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Abstract

This work aims at investigating the interactions between the flow of fluids in the eyes and

the brain and their potential implications in structural and functional changes in the eyes

of astronauts, a condition also known as spaceflight associated neuro-ocular syndrome

(SANS). To this end, we propose a reduced (0-dimensional) mathematical model of fluid

flow in the eyes and brain, which is embedded into a simplified whole-body circulation

model. In particular, the model accounts for: (i) the flows of blood and aqueous humor in

the eyes; (ii) the flows of blood, cerebrospinal fluid and interstitial fluid in the brain; and (iii)

their interactions. The model is used to simulate variations in intraocular pressure, intra-

cranial pressure and blood flow due to microgravity conditions, which are thought to be

critical factors in SANS. Specifically, the model predicts that both intracranial and intraocu-

lar pressures increase in microgravity, even though their respective trends may be differ-

ent. In such conditions, ocular blood flow is predicted to decrease in the choroid and ciliary

body circulations, whereas retinal circulation is found to be less susceptible to micrograv-

ity-induced alterations, owing to a purely mechanical component in perfusion control asso-

ciated with the venous segments. These findings indicate that the particular anatomical

architecture of venous drainage in the retina may be one of the reasons why most of the

SANS alterations are not observed in the retina but, rather, in other vascular beds, particu-

larly the choroid. Thus, clinical assessment of ocular venous function may be considered

as a determinant SANS factor, for which astronauts could be screened on earth and in-

flight.
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Introduction

Microgravity conditions have been observed to induce structural and functional changes in

the eyes of many astronauts that pose serious challenges for both astronauts and their missions

in space [1–3]. This syndrome, also known as spaceflight associated neuro-ocular syndrome

(SANS), is characterized by a large number of apparently unrelated and often not concurrent

symptoms. These include choroidal folds, cotton wool spots, optic nerve distension and/or

kinking, optic disc protrusion, posterior globe flattening, refractive deficits and elevated intra-

cranial pressure [1, 4]. Added to the complexity of the range of symptoms are the problems of

susceptibility and genetic predisposition to develop visual problems.

The current understanding of how weightlessness environment affects the human body

and may lead to SANS development is still quite rudimentary. Various studies of the symp-

toms experienced by astronauts during long-term missions (four to six months) have been

performed [2], but their validity is hampered by the small size of the subjects cohort. To over-

come this difficulty, ground-based microgravity laboratory models have been proposed, the

most significant of which is the long head down tilt (LHDT) experimental procedure that is

used to simulate the effects of microgravity on the cardiovascular system. LHDT experiments

have shown that the fluid shift caused by the tilt produces a transient increase in central

venous pressure, later followed by an increase in left ventricular size without changes in car-

diac output, arterial pressure, or contractile state [5]. Moreover, experiments performed by [6]

confirmed that microvascular pressures measured in the lower lip increase, as well as subcuta-

neous and intramuscular interstitial fluid pressures in the neck. Interestingly, interstitial fluid

colloid osmotic pressures remain unchanged, whereas plasma colloid osmotic pressures drop

significantly after 4 hours of LHDT, thereby suggesting a transition from fluid filtration to

absorption in capillary beds between the heart and feet during LHDT. The above-mentioned

studies suggest that two main mechanisms may be involved in SANS pathophysiology, namely:

(i) changes in the vascular system and fluid distribution (fluid shifts); and (ii) changes in the

brain/central nervous system and intracranial pressure (ICP). However, experimental results

are not always consistent among studies. For example, optic disc edema, which is one of the

ocular findings associated with SANS, was not observed in the LHDT study conducted by

Taibbi et al [7], whereas it was observed in the study conducted by Laurie et al [8]. This dis-

crepancy in the results might be due to different protocols adopted for the study, such as the

extent to which head tilt was enforced, and the fact that many factors may influence ocular

structural and functional changes, including blood pressure, intraocular pressure (IOP) and

cerebrospinal fluid pressure (CSFp), which may vary among individuals and are difficult to

isolate in an experimental setting.

A complementary approach to experimental studies is the use of mathematical modeling as

a tool to investigate theoretically the role of various factors potentially contributing to SANS

and help elucidate the mechanisms of their interactions and their implications in structural

and functional changes in the eye. To the best of our knowledge, the mathematical modeling

of hemo-fluid dynamic contributions to SANS is still at its early stages. A lumped-parameter

model to simulate volume/pressure alterations in the eye in zero gravity conditions was pre-

sented in [9]. The model includes the effects of blood and aqueous humor dynamics, ICP, and

IOP-dependent ocular compliance. A lumped-parameter model of fluid transport in the cen-

tral nervous system aimed at simulating the influence of microgravity on ICP was presented in

[10]. The model could be coupled, in the authors’ intention, to lumped parameter and finite

element models of the eye. The present work advances the modeling methods in the context of

SANS by providing a more detailed description of fluid circulations in the eyes and their con-

nections to the brain, as sketched in [11–14]. In particular, the model accounts for the blood
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flow within three major ocular vascular beds, namely retina, choroid and ciliary body. The

model describes the intimate connection between ocular and cerebral hemodynamics, as

brain and eyes share vessels for blood supply and drainage. In addition, the cerebrospinal

fluid (CSF) flowing within the subarachnoid space influences the tissue pressure in the optic

nerve head and, as a consequence, the biomechanics and hemodynamics of the lamina cribrosa

and the vessels running through it. The model is used to investigate the complex relationship

between blood pressure, IOP, ICP, CSFp and the flow of fluids within eyes and brain, which

are thought to be important factors contributing to SANS.

Interestingly, the modeling ingredients embedded in the proposed model make it a very

flexible tool to study interactions between the eyes and the rest of the body, particularly the

brain, in various conditions beyond the microgravity environment. Thus, besides the applica-

tion to SANS discussed in the present work, we believe that the proposed model could serve as

a basic framework to study pathological states, most importantly glaucoma [15–17], where the

interaction between ocular and cerebral hemo-fluid-dynamics is thought to play an important

role. Specifically, it is well-documented that the levels of blood pressure, IOP and CSFp, along

with other vascular and biomechanical risk factors, strongly affect etiology, progression and

incidence of glaucoma [18–22]. As medicine is clearly heading in the direction of tailored diag-

nosis and treatment, the clinical ability to ascertain the relative weight of each risk factor in

any given patient is of paramount significance. Although the use of imaging technology in

medicine has advanced in giant steps in recent years, there is no clinical standard for quantify-

ing all relevant clinical outcomes in any given subject. In this perspective, mathematical

modeling can provide a virtual lab where the clinical significance of each risk factor can be

quantified and novel individualized therapeutic approaches can be designed [23].

The paper is organized as follows. We begin by providing a description of the mathematical

model, which is articulated in four main parts, first outlining its general characteristics, then

describing in more detail the model of the brain, of the eyes and of their coupling. We then dis-

cuss how microgravity conditions are modeled and how the overall system is solved numeri-

cally. A description of the rationale adopted for model calibration is followed by an outline of

the model validation against experimental observations. The paper ends with the results of

model simulations and their critical discussion.

Materials and methods

Lumped parameter mathematical model

General description of the model. We propose a lumped parameter model of the brain

and eyes, connected with a highly simplified model of the body, the electrical analogue of

which is shown in Fig 1. The aim of the model, which describes pressure and flow distributions

in the brain and eyes, is to predict fluid redistribution in the upper body vasculature and varia-

tions of the IOP and ICP following exposure to a microgravity environment.

The physiological system is subdivided into a number of linked, interacting compartments,

each of which contains a single physical constituent, such as blood, cerebrospinal fluid, inter-

stitial fluid and aqueous humor. In particular, we consider the interactions among the follow-

ing components (see Fig 1):

in the brain:

• blood (3 compartments: intracranial arteries (I), capillaries (C), intracranial venous sinuses

(S));

• cerebrospinal fluid (1 compartment: ventricular CSF (F));
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• cerebral tissue and interstitial fluid (1 compartment: brain (B));

in each of the two eyes:

• blood (5 compartments: retina (r), choroid (ch), central retinal artery (cra), central retinal

vein (crv), ciliary body circulation (cl));

• aqueous humor (ah) (1 compartment: anterior and posterior chamber);

Fig 1. Network model of fluid flows in the brain and eyes [12–14]. The nodes correspond to the connection between the brain and eye models. The connection

Intracranial Arteries-Ophthalmic Artery represents arterial supply; the connection Venous Sinuses-Cavernous Sinus represents the venous drainage; the grey and cyan

arrows represent the pressures acting on both sides of the lamina cribrosa.

https://doi.org/10.1371/journal.pone.0216012.g001
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and in the eye-brain coupling:

• cerebrospinal fluid (1 compartment: extra-ventricular (T) bridging intracranial and extracra-

nial regions, also including the subarachnoid space in the optic nerve posterior to the lamina

cribrosa).

The lumped parameter circuit for the brain adopted in the present work was described and

validated by Lakin and Stevens in [24] for microgravity simulations. The eye block combines a

model for the retinal circulation and a model for the dynamics of aqueous humor that have

been proposed by some of the authors of this paper in [25] and [26], respectively, and extends

them to account also for the choroidal and ciliary body vascular beds [27]. In this work, we

focus on the mean behavior of the system and we neglect time variations on both the short

time scale of the heart beat and on the long time scale of remodelling processes. We also

neglect autoregulation mechanisms of small vessels, since we wish to keep the model relatively

simple in order to understand its basic behaviour. Moreover, little information exists about

autoregulation mechanisms in orbit, except that they might be altered due to high CO2 con-

centrations [1, 2].

The brain and eye models are coupled to each other and are linked to the rest of the body

via a highly simplified model consisting of two compartments: central arteries (A) and central

veins (V). This description corresponds to a model for the human physiology of the upper part

of the body. Throughout the paper, lower case letters will denote compartments in the eyes

and upper case letters will denote compartments in the brain and body.

Two main types of flows are included in the model, namely filtration and pressure-driven
flows. Fluid filtration is accounted for in two instances: (i) filtration of interstitial fluid from

the capillaries to the interstitial space, with the associated flow denoted by QCB, and (ii) filtra-

tion of aqueous humor from the ciliary body capillaries into the posterior/anterior chambers,

with the associated flow denoted by Juf. In general terms, the flux Qij due to filtration from the

compartment i to the compartment j is modeled by the Starling-Landis equation [28]:

Qij ¼ Kij½ðPi � PjÞ � sijðpi � pjÞ�; ð1Þ

where Pi and πi are the hydraulic and osmotic pressures in the compartment i, whereas Kij and

σij are the filtration and reflection coefficients from the compartment i to the compartment j.
The electric analogue of the Starling-Landis Eq (1) is an element with a resistor and a current

generator arranged in parallel, as depicted in Fig 1. All other flows in the model are simply

driven by the hydraulic pressure difference between compartments. In this case, the pressure-

driven flux Qij between the generic compartments i and j is governed by the hydraulic ana-

logue of Ohm’s law

Qij ¼
Pi � Pj

Rij
ð2Þ

where Rij denotes the hydraulic resistance. Each compartment i in the model is assumed to

have a total resistance to flow of 2Ri; then the resistance Rij in Eq (2) is taken to be Rij = Ri + Rj,

i.e. the sum of half of the resistance of compartments i and j. In the following, owing to the

complexity of the eye model, we will use different notations to identify the various components

of the eye circuits.

By formulating the above equations for all compartments and by writing the Kirchhoff

law of currents at all circuit nodes, we obtain a set of nonlinear algebraic equations in the

unknowns Pi, as reported in Tables 1 and 2. The nonlinearity is a consequence of the fact that,
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in some compartments, resistances are assumed to depend on pressures. This is discussed in

the following sections, where the brain and eye models are described in more detail.

The brain model

The human brain is a fully enclosed organ and its tissue is a medium saturated by three differ-

ent fluids interacting with each other: (i) blood, (ii) cerebrospinal fluid and (iii) interstitial

fluid. The cerebrospinal fluid is produced mainly by the choroid plexus. It flows through the

ventricular system to the subarachnoid space, where it is absorbed into the blood stream via

the sagittal sinus. The interstitial or extracellular fluid fills the interstices of the brain tissue,

bathing the neurons. In healthy subjects, only a relatively small amount of fluid is able to leak

from blood into the interstitial fluid, owing to the low permeability of the blood-brain barrier

[29].

In this work, we describe the brain via an electrical analogue representation of the model

proposed by Lakin and Stevens in [24], as schematically shown in the “BRAIN” box of Fig 1.

The model consists of three fluid networks: (i) the blood vasculature (Fig 1, black portion), (ii)
the cerebrospinal fluid network (Fig 1, grey portion) and (iii) the interstitial fluid network (Fig

1, tan portion). The brain model is connected to the upper part of the body through the sys-

temic central arteries (A) and veins (V) compartments characterized by the resistances RA

and RV, respectively. CSF production is externally imposed and kept constant at the produc-

tion rate QCF. Unlike the choice adopted in [24] to impose a constant flux QIC between the

intracranial arteries and the capillaries accounting for the autoregulation of cerebral blood

flow, here we allow cerebral blood flow to change by inserting the hydraulic resistances RI and

RC between the compartments I and C. An extra-ventricular compartment (T) filled with cere-

brospinal fluid bridges the intracranial and extracranial regions and includes the subarachnoid

space in the optic nerve, posterior to the lamina cribrosa.

We remark that, among the numerous models that have been proposed to simulate cere-

bral fluid-dynamics (see e.g [24, 30–33]), in this work we have adopted the one proposed by

Table 1. Summary of the model equations obtained by writing the Kirchhoff current law at the circuit nodes.

KIRCHOFF CURRENT LAWS

BRAIN

Compartment I QA = QOA + QIC

Compartment C QIC = QCB + QCS + QCF

Compartment S QCS + QTS + QCvS = QSV

Compartment B QFB + QCB = QBT

Compartment F QCF = QFT + QFB

Compartment T QFT + QBT = QTV + QTS

QV = QTV + QSV

EYE

Node 1 QEye,In = Qcl + Qch + Qr

Node 2 Qcl = Qcl,v + Juf

Node 3 Qcl,v + Qch + Qr + Jtm = QEye,Out

Node 4 Juf + Jsecr = Jah

Node 5 Jah = Juv + Jtm

BODY-BRAIN-EYE COUPLING

Ophthalmic Arteries QOA = 2QEye,In

Cavernous Sinus QCvS = 2QEye,Out

https://doi.org/10.1371/journal.pone.0216012.t001
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Table 2. Summary of the model balance and constitutive relations.

CONSTITUTIVE RELATIONS

BRAIN

Cerebral Blood Flow
QIC = (PI − PC)/(RI + RC)

QCS = (PC − PS)/(RC + RS)

Cerebrospinal and Interstitial Fluid Flow
QCB = KCB[(PC − PB) − σCB ΔπCB]

QBT = (PB − PT)/RBT

QFT = (PF − PT)/RFT

QTS = (PT − PS)/RTS

QFB = (PF − PB)/RFB

EYE

Blood Flow
Qcl = (PEye,In − Pcl,c)/(Rcl,in + Rcl,a1 + Rcl,a2 + Rcl,c1)

Qcl,v = (Pcl,c − PEye,Out)/(Rcl,c2 + Rcl,v1 + Rcl,v2 + Rcl,out)

Qch = (PEye,In − PEye,Out)/(Rch,in + Rch + Rch,out)

Qr = (PEye,In − PEye,Out)/(Rcra,in + Rcra + Rr + Rcrv + Rcrv,out)

Rch = Rch,a1 + Rch,a2 + Rch,c1 + Rch,c2 + Rch,v1 + Rch,v2

Rcra = Rcra,1 + Rcra,2 + Rcra,3 + Rcra,4

Rr = Rr,a1 + Rr,a2 + Rr,c1 + Rr,c2 + Rr,v1 + Rr,v2

Rcrv = Rcrv,1 + Rcrv,2 + Rcrv,3 + Rcrv,4

Ri;v1 ¼ Ri;v2 ¼
aið1þ ðPi;v � IOPÞ=ðkp;ikL;iÞÞ

� 4 if Pi;v > IOP

aið1 � ðPi;v � IOPÞ=kp;iÞ
4=3 if Pi;v � IOP

8
<

:
for i = cl, ch, r

ai ¼ 8pmvLv=A
2

i;v for i = cl, ch, r

kp;i ¼ Evh3
vp

3=2=ð12ð1 � n2
vÞA

3=2

i;v Þ for i = cl, ch, r

kL;i ¼ 12Ai;v=ðph2
vÞ for i = cl, ch, r

Rcra,n = αcra,n(1 + ΔPcra,n/(kp,cra,n kL,cra,n))−4 for n = 1, 2, 3, 4

ΔPcra,1 = (Pcra,in + Pcra,1)/2 − PT

ΔPcra,2 = (Pcra,1 + Pcra,2)/2 − PT

ΔPcra,3 = (Pcra,2 + Pcra,3)/2 − PLC

ΔPcra,4 = (Pcra,4 + Pcra,4)/2 − IOP

acra;n ¼ 8pmcraLcra;n=A
2

cra for n = 1, 2, 3, 4, with Acra ¼
pD2

cra
4

kp;cra;n ¼ Ecrah3
crap

3=2=ð12ð1 � n2
craÞA

3=2

cra;nÞ for n = 1, 2, 3, 4

kL;cra;n ¼ 12Acra;n=ðph2
craÞ for n = 1, 2, 3, 4

Rcrv;n ¼
acrv;nð1þ DPcrv;n=ðkp;crv;nkL;crv;nÞÞ

� 4 if DPcrv;n > 0

acrv;nð1 � DPcrv;n=kp;crv;nÞ
4=3 if DPcrv;n � 0

8
<

:
for n = 1, 2, 3, 4

ΔPcrv,1 = (Pcrv,1 + Pcrv,2)/2 − IOP

ΔPcrv,2 = (Pcrv,2 + Pcrv,3)/2 − PLC

ΔPcrv,3 = (Pcrv,3 + Pcrv,4)/2 − PT

ΔPcrv,4 = (Pcrv,4 + Pcrv,out)/2 − PT

acrv;n ¼ 8pmcrvLcrv;n=A
2

crv for n = 1, 2, 3, 4, with Acrv ¼
pD2

crv
4

kp;crv;n ¼ Ecrvh3
crvp

3=2=ð12ð1 � n2
crvÞA

3=2

crv;nÞ for n = 1, 2, 3, 4

kL;crv;n ¼ 12Acrv;n=ðph2
crvÞ for n = 1, 2, 3, 4

Aqueous Humor Flow
Juf = Lin[(Pcl,c − IOP) − σp Δπp]

(Continued)
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Lakin and Stevens in [24] because of its purpose to study the response of intracranial pressure

in microgravity environments. Indeed, other choices could be made, in the perspective that

specific blocks of the coupled model could be improved as research advances in the corre-

sponding fields. For example, the model adopted here does not include the collapsibility of

the internal jugular veins and the presence of the lymphatic and glymphatic systems that

may contribute to fluid motion in the brain. To date, many issues regarding the anatomy and

physiology of the venous and lymphatic systems, in the brain as well as in other parts of the

body, are not completely understood. For example, the routes of venous drainage from

the brain are quite complex and may vary with posture and external conditions [34–37]) and

the mechanisms regulating the flow of lymph through the various parts of the brain are still

under investigation [38, 39]. These aspects will be included in future developments of the

work.

The eye model

The full model of the eye is schematically shown in the two “EYE” boxes of Fig 1 and is

depicted in detail in Fig 2. It comprises two interconnected circuits hosting the flow of blood

and aqueous humor, respectively. The vascular circuit (Fig 2, black portion) consists of three

vascular beds, corresponding to the retinal, choroid and ciliary body circulations, arranged in

parallel to each other. In the aqueous humor circuit (Fig 2, cyan portion) fluid is produced in

the ciliary body via ultrafiltration and active secretion, and then drained via the trabecular and

uveoscleral pathways. Inclusion of this circuit is important since the balance between aqueous

production and drainage governs the levels of IOP. The light blue-shaded area in the figure

represents the interior of the eye globe, where the pressure equals IOP. This means that all ves-

sels in the circuits exposed to such an area are subjected to an external pressure equal to IOP.

Finally, the grey-shaded area represents the lamina cribrosa, which is loaded by IOP on the

one side and by the pressure within the optic nerve tissue on the other side, which is mainly

due to the CSFp in the subarachnoid space [40]. The central retinal artery and vein running

through the lamina are subjected to external mechanical actions that are produced by the

deformation of the lamina [41, 42].

Further details of all eye circuits and the eye-brain coupling are provided in the following

subsection.

The ocular vascular circuit. The main arterial supply to the eye is the ophthalmic artery,

which branches from the carotid artery. The major branches of the ophthalmic artery are the

Table 2. (Continued)

CONSTITUTIVE RELATIONS

Juv = IOP/Ruv

Ruv = (k2 + IOP)/k1

Jtm = (IOP − Pevp)/Rtm

Rtm = R0(1 + κ(IOP − Pevp))

BODY-BRAIN-EYE COUPLING

QA = (PA − PI)/(RA + RI)

QSV = (PS − PV)/(RS + RV)

QTV = (PT − PV)/RTV

QOA = (PI − PEye,In)/RI,OA

PEye,Out = PS

https://doi.org/10.1371/journal.pone.0216012.t002
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long ciliary arteries, that nourish the ciliary body, the central retinal artery (cra) that nourishes

the inner part of retina and the posterior ciliary arteries that nourish the choroid. Ciliary body

and choroidal circulations drain into the superior ophthalmic vein, which exits the orbit

through the superior orbital fissure and drains into the cavernous sinus. Retinal blood drain-

age occurs via the central retinal vein (crv) and eventually converges into the cavernous sinus.

The cra and crv run through the optic nerve canal, piercing the lamina cribrosa approximately

in its center.

Each vascular bed of the circuit is composed of three lumped compartments connected in

series and representing arterioles (a), capillaries (c) and venules (v), as detailed in Fig 2. In the

figure and the following text, the pressure in each node of the vascular circuit is denoted Pi,n,

where i = r, cl, ch, cra, crv indicates the different vascular segments (r for retina, cl for ciliary

body, ch for choroid and cra and crv for the central retinal artery and vein, respectively) and n
allows us to distinguish between different nodes within the same segment (n = 1, 2, 3 in the cra
and crv, n = a, c, v in the retinal, ciliary body and choroidal circulations, and n = in, out in the

vascular structures located before the arterioles and after the venules of the vascular segment

i). A similar notation holds for all resistances; for instance, Rr,v2 denotes the resistance in the

retinal circuit downstream of the node representative of retinal venule (with pressure Pr,v).

Fig 2. Network model for the eye vasculature (black portion) and aqueous humor production and drainage (cyan portion). The vasculature comprises circulation

of blood in retinal, ciliary and choroidal vascular bed. Variable resistances are marked with arrows.

https://doi.org/10.1371/journal.pone.0216012.g002
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The vascular circuits include both constant and variable resistances. Constant resistances

are calibrated at the reference state and their value is kept constant in all numerical simula-

tions. In particular, constant resistances are adopted for arterioles and capillaries, since active

changes in vascular diameters due to blood flow regulation are not accounted for in the present

model. To characterize constant resistances, we used Poiseuille law to relate flux and pressure

drop along each single vessel. This leads to the following expression for a generic resistance of

each component of the circuit

R ¼
krrL
A2

; ð3Þ

where A is the representative cross-sectional area of the compartment, L the representative

compartment length, ρ is blood density, μ is blood dynamic viscosity and kr = 8πμ/ρ. In the

case of a single vessel, A and L correspond to the vessel cross-sectional area and length respec-

tively. Also note that the circuit has been constructed in such a way that the resistance of each

compartment within the eye (arterioles, capillaries and venules) is split into two resistances

with the same characteristics (see Fig 2), resulting in a node representing the mean pressure of

the compartment.

Variable resistances are indicated by an arrow in Fig 2. They account for passive changes

in vascular diameter and, possibly, shape of the cross-sectional area, due to the action of the

transmural pressure difference ΔPt (i.e. the pressure difference across the vessel wall) and the

deformability of the vessel wall. Variable resistances are modeled by combining a tube law,

describing the mechanical response of the vessel wall to changes in the transmural pressure

difference, and Poiseuille law, describing the fluid flow through the resistor. Following [25]

and [43], we model deformable tubes as Starling resistors, which reflect the physiological high

collapsibility of the venous segments when the transmural pressure becomes negative. For a

generic resistance R we then write

R ¼

8pmL
A2

1þ
Dpt

kp kL

 !� 4

if Dpt > 0;

8pmL
A2

1 �
Dpt

kp

 !4=3

if Dpt � 0;

8
>>>>>><

>>>>>>:

ð4Þ

where,

kL ¼ 12
A
ph2

; kp ¼
Eh3p3=2

12ð1 � n2ÞA3=2
; ð5Þ

where h, E and ν are thickness, Young’s modulus and Poisson ratio of the vessel wall, respec-

tively. The value of ΔPt differs depending on the particular vascular segment under consider-

ation, as specified in Table 2. In particular, in all circulation segments inside the eye (light

blue shaded area in Fig 2) the pressure external to the vessel coincides with the IOP. On the

other hand the translaminar segments of the central retinal artery and vein are subjected to

an external radial compressive stress PLC that originates within the lamina cribrosa as a con-

sequence of the action of IOP, CSFp and scleral tension acting on it, as schematized in Fig 3

(left). In order to evaluate this compressive stress, we use the nonlinear elastic model pro-

posed by some of the authors in [41], with the parameter choices reported in [25]. This

three-dimensional numerical model is employed to compute PLC for various values of IOP

and CSFp forcing the lamina deformation. The results are reported with dots in Fig 3 (right)
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and have been fitted using a second order polynomial function, shown in the figure by the

green surface. Such a surface is then employed to determine the external pressure acting on

the translaminar vascular segments.

We remark that, in the current version of the model, variable resistances are adopted only

to simulate passive diameter changes in the ocular venous segments. In future extensions of

the model, variable resistances could also be utilized to simulate diameter changes in the arteri-

oles, where passive and active mechanisms could be included by introducing appropriate func-

tional expressions relating changes in the representative cross-sectional area A to changes in

biophysical factors, such as transmural pressure difference, shear stress, oxygen levels and pH

(see e.g. [44–47]). Active changes in arteriolar diameter are the result of regulatory mecha-

nisms whose presence and functionality on earth and in microgravity conditions are yet to

be fully assessed. This is particularly true for the choroid, where the presence of regulatory

mechanisms has been discovered only recently and remains, to date, vastly understudied [1,

48–50]. Interestingly, there have been reports that the choroid engorges during spaceflight

[51], although, to date, choroidal flow has not been actually measured during spaceflight.

Thus, it would be very interesting to include a more detailed description of choroidal hemody-

namics in future developments of the model.

The aqueous humor circuit. The aqueous circuit used in this model was proposed by

some of the authors in [26] and its electrical analogue is depicted in cyan in Fig 2. The value of

IOP results from the balance between aqueous humor production and drainage.

Aqueous humor is produced at the ciliary body by a combination of passive and active

mechanisms. The passive mechanism consists of ultrafiltration of fluid across the vessel wall

in the microcirculation and produces a flux Juf that is driven by trans-membrane differences

in hydrostatic and oncotic pressures, the oncotic flux being mediated by a protein reflection

coefficient σp, see Eq (1). The passive production mechanism is accounted for in the model

through the filtration block (resistance and current generator in parallel) between the capillary

node in the ciliary circulation (with pressure Pcl,c) and the node in the aqueous circuit (with

pressure IOP), resulting in the flux Juf.

The active mechanism is due to secretion of ions in the non-pigmented epithelium, which

creates a difference in ionic concentration that draws fluid into the eye via osmosis [27]. Fol-

lowing [26, 52], we assume that the active secretion contributes with a constant flow rate,

which is modeled in the electrical analogue of Fig 2 by the generator Jsecr. Thus, Jsecr is a model

input and is listed in Table 3.

Fig 3. Left: Schematic representation of the radial compressive stress PLC originating within the lamina cribrosa as a consequence of the action of IOP, CSFp and

scleral tension acting on it. PLC acts as external pressure on the translaminar segments of the central retinal artery and vein. Right: Magnitude of the radial compressive

stress PLC computed using the nonlinear elastic model described in [41] for various IOP and CSFp levels (black dots) and interpolated using using a second order

polynomial function (green surface).

https://doi.org/10.1371/journal.pone.0216012.g003
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The drainage of aqueous humor from the eye is driven by mechanical pressure differences

and occurs through two different pathways: the trabecular pathway (also known as conven-

tional), resulting in the flow Jtm and the uveoscleral pathway (also known as unconventional),

resulting in the flow Juv. Both are modeled as nonlinear resistors Rtm and Ruv, as in [26, 27, 53].

Since the system is assumed to be at steady state, aqueous inflow and outflow must be equal

to each other, leading to the balance equation Juf + Jsecr = Jtm + Juv. The full model of the eye

results from coupling the circuits described above as shown in Fig 2. The coupling between the

two circuits is truly two-ways: (i) the aqueous humor circuit influences the vascular circuit,

since the IOP acts as an external pressure on the intraocular venules (see dashed cyan arrows

in Fig 1), thereby influencing their resistances; (ii) the vascular circuit influences the aqueous

humor circuit, since blood pressure in the ciliary body capillaries contributes to the production

of aqueous humor.

Coupling of the eye and brain models

The connections between the eyes and brain models are marked with special symbols in Fig 1.

Red filled circles denote connections between arterial compartments; blue filled circles those

between venous compartments. Finally, the cyan and grey arrows indicate the pressures (intra-

ocular and extraocular, respectively) that act on both sides of the lamina cribrosa in the optic

nerve head and on the vessels. More precisely:

• the node corresponding to the ophthalmic artery (OA) the eye model (whose pressure is

denoted as PEye,in in Fig 1) is connected to the intracranial arteries in the brain model (whose

pressure is denoted as PI) through an effective vascular resistance (RI,OA);

• the node corresponding to the cavernous sinus in the brain (whose pressure is denoted as

PEye,out) and that corresponding to the episcleral veins in the eye (whose pressure is denoted

as Pevp) are directly connected to the venous sinus in the brain model (whose pressure is

denoted as PS);

• the lamina is acted upon by the IOP from the ocular side (cyan arrow) and by the CSFp in

the subarachnoid space in the optic nerve, here assumed to be equal to the extraventricular

CSFp (grey arrow).

Thank to this coupling, this work presents the first model capable of simulating in a self-

consistent manner the fluid-dynamic eye-brain-body connections as the result of (i) the pres-

sure drop between the central arteries (PA) and the central veins (PV); (ii) the active secretion

of aqueous humor in the eye (Jsecr); and (iii) the production of CSF in the brain (QCF), as sum-

marized in Table 3.

Simulation of microgravity conditions

In space, the human body experiences a series of changes in external conditions with respect

to earth. The most obvious one is the lack of gravity that has an influence on the redistribution

Table 3. Summary of model inputs.

MODEL INPUTS BASELINE SOURCE

Arterial Pressure PA 92.0 mmHg [24]

Venous Pressure PV 5.4 mmHg [24]

CSF production rate QCF 299.5 μl min−1 [24]

Active secretion rate

of aqueous humor

Jsecr 6.9525 μl min−1 [52]

[26]

https://doi.org/10.1371/journal.pone.0216012.t003
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of fluids within the body. In particular, a significant fluid shift has been observed from the

lower to the upper body and head. This is thought to produce an increase in ICP and also a

variation in the blood colloid osmotic pressure in the brain [1, 6, 54]. However, the effect of

microgravity on ICP is quite complex. In acute zero gravity conditions simulated during para-

bolic flight, ICP during supine posture fell in microgavity relative to earth conditions and the

removal of gravity was found to prevent the normal lowering of ICP when upright [55].

In the present paper, microgravity conditions are simulated following the same approach as

in [24], namely: (i) we impose zero hydrostatic pressure distribution; (ii) we set the central

venous pressure to zero; (iii) we decrease blood colloid osmotic pressure as a consequence of

fluid shift towards the head; (iv) we weaken the blood-brain barrier by modifying the Starling-

Landis equation coefficients (see Eq (1)). In particular, we increase the filtration coefficient

KCB between capillaries in the brain and the brain tissue and correspondingly decrease the

reflection coefficient σCB as suggested by [24].

We also consider long head-down tilt (LHDT) conditions that are the most common earth

clinical model used to mimic the effects of microgravity on body fluids shift. In particular,

HDT is a ground-based experimental procedure, which simulates the effects of microgravity

on the cardiovascular system: participants lay head down on a surface inclined by an angle θ =

6 degrees, with respect to a horizontal plane, and experience a shift of cephalic fluid similar to

that occurring in microgravity. The position change affects the hydrostatic pressure distribu-

tion in the human body, which is equal to ρgx sin θ, with x being an axis running along the

body and centered in the right atrium, ρ is fluid density and g is the gravitational acceleration.

This means that the pressure variation between the central and intracranial compartments in

the model can be written as G sin θ, with G = ρgH, and H is the distance between the right

atrium and the base of the brain. We use our model to simulate LHDT, by changing both the

gravitational direction and the blood oncotic pressure in the brain.

Summarizing, we simulate: (i) LHDT; (ii) microgravity environment with an intact blood/

brain barrier (M0); and (iii) microgravity environment with a weakened blood/brain barrier

(M1, M2), imposing the condition reported in Table 4.

We remark that a weakened blood/brain barrier was utilized in [24] to simulate micrograv-

ity conditions. However, recent studies showed that the ICP drop predicted in [24] without

any dysfunction of the blood/brain barrier actually matched data collected during acute

weightlessness in parabolic flight [55]. In this work, we opted for not ruling out completely the

possibility of a dysfunctional blood/brain barrier, since there might be other factors, such as

radiation exposure, which may compromise it during long space flights. Thus, in the following

we will compare the model predictions obtained with intact (M0) and dysfunctional (M1, M2)

barrier.

In all four cases, model simulations are performed for decreasing values of the blood onco-

tic pressure, corresponding to different degrees of fluid shift towards the upper part of the

Table 4. Conditions for simulated microgravity environment, as in [24].

SIMULATION CONDITIONS

LHDT PA,LHDT = PA + G sin θ PV,LHDT = PV + G sin θ
KCB,LHDT = 0.0665 ml mmHg−1 min−1 σCB,LHDT = 1

M0 PA,M0 = PA PV,M0 = 0

KCB,M0 = 0.0665 ml mmHg−1 min−1 σCB,M0 = 1

M1 PA,M1 = PA PV,M1 = 0

KCB,M1 = 0.1164 ml mmHg−1 min−1 σCB,M1 = 0.5714

M2 PA,M2 = PA PV,M2 = 0

KCB,M2 = 0.1330 ml mmHg−1 min−1 σCB,M2 = 0.5

https://doi.org/10.1371/journal.pone.0216012.t004
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body. Specifically, denoting by πc the blood oncotic pressure, the oncotic pressure differences

involved in the ultrafiltration of aqueous humor in the eye and CSF in the brain can be written

as Δπp = πc − πah and ΔπCB = πc − πB, respectively. Since πah� 0 mmHg [27, 52], a reasonable

baseline value for πc is 25 mmHg. Simulations are performed for πc 2 (18.5, 25) mmHg.

Decreases of 3.3 mmHg and 6.3 mmHg have been associated with LHDT and microgravity

conditions, respectively, leading to πc values of 21.7 mmHg and 18.7 mmHg, respectively [24],

which are indeed included in the simulated interval.

Solution strategy

We implemented the circuit shown in Fig 1 in OpenModelica [56], which is a free, open-

source modeling and simulation environment. In particular, we used the analogue electric

components environment, which allows the user to draw a circuit and specify analytical

expressions for nonlinear components. The circuit is automatically solved by the software.

The graphic-oriented design of the circuit allows the user to easily modify the network and to

include a large number of components.

Model calibration

The main goal of the model calibration is to select the values for all model parameters in such a

way that, at baseline, the model predictions are in agreement with values reported in the litera-

ture. Since the choice of model parameters is one of the most delicate and important steps in

devising a mathematical model, we report here the main rationale behind our choices. In the

following, we denote reference values using overlined symbols.

We remark that, whenever possible we adopted, the same parameter values as those

reported in the literature, as summarized in Table 5. In particular, considering posture, the

brain model by Lakin et al [24] has been calibrated utilizing measurements pertaining to the

supine position. The retinal model developed by some of the authors [25] has been calibrated

utilizing measurements of blood velocity obtained via Color Doppler Imaging when the indi-

vidual was resting on a reclined chair. Thus, we can assume that the reference for our model is

the supine position.

Unfortunately, though, some parameters pertaining to blood flow resistances were not

readily available in the literature and needed to be calibrated starting from reference values of

flow rates and pressures. In this perspective, it is important to emphasize that experimental

measurements of flow rates and pressures are influenced by many factors, including age [57–

59], gender [60–62], posture [63–66] and time of the day [61, 67, 68], not to mention the

instrument utilized for the measurement [69, 70] and the measurement protocol [7, 8]. Thus,

it would be necessary to collect all the required data for model calibration simultaneously on

the eyes and brain of a large cohort of individuals, at same time of the day, with consistency in

the adopted instruments and measurement protocols. Such a dataset is currently not available

and its realization would be a great contribution to advance the current knowledge in cardio-

vascular physiology in health and disease.

Reference values for blood flow rates in the eye. A reference value of Qr ¼ 40:9ml=min for

retinal blood flow can be found in [25]. This value results from a review of the experimental

measurements reported in [71–75]. Similarly, a reference value of Qcl ¼ 133ml=min for the

blood flow in the ciliary body can be found in [76]. This value was estimated from measured

levels of aqueous-to-plasma ascorbate ratio and aqueous production rate [77, 78] The choice

of a reference value for the choroidal blood flow is less obvious due to the lack of experimental

measurements. Here we choose a value of Qch ¼ 368ml=min, which is within the same range as
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Table 5. Summary of model parameters.

MODEL PARAMETERS

BRAIN

Cerebral Blood Flow
RI 33.5 �10−3 mmHg min ml−1 [24]

RC 12.7 �10−3 mmHg min ml−1 [24]

RS 12.7 �10−3 mmHg min ml−1 [24]

Cerebrospinal and Interstitial Fluid Flow
KCB 0.0665 ml mmHg−1 min−1 [24]

σCB 1 [24]

ΔπCB 21 mmHg [24]

RBT 1.55 mmHg min ml−1 [24]

RFT 0.6678 mmHg min ml−1 [24]

RFB 0.9023 mmHg min ml−1 [24]

RTS 9.90 mmHg min ml−1 [24]

EYE

Blood Flow
Ev 495 mmHg [25]

hv 7.73 �10−4 cm this work

μv 2.12 �10−5 mmHg � s this work

νv 0.49 [25]

Lv 0.80 cm this work

Rcl,in 16.70 mmHg min ml−1 this work

Rcl,a1 = Rcl,a2 105.26 mmHg min ml−1 this work

Rcl,c1 = Rcl,c2 33.83 mmHg min ml−1 this work

Acl;v 2.61 �10−4 cm2 this work

Rcl,out 23.90 mmHg min ml−1 this work

Rcra,in 376.76 mmHg min ml−1 this work

Lcra;1 ¼ Lcra;2 0.44 cm [25]

Lcra;3 0.02 cm [25]

Lcra;4 0.1 cm [25]

Dcra 175 �10−4 cm [25]

Ecra 2250 mmHg [25]

hcra 4 �10−3 cm [25]

μcra 2.25 �10−5 mmHg � s [25]

νcra 0.49 [25]

Rr,a1 = Rr,a2 101 mmHg min ml−1 this work

Rr,c1 = Rr,c2 94.33 mmHg min ml−1 this work

Ar;v 1.55 �10−4 cm2 this work

Lcrv;1 0.1 cm [25]

Lcrv;2 0.02 cm [25]

Lcrv;3 ¼ Lcrv;4 0.44 cm [25]

Dcrv 238 �10−4 cm [25]

Ecrv 4500 mmHg [25]

hcrv 10.7 �10−4 cm [25]

μcrv 2.43 �10−5 mmHg� s [25]

νcrv 0.49 [25]

Rcrv,out 247.25 mmHg min ml−1 this work

(Continued)
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the findings reported in [79] obtained using Magnetic Resonance Imaging, while yielding a

percent ratio between retinal and choroidal blood flow of 10% to 90% as indicated in [15].

Reference values for blood pressures in the eye. A reference value of PEye;in ¼ 62:2 mmHg for

blood pressure at the level of the ophthalmic artery can be found in [25]. As suggested by the

measurements performed via ophthalmomanometry-Doppler in [80], this value can be esti-

mated as PEye;in ¼ 2=3MAP, where MAP is the reference value for the mean arterial pressure

defined as MAP ¼ 1=3 SBP þ 2=3DBP, with SBP and DBP denoting the reference values for

systolic and diastolic blood pressures, here set at 120 mmHg and 80 mmHg, respectively. A ref-

erence value of PEye;out ¼ 8 mmHg for blood pressure at the venous output of the eye can be

found in [27]. This value is considered as a representative mean value among the wide range of

measurements reported in the literature, as reviewed in [81]. References values for the pressure

distribution inside the circuit for the retinal circulation have been computed using the mathe-

matical model presented in [25]. Reference values of Pcl;in ¼ 60 mmHg and Pcl;v ¼ 17 mmHg

can be found in [27]. These values were obtained indirectly from estimates of blood volume

and vascular compliance. A reference value of 32 mmHg for the pressure between arterioles

and capillaries can be found in [46]. This value is based on the choice adopted in [82], which

was based on previous modeling and experimental work [83–85]. Reference values for the

pressures within the choroidal circulation have been set as to mirror those in the ciliary circu-

lation, as in [27].

Reference values for vascular resistances in the eye. Given the reference values of flow rates

and pressures, the values for vascular resistances can be found by means of Ohm’s law. The

parameters involved in the calculation of the vascular resistances pertaining to CRA and CRV

follow directly from the work by [25]. For what concerns the parameters involved in the resis-

tances for retinal venules, we follow the same approach as in [25], where a dichotomous net-

work model for the retinal circulation proposed in [86] was used to define the hierarchical

architecture of the venous retinal segment, leading to the parameter values reported in Table 6.

Table 5. (Continued)

MODEL PARAMETERS

Rch,in 6.04 mmHg min ml−1 this work

Rch,a1 = Rch,a2 38.12 mmHg min ml−1 this work

Rch,c1 = Rch,c2 12.25 mmHg min ml−1 this work

Ach;v 5.06 �10−4 cm2 this work

Rch,out 8.66 mmHg min ml−1 this work

Aqueous Humour
Lin 0.3 μl min−1 mmHg−1 [52]

σp 1 [52]

Δπp 25 mmHg [52]

k1 0.4 μl min−1 [27]

k2 5 mmHg [27]

R0 2.2 mmHg min μl−1 [53]

κ 0.012 mmHg−1 [53]

BODY-BRAIN-EYE COUPLING

RA 101.5 mmHg min ml−1 [24]

RV 407.99 mmHg min ml−1 [24]

RTV 52.38 mmHg min ml−1 [24]

RI,OA 18.27 mmHg min ml−1 this work

https://doi.org/10.1371/journal.pone.0216012.t005
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Owing to lack of data concerning ciliary and choroidal circulations, we assumed that all the

elastic parameters are the same as those for the retina. For what concerns characteristic areas

and lengths, we reasoned as follows. Let the blood volumes in the venous segments of retinal

ciliary body and choroidal circulations be defined as Vi;v ¼ Ai;vLi;v, for i = r, cl, ch. Let us

Table 6. Baseline values for pressures and flow rates under physiological condition.

BASELINE VALUES

PRESSURES (mmHg) FLOW RATES (ml min−1)

BRAIN

PI 81.9956 QIC 1035

PC 34.1543 QCB 0.1291

PS 7.8210 QFT 0.3004

PB 11.2125 QFB 42.42 �10−3

PF 11.2125 QBT 0.1287

QTS 0.3220

QCS 1034.5

EYE

Pcra,in 46.833 Qr 40.9�10−3

Pcra,1 43.9041 Qch 367.9�10−3

Pcra,2 40.9753 Qcl 135.7�10−3

Pcra,3 40.8465 Juf -3.7�10−3

Pcra,4 40.2141 Jah 3.3�10−3

Pr,a 36.0875 Juv 2.9983�10−4

Pr,c 28.1062 Jtm 0.003

Pr,v 22.1371

Pcrv,1 20.0226

Pcrv,2 19.8107

Pcrv,3 19.7729

Pcrv,4 18.8452

Pcrv,out 17.9235

Pch,in 60.003

Pch,a 45.9777

Pch,c 27.4443

Pch,v 16.9714

Pch,out 11.0069

Pcl,in 60.0213

Pcl,a 46.1248

Pcl,c 27.7616

Pcl,v 17.118

Pcl,out 11.0651

PLC 0

IOP 14.9662

Pevp 7.82104

BODY-BRAIN-EYE COUPLING

PEye,in 62.2270 QA 1035

PT 11.0119 QTV 0.1071

PEye,out 7.8210 QCvS = QEye,out 0.5475

RLTp 11.0119 QSV 1035

QOA = QEye,in 0.5407

QV 1035

https://doi.org/10.1371/journal.pone.0216012.t006
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assume that the ratio between blood volumes in the retinal and ciliary body (res. choroidal)

venous segment is that same as the ratio between the corresponding flow rates, namely

Vi;v

Vr;v
¼

Qi

Qr

; i ¼ cl; ch: ð6Þ

Then it follows that

V i;v ¼ Ai;vLi;v ¼
Qi

Qr

Vr;v; ð7Þ

which implies that

Li;v ¼
Qi

Qr

Vr;v

Ai;v
i ¼ cl; ch: ð8Þ

The value of Ai, i = cl, ch, is computed imposing that, when Dpt ¼ Pi;v � IOP, with IOP ¼
15 mmHg, the value of the resistance in the Starling model equals the value of Ri;v1 þ Ri;v2

obtained using Ohm’s law.

The solution of the system obtained for the model parameters reported in Table 5 leads to

the baseline distribution of pressures and flow rates reported in Table 6. A thorough validation

of the model is the object of the next section.

Model validation

The mathematical model presented here connects numerous blocks that have been developed

independently by different authors. Thus, the validation of each block considered individually

has been addressed in different articles. Specifically, for the circulation in the retina and in the

central retinal vessels we refer to [25], for the circulation in the ciliary body and in the choroid

we refer to [49] and [27], for the aqueous humor circulation we refer to [26] and for the cere-

bral circulation of blood, interstitial fluid and CSF we refer to [24]. The validation of the

modeling assumptions concerning the connections between the various components has been

presented at the 2018 Annual Meeting of the Association for Research in Vision and Ophthal-

mology [13, 14]. The model proved capable of capturing a slight increase in IOP following an

increase in blood pressure, consistently with the findings of the Rotterdam study [87], the Blue

Mountains eye population-based study [88] and the Beijing eye study [89]. The model also

predicted a decrease in CSFp with blood pressure, consistently with the findings of Ren et al

reported in [90]. In addition, the model confirmed that the pressure in the vortex veins before

they exit the sclera is approximately equal to the IOP over a wide range of values, as reported

by Bill in [91]. These validation results are quite impressive, considering that these studies

were not used for model calibration. The successful validation of the model blocks considered

separately [24–27, 49] and jointly [13] supports the utilization of the model to study the physi-

ological connections between ocular and cerebral fluid flows.

Results and discussion

We now turn to the discussions of the results obtained by simulating microgravity conditions

using the mathematical model presented in the previous sections. We consider the four differ-

ent cases summarized in Table 4, namely LHDT, M0, M1 and M2.

Changes in the blood oncotic pressure modify both ΔπCB and Δπp, leading to changes in the

filtration across the blood-brain barrier and the ciliary body, respectively, and, consequently,
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to changes in ICP, CSFp and IOP. This is a crucial ingredient to interpret the results of the

model. We also note that the model is highly nonlinear and, in particular, the Starling resistors

in the venous segments of the eye are likely to play an important role. Specifically, when the

transmural pressure becomes negative the venous compartments collapse, giving rise to a sig-

nificant increase in resistance, according to Eq (4).

Fig 4 shows IOP (cyan), ICP (grey) and the radial stress acting on cra and crv (green) as a

function of the blood oncotic pressure πc for the four cases of interest (LHDT, M0, M1 and

M2). We recall that a reasonable baseline value for πc on earth is� 25 mmHg, which may

decrease to 21.7 mmHg in LHDT and to 18.7 mmHg in microgravity conditions. These refer-

ence values are indicated with dashed lines in the corresponding figures.

In all cases reported in Fig 4, and in agreement with the results of [24], the intracranial pres-

sure grows as πc decreases and the increase is more marked when the weakening of the blood/

brain barrier is accounted for (M1 and M2). The ICP variation is approximately linear with πc.

IOP also grows as the oncotic pressure difference decreases. In the Starling resistors, col-

lapse of the flexible pipes depends on the transmural pressure that, in all cases but the prelami-

nar crv, is given by the difference between the intraluminal pressure and the IOP. Therefore, a

growth in IOP can lead to vessel collapse. Since this is an important ingredient in the model, in

Fig 4 we report with coloured dotted lines the values of πc at which each of the compartments

collapses. Throughout this section, we use consistently the following color code to identify dif-

ferent ocular blood compartments:

• black for retinal circulation;

• red for choroidal circulation; and

• blue for ciliary body circulation.

Thus, for example, black vertical lines in Fig 4 indicate the maximum value of πc for which

vessel collapse in the retinal circulation occurs. In all considered cases, the first compartment

to collapse (for the largest values of πc) is that corresponding to the ciliary venules. Soon after-

wards, and further decreasing πc, the choroidal venules and the postlaminar crv also collapse.

Finally, the prelaminar crv collapses at a slightly smaller value of πc. This last event is triggered

by a compressive radial stress acting on the vessel, produced by the lamina deformation. We

note that all these events occur in a relatively narrow range of values of the blood oncotic pres-

sure πc and, approximately, at the same values of πc in all considered cases. In the case of

LHDT the collapse is slightly delayed.

We now analyze in detail the variation of the IOP with πc shown in Fig 4 and discuss its impli-

cations for blood fluxes in the various ocular compartments. For the sake of clarity we will con-

sider first the case of LHDT and then compare it with the microgravity cases (M0, M1 and M2).

In Fig 4(a) the IOP varies almost linearly with πc, in the range 20 mmHg <� pc � 25 mmHg and,

for pc
<
� 20 mmHg, the dependency becomes markedly nonlinear. This change in behavior is

related to the collapse of ciliary venules that occurs when the transmural pressure in the ciliary

venules becomes negative. The collapse of the venules produces a pressure increase in the ciliary

body capillaries and arterioles. This increases the aqueous production rate and, in turn, makes

the IOP grow. Finally, we note that the radial stress in the lamina cribriosa remains almost con-

stant over a wide range of values of πc and then sharply increases.

The fluxes in the retina, choroid and ciliary body circulation systems, normalized with

their respective baseline values, are reported in Fig 5. The figure shows that, as πc decreases,

the ciliary and choroidal fluxes decrease almost linearly until vessel collapse occurs, and then

do so much more rapidly. Interestingly, a different behavior is predicted by the model for the
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retina. Over a wide range of values of πc and before venules collapse happens, the flux in the

retina remains almost constant. This suggests that the particular architecture of the retinal vas-

culature provides a sort of mechanical (i.e. purely passive) blood flow regulation in response to

IOP changes. This behavior was already observed in [25], who proposed a model of the retinal

circulation alone. It is interesting to find that this feature is maintained by the full coupled,

interconnected model. When venules collapse in the ciliary body and choroidal circulation,

the flux in the retina initially grows. This is due to the fact that the retinal circuit is arranged in

Fig 4. Intraocular, intracranial and compressive radial stress within the lamina cribrosa (LC) as a function of the blood oncotic pressure in capillaries πc. The

physiological value of πc on earth is� 25 mmHg. The vertical dotted line indicates the value of πc representative of each case. Dashed coloured vertical lines indicate

the values of πc at which each of compartment collapses (black for central retinal vein, red for choroidal venules and blue for ciliary venules). Panel (d) appeared in

[12].

https://doi.org/10.1371/journal.pone.0216012.g004
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parallel to the other vascular beds and a decrease in flux in the ciliary body and choroid is par-

tially compensated by an increase in the retinal blood flow. Once the crv also collapses, blood

flow in the retina starts to drop significantly.

Figs 6 and 7 show the dependency of the transmural pressure in various compartments on

the blood oncotic pressure πc. All the plots can be interpreted in the light of the comments

above and provide a detailed picture of pressure changes in the ocular circulation as a response

to the LHDT experiment.

Finally, the LHDT case is compared with the simulations of microgravity conditions. Fig

(4b)–(4d) shows that in microgravity conditions the ICP is smaller than in the case of LHDT,

when the effect of blood/brain barrier disruption is not accounted for. ICP increases as the fil-

tration and reflection coefficients are changed. These results are in agreement with the findings

of [24]. The IOP predicted by our model is invariably lower in the cases of microgravity than

of LHDT, even if it is larger than in physiological earth conditions. The effect of the blood/

brain barrier integrity is far less important for the IOP than it is for the intracranial pressure. It

is noted that in Figs 6 and 7 we only report the curves corresponding to the case M2, since they

are almost coincident with those relative to the cases M0 and M1. Concerning blood fluxes,

the dependency on πc is similar to the LHDT case. However, the flux can be higher than in

baseline earth conditions, especially in the retina. This is essentially due to the lowering of the

central venous pressure.

Changes in IOP associated with prolonged head tilt have also been measured experimen-

tally. In a LHDT study involving 16 healthy subjects, Taibbi et al found pre- and post-bed IOP

values to be approximately 13 mmHg when measured via iCare (Icare Finland Oy, Espoo, Fin-

land), with an increase of 2.13 and 1.74 mmHg in the right and left eye, respectively, at ten

days into bed rest [92]. In another study, Taibbi et al observed that the iCare measurements of

IOP increased of 1.42 mmHg and 1.79 mmHg from baseline during 14- and 70-day LHDT

studies, respectively [7]. Baseline IOP values for the 16 subjects in the 14 day LHDT study and

for the 6 subjects in the 70 day LHDT study ranged within 11.91–15.66 mmHg and 10.15–

Fig 5. Normalized fluxes in the retina, choroid and ciliary body as a function of the blood oncotic pressure in capillaries πc. All fluxes are normalized with their

respective baseline value. The vertical dashed line indicates the value of πc representative of each case. Dotted colored vertical lines indicate the values of πc at which

each of compartment collapses (black for central retinal vein, red for choroidal venules and blue for ciliary venules). Panel (b) appeared in [12].

https://doi.org/10.1371/journal.pone.0216012.g005
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Fig 6. Transmural pressures in various compartments of the ciliary and choroidal circulations. LHDT solid line, M2 dash-

dotted line.

https://doi.org/10.1371/journal.pone.0216012.g006
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16.27 mmHg, respectively. IOP values predicted by our model in the LHDT case are on

the higher end with respect to those reported in experimental studies, even though the pre-

dicted IOP increases are of the same order of magnitude as those measured experimentally.

Specifically, as πc is decreased from 25 to 20 mmHg, our model predicts an IOP increase from

Fig 7. Transmural pressures in various compartments of the retinal circulation. LHDT solid line, M2 dash-dotted

line.

https://doi.org/10.1371/journal.pone.0216012.g007
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approximately 17.5 to 20 mmHg. Considering that our model does not include any regulatory

mechanism, these results are quite satisfactory.

Conclusion

In this paper, a lumped parameter model of fluid flow in the eyes and brain is proposed to

study the flow of blood, interstitial fluid, CSF and aqueous humor. Despite its many limita-

tions, including the fact that time-dependence and vascular regulation are not accounted for,

the model proved capable of simulating the relationships among IOP, CSFp and blood pres-

sure reported in major clinical and population-based studies, as reported in [13]. In addition,

the model is able to capture the relationship between choroidal venous pressure and IOP

reported in the seminal work by Bill in 1963 [91], thereby suggesting that it may prove instru-

mental to study blood outflow through the vortex veins, which is thought to play a very impor-

tant role in many pathologies but remains very difficult to measure [13].

The model has been utilized to investigate changes in flow and pressure distributions asso-

ciated with long term exposure to microgravity conditions. In this respect our model is com-

plementary to the one proposed in [9], which was focused on the short term effects induced by

acute gravitational variations. Simulation results point at a purely mechanical feedback mecha-

nism due to the collapsibility of the retinal venules exposed to IOP that would help maintain a

relatively constant level of blood flow through the retina despite microgravity-induced changes

in pressure. Thus, a certain level of regulation is achieved in the retina even though active regu-

latory mechanisms are not included in the model. Interestingly, a similar mechanism is not

present in the choroid and ciliary body due to their different vascular architectures. We

hypothesize that this mechanism may offer additional protection to the retinal vasculature

when exposed to extreme conditions, such as those associated with long space flights [2]. It is

important to notice that various conditions during space flight are thought to alter vascular

regulatory capabilities, particularly the increased amount of CO2 in the air. With this in mind,

a purely passive regulatory mechanism, as that predicted by the model for the retinal circula-

tion, might turn out to be of great importance to avoid retinal damages in space.

Thanks to its ability to self-consistently compute IOP and CSFp given a certain level of

blood pressure, the model developed in this paper might also bear a great relevance for other

pathologies beyond SANS, most importantly glaucoma. In addition, the ability to simulate the

flow conditions in the venous segments of the eye is a major contribution in ophthalmology,

since the veins are known to play a very important role in ocular physiology but are very diffi-

cult to measure in vivo.

We conclude by emphasizing that the model indeed includes a large number of parameters,

which required careful calibration. Despite the very good results obtained on the model valida-

tion, it would be important to perform a sensitivity analysis on the paramater space to better

assess the robustness of the model and direct its future extensions.
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