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Although a rigorous theoretical ground on metasurfaces has been established in the recent years
on the basis of the equivalence principle, the majority of metasurfaces for converting a propagat-
ing wave into a surface wave are developed in accordance with the so-called generalized Snell’s
law being a simple heuristic rule for performing wave transformations. Recently, Tcvetkova et al.
[Phys. Rev. B 97, 115447 (2018)] have rigorously studied this problem by means of a reflecting
anisotropic metasurface, which is unfortunately difficult to realize, and no experimental results are
available. In this paper, we propose an alternative practical design of a metasurface-based con-
verter by separating the incident plane wave and the surface wave in different half-spaces. It allows
one to preserve the polarization of the incident wave and substitute the anisotropic metasurface by
an omega-bianisotropic one. The problem is approached from two sides: By directly solving the
corresponding boundary problem and by considering the “time-reversed” scenario when a surface
wave is converted into a nonuniform plane wave. Particularly, we reveal that an input surface wave
plays an important role in the conversion process, influencing the conversion efficiency. To validate
the theory, we develop a practical three-layer metasurface based on a conventional printed circuit
board technology to mimic the omega-bianisotropic response at the microwave frequency range.
The design is verified by full-wave three-dimensional numerical simulations and demonstrates high
conversion efficiency. Obtained results are relevant independently of the frequency range and can be
generalized to acoustics domain. It enables novel applications, from efficient excitation of waveguide
modes in integrated photonic circuits to cloaking of large objects.

I. INTRODUCTION

Surface waves propagate along an interface and expo-
nentially decay away from it being localized on the sub-
wavelength scale. Historically, investigation of surface
waves started from the discovery of Zenneck waves at
radio frequencies and study of optical Wood’s anomalies
that were explained by the excitation of surface waves [1].
The basic system that supports propagation of surface
waves is represented by two half-spaces filled with a metal
and a dielectric [1]. In optical and infrared domains, the
effect of strong field localization of surface waves (or sur-
face plasmon polaritons) is used in many applications,
and we list a few of them below. Specht et al. devel-
oped a near-field microscopy technique that harnesses
surface plasmon polaritons (SPPs) and allows one to sig-
nificantly overcome the diffraction resolution limit [2].
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On-chip SPPs-based high-sensitivity biosensor platforms
were implemented and commercialized [3, 4]. Surface-
enhanced Raman scattering is attributed to excitation of
SPPs [5, 6]. Application of SPPs in integrated photonic
circuits enables further miniaturization in comparison to
silicon-based circuits [7] and allows one to approach the
problem of size compatibility with integrated electron-
ics [8].

At lower frequencies (THz or microwaves), metals be-
have like a perfect electric conductor (PEC), which does
not allow a surface wave to penetrate in the metallic re-
gion. However, the fields extend it over long distances in
a dielectric. Fortunately, the localization degree can be
significantly increased by making use of artificial struc-
tures as it was demonstrated in Refs. [9–14]. Proper-
ties of surface waves excited on a structured interface
can be controlled by engineering the interface. A sur-
face wave propagating along a periodically structured in-
terface mimics optical SPPs and is called spoof surface
plasmon polariton (SSPP). SSPPs allow one to signifi-
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canty expand the frequency range of SPPs applications.
For instance, SSPPs can be used in integrated microwave
photonics [15–17].

Metasurfaces (or thin two-dimensional equivalents of
metamaterials) provide a useful tool for manipulation of
surface waves [18–20] and are not restricted to mere sup-
port of propagation of spoof SPPs. Maci et al. proposed
in Ref. [21] a general approach for transforming a wave-
front of a surface wave by locally engineering the dis-
persion relation with spatially modulated metasurfaces.
For instance, a metasurface-based Luneburg lens for sur-
face waves was demonstrated in Refs. [21, 22]. Spatial
modulation significantly broadens the range of applica-
tions of metasurfaces and allows one to link propagat-
ing waves and surface waves. Metasurface-based leaky-
wave antennas radiating a surface wave (or more gener-
ally, a waveguide mode) into free space were developed
in Refs. [23–26]. Vice versa, one can take advantage
of spatially modulated metasurfaces to convert an inci-
dent propagating plane wave into a surface wave [see the
schematics in Fig. 1(a)], as it was suggested by Sun et
al. in Ref. [27]. In this case, an excited surface wave
is not an eigenwave and can propagate along a metasur-
face only under illumination (in contrast to SPPs and
SSPPs). However, one can guide out an excited surface
wave on an interface supporting the propagation of the
corresponding SSPP [27, 28]. It is worth to note, that
metasurface-based converters and leaky-wave antennas
are not equivalent, since the plane-wave illumination is
normally uniform (other designs also consider Gaussian-
beam illumination, see, e.g., Ref. [29]), while a plane wave
radiated by a leaky-wave antenna is essentially inhomo-
geneous, as compared in Figs. 1(a) and (b).

Although a rigorous theoretical ground on metasur-
faces has been established in recent years on the basis of
the equivalence principle [30–32], the majority of meta-
surfaces for converting a propagating wave into a surface
wave are developed in accordance with the so-called gen-
eralized Snell’s law (see, e.g., Refs. [27, 28, 33]). Initially,
the generalized Snell’s law was applied to reflect or re-
fract an incident wave at arbitrary angles by engineering
the phase of a scattered wave at each point along a meta-
surface in order to create a linear spatial evolution [34].
However, in this case the wave impedance of the scat-
tered wave is not equal to the wave impedance of the
incident wave. It makes the efficiency of the anomalous
reflection (refraction) decrease significantly when the an-
gle between the incident and reflected (refracted) wave
increases (corresponding to increased impedance mis-
match) [31, 35, 36]. The outcome is even worse for con-
version of a propagating wave into a surface wave using
the recipe provided by the generalized Snell’s law. The
wave impedance of the scattered field is imaginary in this
case (a propagating wave has a real wave impedance) and
the generalized Snell’s law does not and cannot ensure a
proper energy transfer between the propagating wave and
the surface wave (the amplitude of the surface wave must
increase along a reactive metasurface according to the en-

FIG. 1. (a) Schematics of a metasurface converting a nor-
mally incident plane wave into a transmitted surface wave
with the propagation constant βy and the growth rate αy.
(b) Schematics of a metasurface converting a surface wave
into an inhomogeneous plane wave propagating in the normal
direction with the propagation constant β′z.

ergy conservation law, as illustrated by Fig. 1 (a)). As
a result, losses have to be added to the system in order
to arrive to a meaningful solution [27], which makes the
generalized Snell’s law a tool for designing an absorber
rather than a converter (in addition to Ref. [27] see also
Ref. [36] where almost perfect absorption is demonstrated
by exciting a single evanescent Floquet-mode).

Recently, Tcvetkova et al. have for the first time rig-
orously studied the problem of conversion of an incident
plane wave into a surface wave with a growing ampli-
tude [37] by means of a reflecting anisotropic metasur-
face, described by tensor surface parameters. The inci-
dent plane wave and the surface wave had orthogonal po-
larizations in order to avoid interference resulting in the
requirement of “loss-gain” power flow into the metasur-
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face [35, 36]. Unfortunately, the anisotropic metasurface
with the required impedance profile is difficult to realize,
and no experimental results are available.

In this paper, we elaborate on the work done by the
authors of Ref. [37] and propose an alternative practical
design of a metasurface-based converter by separating the
incident plane wave and the surface wave of the same po-
larization in different half-spaces. A similar idea was used
in Ref. [38] for engineering reflection and transmission of
propagating plane waves. We demonstrate realistic im-
plementation of the converter based on a conventional
printed circuit board and confirm its high-efficiency per-
formance via full-wave 3D simulations.

The rest of the paper is organized as follows. In Sec-
tion II, we derive impedance matrix of a metasurface-
based converter. By means of two-dimensional full-wave
numerical simulations, we verify theoretical findings in
Section III and propose a topology of a practically real-
izable metasurface. Section IV is devoted to description
of the design procedure and verification of the design via
three-dimensional full-wave simulations. Finally, Section
V concludes the paper.

II. THEORY

A. Impedance matrix of an ideal converter

We consider the conversion of a normally incident
plane wave with the magnetic field along the x-axis into
a transmitted TM-polarized surface wave, as illustrated
in Fig. 1 (a). Then the corresponding magnetic and elec-
tric fields read as (assuming time-harmonic dependency
in the form eiωt)

Hx2(y, z) = eikz, Ey2(y, z) = ηeikz,

Hx1(y, z) = Ae(αz+iβz)ze(αy−iβy)y,

Ey1(y, z) = − iη(αz + iβz)

k
Ae(αz+iβz)ze(αy−iβy)y. (1)

Indices 2 and 1 denote the fields above and below the
metasurface, respectively, k is the free-space wavenum-
ber, and η is the free-space impedance. All the parame-
ters α and β are greater than zero and obey the dispersion
relation (αz + iβz)

2 + (αy − iβy)2 = −k2. The extinction
coefficients αz and αy result in the surface wave attenu-
ation away from the metasurface and in its growth along
the metasurface (along the +y-direction).

We avoid interference between the incident and scat-
tered waves by introducing the latter one only in the bot-
tom half-space. Otherwise, the interference would result
in complex power flow distribution, making it difficult
to satisfy power conservation conditions locally without
gain and lossy structures (also discussed below). The
chosen configuration when the incident and scattered
waves propagate in different half-spaces allows us to deal
with waves of the same polarization.

We characterize the metasurface by a 2× 2 impedance

matrix ¯̄Z(y). It allows one to understand the most fun-
damental properties of a system disregarding its concrete
physical implementation. In terms of an impedance ma-
trix, the boundary conditions determining a metasurface
can be written in the following matrix form[

Ey1(y, 0)
Ey2(y, 0)

]
=

[
Z11(y) Z12(y)
Z21(y) Z22(y)

] [
−Hx1(y, 0)
Hx2(y, 0)

]
. (2)

The set of equations (2) serves to find the impedance
matrix necessary to perform the transformation defined
by Eq. (1). Unfortunately, the desired field distribution
Eq. (1) does not satisfy these impedance conditions for

any reactive metasurface ( ¯̄Z = − ¯̄Z†, the symbol † stands
for the Hermitian conjugate). The physical reason for
this conclusion is that the ansatz fields do not satisfy
the energy conservation principle for any choice of the
surface-wave parameters [37]. Although negative, it is an
important result: The condition of locally passive meta-
surface is a crucial obstacle that does not allow one to
perform an ideal conversion of a propagating plane wave
into a growing surface wave. Thus, we omit this require-
ment and proceed with a more general impedance matrix
¯̄Z = i ¯̄X, where ¯̄X is a real-valued matrix. Substituting
this ansatz in Eq. (2), one arrives at the following expres-

sion for ¯̄Z:

¯̄Z(y) = −iη

[
−αz

k + βz

k cot[βyy] βz

k
A csc[βyy]
exp[−αyy]

csc[βyy]
A exp[αyy] cot[βyy]

]
. (3)

Since X12 6= X21, the impedance matrix (3) corresponds
to a nonreciprocal and locally active or lossy metasur-

face. Equation (2) has other then ¯̄Z = i ¯̄X forms of solu-
tions, as it was shown in [37] for an anisotropic metasur-
face. However, for any exact solution, one arrives at the
same conclusion: The impedance matrix corresponds to
either reciprocal or nonreciprocal but always locally ac-
tive or lossy metasurface. Noteworthy, active and lossy
responses do not necessarily mean that the metasurface
must locally radiate or absorb electromagnetic waves. We
speculate that a metasurface possessing strong spatial
dispersion can be designed, as it was done in [39, 40]
for controlling reflection of propagating waves. Unfortu-
nately, the design procedure of such metasurfaces is still
based on the local periodic approximation [41, 42] that
does not allow one to set the near-field found a priori [40].

B. Small growth approximation

Conventional leaky-wave antennas perform the conver-
sion of a waveguide mode (e.g., a surface wave) into a
propagating wave [43]. It makes one think of the recipro-
cal, “time-reversed” process of converting a propagating
wave into a surface wave. We use the quotes to stress
that a wave radiated by a leaky-wave antenna is necessar-
ily inhomogeneous, while we are particularly interested
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FIG. 2. Schematics of the COMSOL models used for simulating the conversion with (a) omega-bianisotropic combined sheet
and (b) asymmetric three-layer structure. Port 1 launches the normally incident plane wave. Port 2 either launches or accepts
the surface wave. Port 3 only accepts the excited surface wave. (c–d) Zooming of the three-layer metasurface with metallic walls
(implemented with vias in (d)) separating individual unit cells, n is the number of unit cells per a super cell, Zi (i = 1, 2, 3) is
the electric surface impedance of the corresponding sheet.

in converting a homogeneous plane wave into a surface
wave. Therefore, these two problems are not equivalent.
Nevertheless, in practice there are only finite-size anten-
nas and the inhomogeneity can be made arbitrarily small
which, however, reduces the aperture efficiency. Let us
find the impedance matrix of a metasurface-based leaky-
wave antenna converting a TM-polarized surface wave

Hx1(y, z) = Ae(αz−iβz)ze(αy+iβy)y (4)

into an inhomogeneous propagating plane wave with the
magnetic field along the x-direction

Hx2(y, z) = e−iβ
′
zz+αyy. (5)

Here β′z =
√
k2 + α2

y is the propagation constant of the

radiated wave. Figure 1 (b) depicts a schematics of this

process. The impedance matrix ¯̄Z(y) is found by solving
the boundary problem formulated in Eq. (2) and becomes

symmetric when A =
√
β′z/βz, thus, corresponding to a

reactive and reciprocal metasurface

¯̄Z(y) = −iη

 −αz

k + βz

k cot[βyy]

√
βzβ′

z

k csc[βyy]√
βzβ′

z

k csc[βyy] k
β′
z

cot[βyy]

 .(6)

Noteworthy, in Ref. [25] Tcvetkova et al. arrived at a
similar impedance matrix for an anisotropic metasurface.
The reader is also directed to Ref. [26], where the au-
thors consider an omega-bianisotropic metasurface-based
leaky-wave antenna radiating a waveguide mode that
propagates between the metasurface and a ground plane.
In strong contrast with Ref. [26], we employ the concept
of leaky-wave antennas as a tool to approach the problem
of converting a uniform plane wave into a surface wave
as discussed further.

The reciprocity of the impedance matrix (6) allows one
to harness the corresponding metasurface for converting
the inhomogeneous plane wave at normal incidence (5)

into the surface wave (4). Since we are particularly inter-
ested in converting a homogeneous plane wave (this is the
case in most practical situations when the source of waves
is in the far zone of the metasurface), the total growth of
the surface wave amplitude along the length of the meta-
surface has to remain small. Mathematically, the small
growth condition can be expressed as αyL0 � 1, where
L0 is the total size of the metasurface in the y-direction.
Under the condition αyL0 � 1 the impedance matrix (6)

(as well as the one given by Eq. (3) when A =
√
k/βz)

converges to the following matrix

¯̄Z(y) = −iη

 −αz

k + βz

k cot[βyy]
√

βz

k csc[βyy]√
βz

k csc[βyy] cot[βyy]

 . (7)

Reactive and symmetric impedance matrix (7) represents
an approximate solution of the boundary problem (2) and
cannot realize exactly the transformation represented by
Eq. (1) even in case of small (but finite) values of the pa-
rameter αyL0. Additional waves (not present in Eq. (1))
will be excited and play the role of auxiliary waves in the
conservation of local normal power flow [38–40]. Fur-
thermore, in order to satisfy the small growth condi-
tion for a metasurface with the impedance matrix (7),
an input surface wave should be excited. Tcvetkova et
al. arrived at the same conclusion in Ref. [37]. Indeed,
the time-averaged power flow density associated with the
surface wave in Eq. (1) has exponential growth along
the metasurface that becomes nearly linear under the
small growth assumption (being non-zero along the whole
metasurface since |αyy| � 1) given by

SSW (y, 0) ≈ η

2
(1 + 2αyy)

(
βy
βz

y0 − z0

)
. (8)

In order to create the initial power flow (at y = 0) along
the y-direction in accordance with Eq. (8), the amplitude



5

FIG. 3. (a) Conversion efficiency vs. the total length of the metasurface (expressed in terms of the number of periods) for
different growth rates αy of the surface wave, when Port 2 is on and excites an input surface wave. (b–c) Normalized power
received by the Ports (b) 3 and (c) 2 vs. the total length of metasurface, when Port 2 is listening (no input surface wave).
(d–g) Snapshots of the magnetic field for a metasurface with 10 periods, the growth rates are (d), (f) αy = 0.001k and (e), (g)
αy = 0.01k. Port 2 is on in figures (d–e) and off in (f–g). The arrows depict directions of the power flow density. (h) Continuous
and (i) discretized components (imaginary parts) of the impedance matrix as functions of the y-coordinate. (j) Conversion
efficiency in case of a discretized impedance matrix vs. the number of unit cells per period (total length of a metasurface
is 10L) for different growth rates αy of the surface wave, when Port 2 is on. In all figures metasurface is represented by an
omega-bianisotropic combined sheet and propagation constant of the surface wave equals βy = 1.05k.

of the input surface wave should be equal to
√
k/βz (the

amplitude of the excited surface wave (1)). Vice versa,
the amplitude of the excited surface wave will be equal
to the one of the input surface wave. Since there are two
excitation sources (incident homogeneous plane wave and
input surface wave), one has to correctly adjust the com-
plex amplitude of the input surface wave: It must be in
phase with that of the incident plane wave and its mag-
nitude must be

√
k/βz times larger. Only under these

conditions nearly all the power of the incident plane wave
is transferred to the surface wave. Practically, the adjust-
ing procedure can be performed by tuning the power and
the phase of the input surface wave (for instance) while
measuring the power of the output surface wave. The
procedure is over as soon as the maximum of the output
power is found.

In spite of all the limitations listed above, the
impedance matrix (7) seems to be the only possible peri-
odic, reactive and reciprocal solution for the conversion
problem, which is formulated by the Eq. (1) and Eqs. (4),

(5). In what follows, we use only the impedance matrix
given by Eq. (7).

III. RESULTS OF 2D SIMULATIONS

In this section we present and analyze results of two-
dimensional (2D) full-wave numerical simulations on the
conversion of an homogeneous incident plane wave into
a surface wave. In the 2D simulations a metasurface was
modeled by means of boundary conditions as described
in more detail further.

A. Omega-bianisotropic combined sheet

A metasurface characterized by a symmetric
impedance matrix can be realized as a combined
sheet possessing omega-bianisotropic response. Then,
an incident wave excites electric Jes and magnetic
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FIG. 4. (a) Conversion efficiency vs. the total length of metasurface (expressed in terms of the number of periods) for different
growth rates αy of the surface wave, when Port 2 excites an input surface wave. (b),(c) Normalized power received by the Ports
(b) 3 and (c) 2 vs. the total length of metasurface, when Port 2 is listening (no input surface wave). Metasurface is represented
by an asymmetric three-layer structure incorporating metallic walls, the impedance matrix is discretized with four unit cells
per period.

Jms surface polarization currents that results in the
discontinuity of both tangential electric and magnetic
fields at the metasurface. In the particular case when
the magnetic field is along the x-direction, the boundary
conditions read as

Hx2(y, 0)−Hx1(y, 0) = Jes(y),

Ey2(y, 0)− Ey1(y, 0) = Jms(y),

Jes =
1

Zes

E1y + Ey2

2
+Kme

H1x +H2x

2
,

Jms = Zms
H1y +Hy2

2
−Kme

E1x + E2x

2
. (9)

Here Zes and Zms are, respectively, electric and magnetic
surface impedances, Kme is the magneto-electric coupling
coefficient. When comparing Eq. (2) with Eq. (9), the
surface impedances and coupling coefficient can be ex-
pressed in terms of the components of the impedance
matrix

Zes =
1

4

2∑
a,b=1

Zab, Zms =
det[ ¯̄Z]

Zes
, Kme =

Z11 − Z22

2Zes
,

(10)

where det[ ¯̄Z] = Z11Z22 − Z2
12 is the determinant of ¯̄Z.

In order to verify theoretical findings and estimate the
conversion efficiency, we perform 2D full-wave numerical
simulations with COMSOL MULTIPHYSICS. The meta-
surface is represented by electric and magnetic surface
currents set in accordance with Eq. (9). A schematics of
the model is illustrated in Fig. 2(a). Thus, the conversion
efficiency is defined as the difference between the output
power from Port 3 (P3) and the input power from Port
2 (P2) divided over the power delivered by the incident
plane wave from Port 1 (P1): (P3 − P2)/P1.

Figure 3(a) validates the small growth approximation.
It is seen that the conversion efficiency approaches 1 and
does not depend on the total length of the metasurface
up to αyL0 ≈ 0.01. When increasing the growth rate
αy (the rest of the parameters are fixed), the conversion

efficiency decreases for longer metasurfaces that leads to
appearance of spurious scattering in the far-field (com-
pare distribution of the power flow density in Figs. 3(d)
and (e)).

As it was noticed above, the small-growth approxima-
tion can be strictly valid only when there is an input
surface wave from Port 2. Figures 3(b–c) demonstrate
the scenario when Port 2 is listening. In bright contrast
to the case of Fig. 3(a), the part of power of the incident
wave coupled to the surface wave increases (but eventu-
ally saturates) for larger values of αyL0, as compared in
Figs. 3(a) and 3(b). The difference stems from the normal
power flow mismatch at the left end of the metasurface
occurring in the case when Port 2 is switched off. In the
result, surface waves propagating along and opposite to
the y-axis are excited when there is no input surface wave
as demonstrated by Figs. 3(b) and (c). Moreover, it is
seen that for small αyL0 the power received by Port 2 is
approximately equal to the power received by Port 3 and
a significant portion of incident power appears in the far-
field as spurious scattering. Snapshots of the magnetic
field depicted in Figs. 3(f) and (g) show the influence of
the spurious scattering on the field profile and power flow
distribution in the cases of small (αy = 0.001k) and large
(αy = 0.01k) growth rates. Specific attention should be
paid to the region above the metasurface: Disturbed nor-
mally incident power flow indicates the spurious scatter-
ing in the far-field.

Although the portion of incident power transfered to
the surface wave is considerably higher in case there is an
input surface wave, the conversion of a propagating wave
into a surface wave usually assumes absence of any input
surface wave. At this point one can conclude that meta-
surfaces do not represent the best approach to the prob-
lem but, however, can perform very efficient enhance-
ment of an input surface wave (phase and amplitude of
the incident plane wave should be accordingly adjusted
as discussed in Section II).

Practically, it is important to study the influence
of the discretization of a continuous impedance matrix
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FIG. 5. Topology of the copper (in yellow color) patterns
implementing grid impedances in the three-layer design of the
metasurface performing the conversion of a normally incident
plane wave into the surface wave with βy = 1.05k and αy =
0.005k at the frequency 10 GHz. There are four unit cells
per period (L = 2π/βy ≈ 28.57 mm) separated by metallic
walls (illustrated by red rectangles). Thickness of the copper
cladding is 35 µm. Minimal width of copper traces and gaps
is 0.35 mm.

on the performance of a metasurface. The discretized
impedance matrix is found from the continuous one as
¯̄Z(y −mod(y, L/n) + L/n/2), where n is the number of
unit cells per period. The components of the impedance
matrix as functions of y are plotted in Fig. 3(h) for
βy = 1.05k and αy = 0.005k. The components (as func-
tions of y) of the corresponding discretized impedance
matrix (n = 4) are shown in Fig. 3(i). Figure 3(j) demon-
strates that only in the case of two unit cells per pe-
riod there is a drop in the conversion efficiency. Making
the discretization finer, the efficiency quickly grows and
reaches the limit of the continuous impedance matrix for
as few as n = 4 unit cells per period. This result is
very important as it allows one to use large unit cell and
simplify the converter design.

B. Three-layer asymmetric structure

Omega-bianisotropic response can be mimicked with
three impedance sheets separated by two dielectric sub-
strates [32] as illustrated in Figs. 2(b) and (c). In
the COMSOL model grid impedances are introduced
via electric surface currents (similarly to the previous
section). From the transmission-line (TL) theory, the
impedance matrix (7) corresponds to the following grid

TABLE I. Physical dimensions of the designed metasurface.
Parameter w represents the width of the strip/slot for each
inductive/capacitive impedance. Parameter l is the length of
the meander in the strips or slots.

Cell 1 Cell 2 Cell 3 Cell 4

Top
No meanders
w = 1.23 mm

2 meanders
w = 0.35 mm
l = 4.48 mm

4 meanders
w = 0.35 mm
l = 1.35 mm

2 meanders
w = 0.35 mm
l = 2.65 mm

Mid.
2 meanders
w = 0.35 mm
l = 1.23 mm

2 meanders
w = 0.35 mm
l = 1.52 mm

2 meanders
w = 0.35 mm
l = 1.82 mm

2 meanders
w = 0.35 mm
l = 1.52 mm

Bott.
1 meander
w = 0.35 mm
l = 1.49 mm

1 meander
w = 0.35 mm
l = 2.27 mm

1 meander
w = 0.35 mm
l = 2.60 mm

1 meander
w = 0.35 mm
l = 1.10 mm

impedances [32]:

Z1 =
ηs tan(ksh)

i+ ηs tan(ksh)Z11+Z12

det[ ¯̄Z]

,

Z2 = −
(ηs tan(ksh))2 Z12

det[ ¯̄Z]

sec(ksh)2 − 2iηs tan(ksh) Z12

det[ ¯̄Z]

,

Z3 =
ηs tan(ksh)

i+ ηs tan(ksh)Z22+Z12

det[ ¯̄Z]

, (11)

where ks =
√
εsk and ηs = η/

√
εs, εs is the relative

permittivity of the dielectric substrates (each of thick-
ness h). The TL theory assumes that inside the sub-
strates only waves with the exp(∓iksz) spatial depen-
dence propagate. This assumption can be strictly valid
only for spatially uniform grid impedances. However, it
is not the case of wavefront transforming metasurfaces
(and considered metasurface-based converters of propa-
gating waves into surface waves) which require spatial
modulation of impedances. Indeed, closely placed spa-
tially modulated impedance sheets also interact via waves
propagating along the substrates which are not taken into
account by Eq. (11). In order to improve the accuracy of
the TL theory, one can use very thin high permittivity
substrates [32] which make the waves refract closer to the
normal direction. Unfortunately, it still does not allow
one to design the grid impedances separately by means of
only Eq. (11) due to the coupling between adjacent unit
cells via higher order modes. Instead, Eq. (11) provides
a coarse approximation which is used as a first step of a
design procedure aimed at obtaining a given impedance
matrix.

The waves propagating along the substrates can be cut
off by means of metallic walls separating each unit cell
from the others (in analogy with the idea introduced in
acoustics [44]), as shown in Fig. 2(c). Practically, metal-
lic walls can be implemented as arrays of metallic vias in
a multi-layer printed circuit board. Such design solution
allows one to use substrates of arbitrary large thicknesses
h and perform design of a sample considering each grid
impedance separately. Since a pair of metallic walls rep-
resents a parallel plate waveguide inside a unit cell, waves
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can propagate with tangential component of wave vector
taking the discrete values βm = mπ/d where d = L/n
and m = 0,±1,±2,... Thus, the finer the discretiza-
tion, the less is the interaction between the adjacent grid
impedances. However, practically it is easier to increase
the substrate thickness than to decrease the unit cell size
in order to reduce the interaction via higher order spatial
harmonics. Figure 4 demonstrates the dependence of the
conversion efficiency on the total length of metasurface
and the growth rate αy when there is and there is no an
input surface wave from Port 2 [see Fig. 2(b)]. By com-
paring Figs. 3 and 4, one can see that the results for the
practical three-layer structure qualitatively repeat those
for omega-bianisotropic combined sheet while quantita-
tive differences are minor and can be explained by the
impedance mismatch between Port 2 and the three-layer
metasurface, as presented in Fig. 2(b).

IV. SAMPLE DESIGN AND RESULTS OF 3D
SIMULATIONS

The next step towards a real metasurface-based con-
verter is to implement (by means of metallic patterns)
three grid impedances found from Eq. (11). The de-
sign is performed at the chosen operating frequency of
10 GHz in accordance with the requirements of conven-
tional printed-circuit-board technology. On the basis of
the conducted analysis of 2D simulations, we have cho-
sen the growth rate parameter equal to 0.005k and the
propagation constant of the surface wave as 1.05k. Even-
tually, we validate the developed design by comparing the
results of 2D and 3D full-wave numerical simulations for
a metasurface of total length L0 = 10L.

The design procedure is based on the commonly used
local periodic approximation (see for e.g., Refs. [41, 42]).
Each grid impedance is designed separately. It is pos-
sible due to incorporation of metallic walls and usage
of thick dielectric substrates. Specifically, commercially
available F4BM220 substrates with relative permittivity
εs = 2.2(1−i10−3) and thickness h = 5 mm are used. The
topology of the designed grid impedances is depicted in
Fig. 5 and geometrical parameters are specified in Tab. I.

In order to validate the design, we exploit the reciprocal
scenario when the metasurface is excited from Port 3 and
Port 2 is listening (Port 1 is absent in this geometry). We
compare 2D and 3D simulations. The schematics of the
model is shown in Fig. 6 (a). In such a configuration the
metasurface transforms the input surface wave from Port
3 into a propagating wave and becomes a leaky-wave an-
tenna. Figures 6 (b) and (c) compare the distribution of
the magnetic field obtained in the 2D and 3D simulations,
respectively. Figure 6 (d) allows one to see the difference
between the magnetic fields at the distance λ/10 below
the metasurface. Since the metasurface is designed in
accordance with the slow growth approximation, not all
the power of the surface wave from Port 3 is launched as
a leaky-wave (approximately 50% of power is radiated in

FIG. 6. (a) Schematics of the COMSOL model used for com-
paring 2D (three-layer metasurface) and 3D (grid impedances
are substituted by metallic patterns) simulations, WG section
represents surface waveguide implemented as an impedance
boundary condition ZWG = iηαz/k. Port 2 accepts the sur-
face wave and Port 3 excites an input surface wave. (b),(c)
Snapshots of the magnetic field for the metasurfaces with 10
periods in the (b) 2D and (c) 3D simulations, the growth rate
is 0.005k. The arrows depict directions of the power flow den-
sity. (d) Magnetic field along the metasurface (at the distance
λ/10 below the metasurface) extracted from 2D (red curve)
and 3D (blue curve) simulations.

the considered example). Thus, the surface wave enter-
ing Port 2 in Fig. 6 is the equivalent of the input surface
wave in Figs. 3 and 4.
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V. DISCUSSION AND CONCLUSION

We have theoretically studied conversion of a normally
incident plane wave into a transmitted surface wave by
means of a scalar omega-bianisotropic metasurface. It al-
lows one to decouple the illumination from the scattered
field without changing its polarization and eventually sig-
nificantly simplifies the converter design. The problem
has been approached from two sides: By directly solving
the corresponding boundary problem and by considering
the “time-reversed” scenario when a surface wave is con-
verted into a nonuniform plane wave. In agreement with
Ref. [37], we have concluded that the perfect conversion of
a uniform plane wave into a transmitted surface wave re-
quires the metasurface to exhibit loss-gain response. On
the other hand, a surface wave can be totally radiated
into a nonuniform plane wave by a reactive reciprocal
metasurface. When imposing the condition of a slowly
growing surface wave, the two approaches lead to the
same reactive reciprocal metasurface which can be used
for converting a uniform plane wave into a single surface
wave with nearly 100% efficiency. The condition of slow
growth requires an input surface wave to create an ini-
tial power flow, which is a necessary condition to have a
metasurface with passive and lossless elements.

The theoretical results have been validated through
full-wave 2D simulations by representing a metasurface as
a combined sheet with an omega-bianisotropic response.
Next, we have developed a practical three-layer meta-
surface based on conventional printed circuit board tech-
nology to realize the omega-bianisotropic response. The
metasurface incorporates metallic walls to avoid coupling
between adjacent unit cells and accelerate the design pro-
cedure. The design has been validated by 2D and 3D
simulations and has demonstrated high conversion effi-
ciency. Noteworthy, the three-layer structure is not the
only way to achieve the response prescribed by an asym-
metric impedance matrix and, generally, one just need
to use asymmetric (with respect to the plane z = 0)
unit cells. Moreover, we have shown that as few as
four unit cells per supercell are enough to approximate
continuous surface impedances. It will facilitate imple-
mentation of metasurface-converters at higher frequen-
cies (THz, infrared or visible), where other metasurface
devices incorporating bianisotropic elements have been
already demonstrated [45–48]. The concept of impedance

matrix is also used in studies on acoustic metasurfaces
and recent advances in bianisotropic acoustic metasur-
faces [44, 49] suggest that our results can be also useful
for converting acoustic propagating waves into surface
waves. To implement an acoustic converter, various de-
signs of unit cells can be found in the literature (see, e.g.,
Ref. [50]), including straight pipes loaded with Helmholtz
resonators in series that were shown to demonstrate bian-
isotropic response [49].

Apart from a fundamental interest, solving the prob-
lem of converting a propagating wave into a surface wave
has an important practical value. First of all, the meta-
surface converter can be used for highly efficient excita-
tion and directional radiation of surface plasmon polari-
tons or other waveguide modes in integrated photonic de-
vices, which is particularly challenging by conventional
means (prisms, gratings or probes) at optical frequen-
cies [5, 51]. For applications at microwave frequencies,
the results presented in this study can be useful for the
development of novel leaky-wave antennas [25, 26]. A
compact in-plane polarimeter on the basis of metasur-
face converters have been proposed in Ref. [52] (see also
Ref. [33]) for determining the polarization state of light
by simultaneously retrieving the associated Stokes pa-
rameters. As yet another example, it has been recently
suggested in Ref. [53] that cloaking of large objects can
be realized by means of a spherical metasurface convert-
ing an incident wave into a surface wave, which is then
radiated behind the metasurface to restore the incident
wavefront.

In perspective, other strategies for approaching the
conversion problem can be considered in order to avoid
the complexity of implementing bianisotropic metasur-
faces and the necessity for an input surface wave to
achieve perfect conversion. For instance, a recently
emerged concept of metamaterials-inspired diffraction
gratings (or metagratings) have demonstrated unprece-
dented efficiency in manipulating scattered waves with
sparse arrays of polarizable particles [54–56]. Due to the
sparseness, metagratings inherently possess strong spa-
tial dispersion, which together with a straightforward
design procedure [57] can be beneficial for solving the
conversion problem. On the other hand, the near fields
of such a grating are represented by an infinite number of
Floquet-modes, which makes it more challenging to selec-
tively excite a given mode. The importance of the input
surface wave can be reduced by means of a non-periodic
metasurface as discussed in detail in Ref. [37].
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