreement with the proliferation data and SEM

images that clearly indicate a very high density of the hMSCs on the

surface of PCL/CHT 100/0 followed by PCL/CHT 90/10, without sig-

nificant dead cell fragments.

4. Discussion

The design of bioactive membrane scaffolds mimicking the phy-

siologic environment during tissue formation is an important challenge

in biomaterials and tissue engineering research. Herein, we developed

double porous polymeric membrane scaffolds that recapitulate the 3D

microenvironment, able to ensure the long-term stem cell viability and

metabolism. A distinguishing feature of the scaffolds is the combination

of macrovoids that allow the cell entrapment with a small

interconnected microporous network that ensures the selective transfer

of oxygen and nutrients and the removal of cell catabolites and pro-

ducts. By changing the CHT wt%, not only the chemical properties of

the scaffolds were varied, but also their permeability and structural

properties like macrovoid size, effective surface area, surface porosity

and surface regularity was also modified. Finally, all these properties

had a direct and strong influence on the morpho-functional behaviour

of hMSCs. The formation of the unique double porous morphology by

modified non-solvent induced phase inversion is due to the track-etched

membrane placement on the casted solution that produced two dif-

ferent solvent-exchange rates. The pores of the track-etched membrane

restricted the non-solvent entry inside the casted polymer, leading to

the formation of macrovoids [11]. The addition and increase of CHT wt

% enhanced the viscosity of the casted solution inducing consequently

an increase of the macrovoids size in the bulk with respect to the

opening ones on the surface. On the contrary, without the use of the

commercial track-etched membrane, the phase inversion was quite

homogeneous leading to a single porous morphology without macro-

voids, followed by dense skin formation [11,20].

The polymer composition influenced mechanical, physico-chemical

and degradation properties as well as the surface morphology and

macrovoid size of the developed membrane scaffolds. The mechanical

behaviour of PCL was modified by introducing and increasing CHT wt

%, that leads to an increase of the macrovoids size and the porosity, and

consequently to a decrease of the polymers bulk density in unit volume.

From these data an intrinsic correlation between hydraulic performance

and structural properties of the membranes emerge. The larger mean

pore size and porosity of the 70/30 PCL/CHT membrane is responsible

for a hydraulic permeance almost 2 times higher than that measured for

the 100/0 one.

The double porosity affected the tensile strength of all membranes

[21], and was responsible of the decrease of the E modulus even in the

blended membrane scaffolds, despite the introduction of the stiffer

polymer chitosan. Moreover, the decrease of the tensile strength and

Young’s modulus could be due to the thermodynamic miscibility of the

two polymers that affects their interfacial adhesion in contact surface

and the yield strength of the matrix [22]. Additionally, in wet condition

the mechanical properties dramatically change for double porous

blended membranes owing to an incorporation of water molecules in-

side the bulk, through the macrovoids and among the polymeric chains.

Water incorporation re-established new hydrogen bonds with the CHT

polar functional groups, by disabling the previous polymer-polymer

interaction to some extent and leading polymers to slide over another

under stress. This phenomenon was previously observed also in CHT

and PCL/CHT nanoporous membranes, and is responsible for reduced

tensile strength and Young’s modulus, and for increased elongation at

break, in wet condition and increasing CHT wt% [12,13].

The enzymatic degradation is a very important physiological phe-

nomenon which ensures enhanced cell-cell connection followed by

tissue formation with time inside a 3D biodegradable scaffold.

Particularly, lipase and lysozyme with human serum concentration si-

mulated the physiological conditions that would be responsible for

enzymatic dissolution of the different double porous membrane scaf-

folds in vivo as artificial patch [23]. Lipase mainly degrades PCL and

polymeric chains that consists of lipid or ester-like chemical structure;

lysozyme mainly degrades CHT consisting of N-acetyl/deacetyl gluco-

samine linkages via oxidative-reductive chain scission, with a de-

gradation kinetic that is inversely related to the deacetylation degree of

CHT [24]. The slower degradation rate in lysozyme is mainly due to the

different degradation mechanism and the lower CHT wt% in all blends

[25]. Nevertheless, the overall enzymatic degradation phenomenon was

further governed by the easy accessibility of the enzymatic solution

throughout the bulk, which could be beneficial for a scaffold with fast

cell growth, needing the scaffold to degrade faster while being replaced

by cell-secreted ECM [26]. In particular, the lower lipase degradation of

PCL/CHT 100/0 could be due to a higher difficulty of water-soluble

Fig. 2. Weight loss (%) of PCL/CHT double porous membranes with different

time interval (days) by enzymatic degradation in presence of Lipase (Aspergillus

oryzaewith 0.112 U/ml) (A) and Lysozyme (0.013mg/ml) (B). Data statistically

significant according to ANOVA followed by Bonferroni t’test (p < 0.05): A)

(*) vs 7 days, (§) vs 7 and 14 days, on the same substrate; (θ) vs PCL/CHT 100/

0, (†) vs PCL/CHT 100/0 and 90/10, (‡) vs all, at the same day of culture. B) (*)

vs 10 days, (§) vs 10 and 31 days, on the same substrate; (†) vs PCL/CHT 100/0

and 90/10, (‡) vs all, at the same day of culture.



Fig. 3. SEM micrographs of hMSCs after 7 and 21 days of culture on PCL/CHT double porous membranes at different magnification.

Fig. 4. CLSM images of hMSCs after 7 and 21 days of culture on PCL/CHT double porous membranes. Cells were stained for vimentin (green), CD90 (red) and nuclei

(blue). Scale bar 20 μm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



enzyme to enter inside the hydrophobic and crystalline PCL chains.

Decreasing the concentration of PCL wt% the degradation increases as

CHT chains decrease the crystallinity of PCL chains and also increase

the hydrophilicity of the overall blends, creating more space for the

enzymatic solution to invade inside the PCL chains [27]. Moreover,

increasing the macrovoids size and porosity, the enzyme can have a

direct access inside the bulk leading to weight loss of 95% of PCL/CHT

70/30 within 10 days. On the other hand, the degradation kinetics by

using lysozyme was quite straightforward despite the increase of mac-

rovoids and porosity.

The bioactivity of 3D scaffolds used in tissue engineering applica-

tions depends on density of the available ligands, scaffolds micro-

structural environment at which specific cell binding occurs. Ligand

density is defined by the composition of the scaffolds and the ligand

density on the surface is inversely proportional to the surface macro-

void size or proportional to the effective surface area, surface which is

exposed for initial attachment of the cells.

The physico-chemical and structural properties of the developed

double porous membrane scaffolds, ultimately strongly affected the

cellular morpho-functional behaviour and invasion in the polymeric

scaffold bulk which is also supported by our previous study [28]. Our

results are in line with other studies that show the viability of stem cells

affected by geometry and morphological structure of the scaffolds,

which modulate the cell shape and cytoskeletal tension thus regulating

cell functions [29]. In our case, the membrane porosity and ESA were

responsible of the different morphology displayed by cells on the

Fig. 5. Frequency distributions of cell surface area on the PCL/CHT double

porous membranes.

Fig. 6. Distribution in the z-axis of vimentin (green), CD90 (red), nuclei (blue) and scaffolds (grey) after 7 (a) and 21 (b) days of hMSC culture on PCL/CHT double

porous membranes. CLSM images were collected from the surface to the bulk in the z-scan mode at step size intervals of 5 μm. Scale bar 20 μm. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Cell proliferation (A) and oxygen uptake rate (B) of hMSCs at different

days of culture on PCL/CHT 100/0, 90/10, 80/20, 70/30 double porous

membranes. Data statistically significant according to ANOVA followed by

Bonferroni t’test (p < 0.05): A) (*) vs 7 days, (§) vs 7 and 14 days, on the same

substrate; (†) vs 70/30, (‡) vs all, at the same day of culture. B) (*) 100/0 vs all,

90/10 vs 80/20 and 70/30, and 80/20 vs 70/30; (§) 100/0 vs all, 90/10 vs 80/

20 and 70/30, at the same day of culture.



offer physical, chemical and mechanical cues for hMSCs attachment

and proliferation. Specifically, PCL/CHT 80/20 membrane is char-

acterised by topographical, mechanical and degradation properties that

promote long-term cell viability in a culture environment where cells

can invade and proliferate inside the macrovoids, which are char-

acterized by a microporous structure that modulate mass transfer of

molecules. These properties make the membrane suitable to open new

possibility for stem cell based tissue engineering (e.g., liver, vessels).

Ultimately, this membrane scaffold can provide a selective cell co-cul-

ture model for different tissues where, according to the cellular di-

mension, cells can invade and proliferate inside the macrovoids and/or

can adhere on the surface ensuring the biochemical cross-talk, which is

necessary for recapitulating physiological functions.
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