
HAL Id: hal-02298414
https://hal.science/hal-02298414

Submitted on 27 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Progressive Integration of Method Components: A Case
of Agile IS Development Methods

Rebecca Deneckere, Elena Kornyshova, Adrian Iacovelli

To cite this version:
Rebecca Deneckere, Elena Kornyshova, Adrian Iacovelli. Progressive Integration of Method Compo-
nents: A Case of Agile IS Development Methods. RCIS: Research challenges in Information Science,
Jun 2016, Grenoble, France. �10.1109/RCIS.2016.7549347�. �hal-02298414�

https://hal.science/hal-02298414
https://hal.archives-ouvertes.fr

Progressive Integration of Method Components:
A Case of Agile IS Development Methods

Rébecca Deneckère
CRI, University Paris 1 - Panthéon Sorbonne

90, rue de Tolbiac, 75013 Paris, France
Rebecca.Deneckere@univ-paris1.fr

Elena Kornyshova
CEDRIC, Conservatoire National des Arts et Métiers

2, rue Conté, 75003, Paris, France
elena.kornyshova@cnam.fr

Adrian Iacovelli
CRI, University Paris 1 - Panthéon Sorbonne

90, rue de Tolbiac, 75013 Paris, France
adrian.iacovelli@gmail.com

Abstract—Situational Method Engineering aims at
constructing methods adapted to a given situation, either by a
construction from a set of predefined method components or by
a customization of an existing method using different
techniques: configuration, extension, reduction, and so on.
However, these techniques are still limited in practice, as
considered complicated and heavy to implement. In this paper,
we describe a practitioner experience of a gradual integration
of different method components (issued from agile methods of
software development). In a real case of a development
company, we have practiced and observed the progressive
introduction of agile method components instead of the
construction or customization of methods in one go. We discuss
the lessons learned from this experience and define different
research perspectives.

Keywords—Situational Method Engineering; Method
Component; Agile Method; Progressive Integration; Experience
Report

I. INTRODUCTION
Situational Method Engineering (SME) argues that a

method to be used for the development of a system must be
aligned with the context of the project because the situation
of each project is different and requires a different
methodological support. For this purpose, SME promotes the
situation-specific method construction on the fly by reusing
parts of existing methods generally designed as autonomous
components and stored in method repositories. Whereas
many different SME approaches exist, their implementation
in practice is difficult as companies are slow to adopt these
approaches and techniques even though they acknowledge
the significance of the role that methods play in their
engineering activities.

A way to use SME in a smoother way should be to
implement the components progressively, one at a time, and
to wait for the users to be accustomed to the first changes
before going to another one. We propose in this work the

result of an experiment we performed in a company already
using some project management features but wishing to
improve the software development processes eventually by
introducing an agile method of software development. This
company didn’t want a too rapid change by implementing an
agile method right away and it was then proposed to
implement the features one by one, on an incremental and
progressive way. The goal of this work was to verify if a
progressive integration of method components was possible
and if it induced a better acceptance by practitioners.

We first studied the method used by the company in
order to identify the missing project management features.
We then selected a set of method components corresponding
to these features. An integration plan was defined on a long
term (two years long) to fit the acceptance/reluctance of
change in the company. The method engineer responsible for
the experiment was part of the company and helped the
integration along the way. Good results were obtained as all
the method components had been nicely integrated in the
original method.

Section 2 states the context of the company used in our
experience while section 3 explains the theoretical
background of the work. The case experience is explained in
Section 4 and Section 5 states the lessons learned from it.
Section 6 concludes this experience and proposes future
works.

II. ORGANIZATIONAL CONTEXT
The company capitalizes more than 10 years of research

and development in Cloud computing and Big Data. It is
specialized in the development of complex information
systems, with a particular emphasis on healthcare IT, e-
health and biomedical research.

The company was working on several projects at the
same time and was using a project development method

mostly based on a classical development method. The team
had a weekly meeting to discuss the tasks to be done during
the current and next weeks. New tasks could be added and
the members of the team discussed their feasibility. The team
has used a google doc to save and to share the minutes of
weekly meetings. A new version of the googledoc was
created each week. The tool RedMine1 was used to manage
the project but its usage was limited to the definition of the
high-level tasks and the decomposition of these tasks into
sub-tasks. The duration of task realization was also recorded
in RedMine.

This organization of project management had several
problems. The first problem was the bad definition of tasks.
The identified tasks were of very high level and not detailed
enough. In addition, their formulation was quite informal (no
specific formalism used, fuzzy formulations which
conducted sometimes to misunderstandings).

The follow up of the project constituted the second
problem. The time used for a given task was specified in the
googledoc. Thus, the project progress was observed.
However, it was done only at the high level of the tasks
hierarchy and the data were not always up-to-date.

The third problem was the lack of a specific tool to
support the project management activities. In addition to the
difficulties to obtain the follow up statistics, the problems of
the googledoc were: it was not possible to know why a task
runs slowly and is not finished at time; it was not possible to
measure the team productiveness.

Another problem concerned the customers’ new
requirements and feedbacks. Their management was not
structured around a specific procedure. No meeting
dedicated to the relationships with customers was set up.
Each new customer requirement/feedback was treated in
real-time without managing the priorities (as a result leading
to the delay of other tasks) or put aside for an undefined
period. The follow up of feedbacks to the customers was also
complicated.

All these problems were related to the lack of specific
project management method and/or tool. In addition to these
internal problems, it was necessary to have a formal project
management approach to have a better image in the face of
customers. In fact, the customers are more confident to work
with companies using a well-known method/tool and could
more easily renew contracts.

The above-mentioned problems implied discussions
inside the team about introducing an agile method of
software development. However, the team members were
reluctant to the adoption of such a method. In fact, the
current solution surely was not perfect, but it was
functioning and gave results. The team members were
against to take a step forward as it required too much effort
and time for a weak chance of success. It was then that we
intervene and proposed a progressive way to introduce the
changes in the method by integrating small method

1 http://www.redmine.org/

components one by one in the method, until all the desired
agile features were integrated.

III. THEORETICAL BACKGROUND
This section proposes a rapid overview of the works on

agile methods, Situational method engineering and the use of
SME for agile methods.

Agile ISD methods. The concept of agile methods
appeared at the beginning of the millennium with the
launching of the agile manifesto in 2001 [1]. As stated in [2],
while the publication of the manifesto did not start the move
to agile methods, which had been going on for some time, it
did signal industry acceptance of agile philosophy. Several
agile methods have been defined and worldly communicated
since then, as Lean Software Kanban [3], Extreme
Programming [4], Scrum [5], Crystal [6], DSDM [7] among
others. A 2013 survey [8] states that 57% of its respondents
work in companies where there are 5+ teams practicing agile
and 38% have 10+ teams. These figures indicate that the
agile momentum has taken off and that its successes are
being embraced at the enterprise level.

Situational Method Engineering and Method
components. Situational Method Engineering (SME) was
introduced in early nineties [9]. This field of researches
argues that the method to be used for the development of an
information system must be aligned with the situation of the
project. As a matter of fact, the engineering situation of each
project - its context - is different and requires a different
methodological support. For this purpose, SME promotes a
construction of situation-specific method by reusing parts of
existing methods generally designed as autonomous
components and stored in method repositories. Today, many
different SME approaches exist (e.g. assembly-based [10]),
extension-based [11], configuration-based [12], process
tailoring [13], model driven engineering [14] and service-
oriented [15] [16].

SME for Agile Development Methods. Agile methods
are usually defined as a set of best practices and behaviors.
Since the agile manifesto, lots of books and documents got
out to explain these best practices – for instance [17] [11] or
[18] - but all these documents lack a clear explanation of the
processes to apply, on the statement that you have to be agile
to do agile. But the fact that there isn’t a formal process
doesn’t mean that the agile developments aren’t structured, it
is just that there is a transition away from a completely rigid
and formalized process. In [19], Bertrand Mayer states “the
typical agile book is a succession of alternating general
observations and personal anecdotes of project rescues and
project failures. These anecdotes are usually entertaining and
sometimes enlightening, but a case study is only a case
study, and we never know how much we can generalize”. In
this jungle of tasks, principles, advices and
recommendations, new users of agile methods are sometimes
lost in all the possibilities that are offered to them, with no
clear understanding of the argumentation to choose one
alternative over the others. For instance, [19] mentions that
“every agile team in the field makes up its own cocktail of
agile practices, rejecting the ones that do not fit - until now,

however, each organization and project has had to repeat for
itself the process of sorting out the gems from the gravel.”
This behavior is common to other fields and the use of other
kind of methods (development methods, deployment
methods, design methods, etc.) and the SME domain can
help to solve this issue.

Agile methods have already been studied in several
works in the SME domain. [20] showed in a case study that a
situational method engineering approach together with an
agile software solution framework (ASSF) can be used to
create a feasible and usable hybrid software development
method. This can be done by combining agile and formal
practices and for a specific situation in large software
development organizations. In [21], the Method for Method
Configuration has been proposed as a method engineering
approach to tailor a specific agile method: eXtreme
Programming. One of the conclusions was that XP does not
initially provide an extensive coverage of different project
paths so it was a bit difficult to obtain contributing ideas
from the developers. Moreover, this study used only one
agile method, which makes it difficult to generalize. [22]
[23] provides a basis for the application of assembly-based
SME to the development of agile methodologies. A method
base is proposed that contains the necessary agile method
fragments derived from prominent agile methods, conform to
the Software Process Engineering Metamodel (SPEM 2.0),
and can be plugged into CAME tools which implement this
metamodel, including the Eclipse Process Framework
Composer (EPFC).

We have elaborated a set of method components dealing
with the high level representation of the agile methods and a
detailed view of components corresponding to the launch
phase of the following agile methods: Scrum [5], XP [4],
DSDM [7] and Crystal Clear (2004). These components are
integrated in the method family called Agile Project Launch
(APL) method family. The agile method components were
firstly described in [16] and then developed in [25].

IV. CASE DESCRIPTION
During the period covered by this study, five components

of agile methods were integrated progressively. Thus the
whole integration process includes five steps (or stages). The
agile components identified by the method engineer as
corresponding to the method requirements are: Plan the
project with Sprint planning meeting, Plan the project with
Planning game, Plan the project with Product Backlog,
Manage the project with Daily meeting and Manage the
project with Burndown chart. The established integration
plan is presented at Figure 1.

The predefined order of the integrated components was
defined according to two criteria:

• The requirement emergency for a given functionality
and

• The acceptance rate by the team members.

Fig. 1. Plan of the Agile Method Components Integration.

In the next sub-sections, we describe the integration of
these five components using the following template:
Context, Component, Process, Feedback.

Context: description of the situation in the company and of
the motivation for the usage of a given component.

Component: description of the integrated component at the
given stage. Each of five agile method components is
illustrated on a summary figure.

Integration process: description of how the component was
integrated, specifying the particularities of the method
component usage and, if relevant, option of the selected
component.

Feedback: description of the users feedback on the new
features.

Between the five integrated components, four are atomic
(representing the most detailed activities of the agile method
functionality) and one (Plan project with Product Backlog) is
composite as it is composed of three other agile method sub-
components.

A. Component 1: Plan the project with Sprint planning
meeting
Context: The team was using a google document to plan

all the project tasks. However, even if all the project team
members shared the document, this process was a bit
fastidious to handle as it was filled in a hectic manner after
the meetings. The goal here was then to find a tool
supporting this task on a better way.

Component: The component 1 (illustrated on the figure
2) explains how to use the new features associated with
sprint meetings. Each sprint meeting, the set of the identified
project tasks is studied and a state is affected to each of
them. Manual or electronic colored post-its are used to
visually improve the differentiation between the different
states. New tasks can be defined from the initial user stories
and added to the set with a duration estimation of their
integration into the project.

Integration process: A Redmine add-on allows to handle
numeric post-its with the managing of a table of post-it
corresponding to the Redmine tasks. The tool also allows to
link the stories to the high level tasks identified at the

beginning of the project. This add-on had been tested by the
method engineer and integrated in the project process. No
other integration has been made until this change has been
completely accepted by all the members of the team (3-4
months duration).

Feedback: The planning came from the management of a
googledoc to the filling of story tasks during the meetings.

One interesting finding was the fact that the meetings, far
from being longer, due to the task filling usually made at
another time, became a bit shorter. The new feature was
proved very efficient to collect all the information.
Moreover, it was also proved more efficient as it handled the
tasks time estimation, which was not taken into account in
the original Google document.

Component 1 – < {Requirements}, Plan the project with Sprint planning meeting>

Description: The goal of this component is to define the tasks within each user story and to provide the follow up of the
tasks execution and of the global advancement of user stories of the project. The goal is to help the project manager to
handle the tasks by having a clear vision of their life cycle.

Source situation: Planning of tasks

Target situation: Planning of tasks

Process for each sprint planning:

1. Quick review of the user stories delivered
• Make demonstration of the users stories achieved during the sprint.
• Update the state of each task: Ready, Assigned, Terminated, Expired, Forwarded, Finished, Failed.
• Make retrospective (analysis of the continuous improvement).
• Update the status of the user stories “Assigned” using different colors of post-it.

2. Review of the user stories to deliver.
• Description of the user stories to implement. The product owner describes what he wants for the next sprint. The

team banter back and forth with the product owner, asking clarifying questions and driving away ambiguity
• Identify a sprint goal: a one-sentence description of the overall outcome of the sprint. If a work does not directly tie

to the sprint goal, then it is not done during the sprint.
3. The team decides how the work will be built.

• Plan tasks for the new user stories with the estimation of the tasks duration.
• Describe the sprint.

Fig. 2. Component 1: Plan the project with Sprint planning

B. Component 2: Plan the project by planning game
Context: This component was required since the

beginning by the team members as it is one of the technics
quickly identified as ‘agile’. It was then the second
component to be integrated. The use of a tool was also
required as there was a member of the team who was
working on a distant way and it was then necessary to work
on digital cards instead of physical real cards.

Component: The aim of this component (illustrated on
the figure 3) is to integrate a game play in the planning of
tasks with the use of what is called a ‘poker game’. All the
requirements are written on cards and the game helps to
estimate the duration of their development. Each team
member has the opportunity to speak and to express himself
until the team agrees on the estimation. The requirements are
then regroup into deliverables.

Integration process: RedMine already had a planning
tool called ‘Planning Pocker’ so it was just a matter of
introduce it to the team, explain the process of the
prioritization and supervise the first uses in the project.

Feedback: The acceptation of the team of this new way
of planning was quite quick as it was already one of their
main requirements. The team was eager to use planning
poker and all the team members were very satisfied of this
new way to plan and prioritize the tasks.

C. Component 3: Plan the project with Product Backlog
Context: The team wanted to have the possibility to

handle the tasks on a more long term. The stories were
created week after week with no specific meeting for the
tasks estimation. High level tasks were created at the
beginning of the project but there was missing a level of
granularity between the high level and the low level tasks.
The missing functionality of project management was a
correct and a complete use of the backlog.

Component: This component (illustrated on the figure 4)
explains how to use a backlog to plan the project. The
backlog contains the list of all the necessary project
functionalities. It is initiated at the beginning of the project
but its elaboration can be pursued through all the
development. The backlog can be considered as the team
referential on the matter of the project requirements. As

Component 2 – < {Requirements}, Plan the project with planning game >

Description: The goal is to help the project manager to estimate the time needed to implement users’
requirements and to establish the first schedule of deliverables. This component uses the Poker Game technique
originally introduced in the XP agile method and used later in other agile methods.

Source situation: Requirements list

Target situation: Identified and scheduled deliverables.

Process:

1. Write each user requirement on a card. Usual cards have numbers on them following the Fibonacci sequence
including a zero: 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89; other decks use similar progressions. The reason for
using the Fibonacci sequence is to reflect the inherent uncertainty in estimating larger items, which means
that the numbers are to account for the fact that the longer an estimate is, the more uncertainty it contains.

2. Evaluate the ideal time (ideal time in weeks that the project team would need to implement the given
requirement) to implement each requirement using the cards. A Moderator, who will not play, chairs the
process. The Product Manager provides a short overview. The team is given an opportunity to ask questions
and discuss to clarify assumptions and risks. Each individual lays a card face down representing his or her
estimation (units used vary - they can be days duration, ideal days or story points). During discussion,
numbers must not be mentioned at all in relation to feature size to avoid anchoring. People with high
estimates and low estimates are given a "soap box" to offer their justification for their estimate and then
discussion continues. Repeat the estimation process until a consensus is reached. The developer who was
likely to own the deliverable has a large portion of the "consensus vote", although the Moderator can
negotiate.

3. Group the cards on the table to constitute deliverables (each deliverable is a group of requirements to be
delivered to the customer), without ordering requirements within a deliverable.

4. Calculate the delivery dates in function of the estimations of time for requirements for each deliverable.

Fig. 3. Component 2: Plan the project with Planning game

Component 3 – < {Project requirements}, Plan the project with Product Backlog>

Description: The component objective is to help the project manager and the stakeholders to identify and
manage the software requirements. The backlog is then used through the project to have a good view on the
tasks developments.

Sub-components:

• Plan the project with an Estimating meeting

• Plan the project with continuous Backlog input

• Plan the sprints with Backlog

Source situation: Project requirements

Target situation: Product Backlog

General process to use the backlog:

1. Identify high level requirements at the beginning of the project and put it in the backlog.

2. Put the stories in the backlog.

3. On an everyday basis, if a requirement is identified as not necessary, delete it from the backlog. On the
contrary, if a new necessary requirement is identified, add it to the backlog.

4. Use the backlog to regularly plan the sprints.

Fig. 4. Component 3: Plan the project with Product Backlog

mentioned above, this component includes three more
detailed sub-components detailed in the corresponding sub-
sections.

Integration process: The used tool had a backlog
functionality that wasn’t used by the team and that has been
integrated in the process. The unfinished tasks are now put in
the backlog, as well as the stories not planned for the
incoming week. The backlog is filled at the beginning
directly with the client in a specific meeting dedicated to this
process step and updated during the development.

The integration of this component was decomposed in
three phases (corresponding to the three sub-components):
first, the backlog was only used for the high level
requirements defined at the beginning of the project (for at
least 6 months). Then, the stories were put in the backlog on
a regular basis when they were coming up, on an informal
way (6 months). Finally, the backlog was used to plan the
sprints (2 months).

Feedback: After more than a year, the backlog is now
used on a complete way. There are several types of meeting
that had been integrated in the project development process:

- Estimating meeting (with the client) to create the
stories (with the poker planning technique), report on
the project velocity and make some demonstrations.

- Start of sprint meeting to prioritize the stories with
the client.

- End of sprint meeting to evaluate the work done and
make some demonstrations to the client.

1) Sub-component 3.1: Plan the project with an
Estimating meeting

Context: High level tasks were created at the beginning
of the project but there was just put on a Googledoc with
some informal description. As the objective was to get rid of
the googledoc, it was necessary to use another way to store
the requirements.

Component: This component (illustrated on the figure 5)
explains how to use a backlog to initially plan the project.
The backlog contains the list of all the necessary project
functionalities and is initiated at the beginning of the project
with the client. The backlog can be considered as the team
referential on the matter of the project requirements.

Integration process: The used tool had a backlog
functionality that wasn’t used by the team and that has been
integrated in the process. The backlog is filled at the
beginning directly with the client in a specific meeting
dedicated to this process step.

The integration of this component was long (6 months) as
the team was quite reluctant to use the backlog. It was then
necessary to integrate it carefully and without too many
changes in the process.

Feedback: An estimating meeting with the client) is now
used in the projects development process to create the stories
(with the poker planning technique).

2) Sub-component 3.2: Plan the project with continuous
Backlog input
Context: The team only used the backlog at the

beginning of the project to store the high level requirements.
They wanted to have the possibility to handle the tasks on a
more long term. High level tasks were created at the
beginning of the project but there was missing a level of
granularity between the high level and the low level tasks.
The project manager needed a more detailed use of the
backlog.

Component: This component (illustrated on the figure 6)
explains how to use the backlog through the project. The
backlog contains the list of all the necessary project
functionalities and its elaboration can be pursued through all
the development. The backlog can really be considered as
the team referential on the matter of the project requirements
through all the project development.

Integration process: The tool had a backlog
functionality used at the beginning of the project. The stories
are now put in the backlog on a regular basis when they are
coming up, on an informal way. Again the integration of this
component was quite long. Even with an acceptance of the
backlog functionality at the beginning of the project, the
team was quite reluctant to use the backlog on an everyday
basis. It was necessary to accustom them to this functionality
for 6 months before going further on.

Feedback: This functionality helped a lot the team to
handle the stories that were coming up through the
development. The backlog is now used not only for the high
level requirement but also for the low level ones and the link
between them is much clearer to all the team members.

3) Sub-component 3.3: Plan the sprints with Backlog
Context: The team filled the backlog on a regularly basis

but they didn’t used it completely to plan the sprint on a
regular way.

Component: This component (illustrated on the figure 7)
explains how to use a backlog to plan the sprints. Two
meetings have to be implemented for each sprint in order to
compare what has been done to what is yet to be done.

Integration process: The backlog was already used to
put all the requirements (high and low level). The unfinished
tasks are now put in the backlog, as well as the stories not
planned for the incoming week. It took two months to
integrate this functionality.

Feedback: After the integration of three different sub-
components (3.1, 3.2, 3.3), the backlog is now used on a
complete way. Two meetings were integrated in the process:
Start of sprint meeting (sprint planning meeting) and End of
sprint meeting (review sprint meeting). The sprints are now
of two weeks on a regular basis and the client has been
integrated on a better way in the meetings.

Sub-component 3.1 – < {Project requirements}, Plan the project with an Estimating meeting>

Description: The component objective is to help the project manager and the stakeholders to identify the
high level software requirements. Looking at the problem description, the team identifies some high level
requirements that will be refined later on in the process. There is no predefined formalism for the backlog; it can
be a table or a text document, a database or even a set of post-its. Each item has to be described on an atomic
way (only one requirement for each item). The Product Backlog contains features, bugs, technical work and
knowledge acquisition.

Source situation: Project requirements

Target situation: Product Backlog

Process to initiate the backlog:

1. Identify high level requirements at the beginning of the project and put it in the backlog.

2. Put the stories in the backlog.

Fig. 5. Component 3.1: Plan the project with an iniital Product Backlog

Sub-component 3.2 – < {Project requirements}, Plan the project with Product Backlog>

Description: The component objective is to help the project manager and the stakeholders to manage the
software requirements in real-time. After its initial definition, the backlog is updated on a day-to-day basis. Once
the backlog gets larger, it may be necessary to group the backlog into near-term and long-term items.

Source situation: Project requirements, Product backlog

Target situation: Product Backlog

Process to use the backlog:

1. On an everyday basis, if a requirement is identified as not necessary, delete it from the backlog.
2. On the contrary, if a new necessary requirement is identified, add it to the backlog.

Fig. 6. Component 3.2: Plan the project with Product Backlog

Sub-component 3.3 – < {Project requirements}, Plan the sprints with Backlog>

Description: The component objective is to help the project manager to correctly plan the sprints. The
product backlog is used to handle the requirements and to indicate which tasks are under way, finished or to be
done. Two meetings are introduced at the beginning and at the end of each sprint to evaluate, with the product
owner, which stories have to be developed for this sprint and what has been done already.

Source situation: Product backlog

Target situation: product backlog, Sprint

Process to plan the sprints with the backlog:

1. At the beginning of the sprint, make a sprint planning meeting to prioritize the stories with the product
owner. This meeting helps to define the sprint goal: a short sentence describing what the team plans to
achieve during the sprint. The team and the product owner write it collaboratively. The sprint backlog is the
other output of the sprint planning. It is a list of the product backlog items the team commits to deliver and
the list of the necessary tasks.

2. At the end of the sprint, make a sprint review meeting to evaluate the work done and make some
demonstrations to the product owner. The success of the sprint will later be assessed during the sprint
review meeting against the sprint goal, rather than against each specific item selected from the product
backlog.

Fig. 7. Component 3.3: Plan the project with Product Backlog

D. Component 4: Manage the project with daily meeting
Context: The project team was quite small so its members

usually met and talked around the coffee machine. However, as
there was a team member working remotely, it was difficult to
have a real efficient communication between all the members.
The tool used helped to have information about the
advancement state of all the tasks but some crucial details were
missing, only evocated in an informal way outside the official
meetings.

Component: This component (illustrated on the figure 8)
explains how a daily meeting (or stand-up meeting) can be put
in place. The team meets once a day, always at the same time to
share the development advance. This meeting is usually
scheduled for short time. If a point seems to take too long, the

team put it away to be discussed with only a sub-part of the
team. This meeting allows sharing all the important information
about the development. More than team-building exercises,
regularly communicating, working, and helping each other build
effective teams. This is also linked with team members helping
each other with shared obstacles.

Integration process: Meetings were planned regularly to
improve the communication between all the team members,
with a direct internet access for the team member working
remotely.

Feedback: the meetings improved a lot the communication
between the team members, essentially concerning the
developer who was working remotely and who is now
completely aware of all the information about the project.

Component 4 – < {Task planning}, Manage the project with Daily meeting >

Description: The goal is to help the project manager to handle the project by organizing a short meeting (less
than 15 minutes) everyday. The whole team should attend the meetings. All the important things about the
development can be shared (pitfalls, new requirements). The daily commitments allow team members to know
about potential challenges as well as to coordinate efforts to resolve difficult and/or time-consuming issues.

Source situation: Sprint

Target situation: Sprint

Process:

The daily meeting should not excess 15 minutes. If something should take longer, then plan another meeting to
discuss about it. The meeting can take place with participants standing up to remind people to keep the meeting
short and to-the-point. This meeting should take place at the same time everyday. All team members are asked
to attend, but the meetings are not postponed if some of them are not present.

1. All the team members share their advance on the development. They talk about progress since the last day,
the anticipated work until the next one and any impediments, taking the opportunity to ask for help or
collaborate.

2. To help, the team members can ask themselves three questions: What did I accomplish yesterday? What
will I do today? What obstacles are impeding my progress? It may not be always practical to limit all
discussion to these three questions but the goal is to stick as closely as possible to them.

3. Obstacles are written on a board, which is publicly visible, identifies raised obstacles and tracks the
progress of their resolution. This board can be updated outside of the daily meetings and serves as a more
immediate and less confronting way to initially raise obstacles.

Fig. 8. Component 4: Manage the project with Daily meeting

E. Component 5: Manage the project with Burndown chart
Context: It was difficult for the project team to have a long-

term view on the incoming sprints. The information was there
but sometime disseminated when the same story was in several
sprints so it was difficult to have a good time evaluation on the
different sprints. Progress on a project can be tracked by means
of a burndown chart, updated at the end of each sprint.

Component: The component (illustrated in the figure 9)
shows how to use a burn down chart to have a better view of
the incoming works. It results in up-to-date project status
being, it encourages the team to confront any difficulties sooner
and more decisively.

Integration process: Redmine had this functionality in its
toolbox. However, the team didn’t use it as the planning wasn’t
correctly implemented at the beginning of this project. Now that
the planning information is completely filled on the tool, the
functionality can be used on a more efficient way. The daily
meeting helps the team members to enter correct information on
a regular way.

Feedback: This component has been integrated quite
recently but the first feedbacks are good. The team has a better
estimation of the remaining works and is able to have a better
planning of the tasks/sprints.

Component 5 – < {Task planning}, Manage the project with Burndown chart >

Description: The goal is to help the project manager to handle the project with a better view of the incoming
works. A burndown chart is a graphical representation of work left to do versus time. The burndown chart is an
essential part of any agile project and is a way for the team to clearly see what is happening and how progress is
being made during each sprint.

Source situation: Task Planning, Backlog

Target situation: Burndown Chart

Process:

1. Construct the burndown chart:
The burndown chart is a graphic with two axis. The horizontal axis represents the sprints. The vertical axis
corresponds to the amount of work remaining at the start of each sprint (in whatever unit the team prefer –
story points, ideal days, team days, etc.).
a. The project start point is the farthest point to the left of the chart and occurs at day 0 of the iteration.
b. The project end point is the point that is farthest to the right of the chart and occurs on the predicted last

day of the project/iteration
c. The ideal work remaining line is a straight line that connects the start point to the end point. At the start

point, the ideal line shows the sum of the estimates for all the tasks (work) that needs to be completed.
At the end point, the ideal line intercepts the x-axis showing that there is no work left to complete.

d. The actual work remaining line shows the actual work remaining. At the start point, the actual work
remaining is the same as the ideal work remaining but as time progresses; the actual work line
fluctuates above and below the ideal line depending on this disparity between estimates and how
effective the team is. In general, a new point is added to this line each day of the project. Each day, the
sum of the time or story point estimates for work that was recently completed is subtracted from the last
point in the line to determine the next point.

2. Interpret the burndown chart
a. If the actual work line is above the ideal work line, then there is more work left to do than originally

predicted and the project is behind schedule.
b. If the actual work line is below the ideal work line, then there is less work left than originally predicted

and the project is ahead of schedule.
Fig. 9. Component 5: Manage the project with Burndown chart

During the period covered by this study, the planned

agile method components were integrated progressively.
Thus the integration included five steps as the integration of
method components was done consecutively. The integration
of components did not follow their logical order from the
initial agile method. We can say that all selected method
components come from SCRUM essentially, but some of
them are also present in other agile methods. The logical
sequence of SCRUM and other agile methods would suggest
the integration of these components at the same time.

V. LESSONS LEARNED

A. 5.1. Positive results
Progressive integration of methods components

possible. The integration of the method components in the
original method succeeded. The team now uses an enriched
method containing the new required features.

Method components acceptance. It seems that a gradual
integration leads to a better acceptance of new methods. A

smooth change, continuous on a long period of time, allows
to introduce the changes one little step after one little step,
until the desired amount of change is reached (or if there is a
complete opposition to a change, which will have to be
handle correctly). At the end of this specific experience, all
of the missing SCRUM techniques have been introduced to
the project team.

Better consideration of the team priorities. We studied
the features required by the changes needed in the method,
but we also studied the change reluctance of the project
team. We then prioritized the components by taking into
account the importance of each feature and the easiness of its
acceptation.

B. 5.2. Limitations
Method Engineer. A method engineer who was also part

of the development team conducted the integration. It was
then easier for us to forecast the potential problems and to
realize a smoother integration, adapted to the development
team. It will certainly be more difficult for a method

engineer outside the development team to convince the team
to accept the changes.

Common ground. This kind of integration is only
possible if there is only one project at the same time or if all
the development teams agree to modify the development
method at the same time. There are sprints for each project
and it would be very difficult to use different methods at the
same time for the same people. A common ground is
necessary to handle correctly the developments.

VI. CONCLUSION AND FUTURE WORKS
This experience showed that a progressive integration of

new method components in a development method is possible
and can be nicely accepted by the development team.

In this experiment, the integration leaded to an increasing
efficiency. The company can now claim, in total honesty,
that they are using the SCRUM methodology in their
projects. The team is happy to work now with a more
formalized process, they have improved their meeting
duration, their task estimations, and their marketing
relationships. The clients have an access to a part of the tool
information so they are much more involved in the
development process.

The integration has been made on two distinctive ways.
First, the method engineer integrated the planning and
estimations tasks on a slowly and very gradual way. The
change improved the week meetings as they came from
during 3 hours to 2 hours then 1h30 (for a team of 5-8
people). This improvement was mainly due to the fact that
there were no more discussions about things already
everybody agreed on. It was a matter of formalizing in the
tool what already existed in the Google document. Second,
the method engineer integrated the problematic of the
backlog and burndown chart. As the first changes had been
happily accepted by the team, it was quite easier to introduce
new techniques into the development process. These changes
improved the middle-term estimation of the tasks, a closer
relationship with the client, and a quicker and more efficient
sharing of the information.

Our future works will be to handle new experiments in
other companies to see if we reach the same results and if we
can improve the method components. New experiments
would allow to understand for which kind of projects the
progressive integration is appropriate and which are the
factors for a successful integration of method components.
We intend to organize new experiments using a formalized
evaluation protocol in order to gather the information about
efficiency of the suggested approach.

VII. REFERENCES
[1] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W.

Cunningham, M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R.
Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J.
Sutherland, and D. Thomas, Manifesto for Agile Software
Development. Agile Alliance, 2001.

[2] Serena Software, “An Introduction to Agile Software Development”,
Inc. Serena, Mariner, TeamTrack, http://www.serena.com (accessed in
march 2015), 2007.

[3] D. Anderson, “Agile management for software engineering: Applying
the theory of constraints for business results,” 2003.

[4] K. Beck, “Extreme programming explained: embrace change,”
Addison-Wesley, UK, 2000.

[5] K. Schwaber and M. Beedle, “Agile Software Development with
Scrum”, Prentice Hall PTR, Australia, 2002.

[6] A. Cockburn, “Agile software development”, Addison-Wesley,
London, UK, 2002.

[7] J. Stapleton, “DSDM −Dynamic system development method.”
Addison-Wesley, UK, 1995

[8] VersionOne, “8th annual state of agile development survey”,
http://www.versionone.com (accessed in Nov. 2014), 2013.

[9] S. Brinkkemper, and R.J. Welke, “Methodology Engineering: A
Proposal for Situation Specific Methodology Construction”. In:
Challenges and Strategies for Research in Systems Development,
Cotterman, W. and J. Senn (eds.), J. Wiley, Chichester, UK, 1992, pp.
257-266.

[10] J. Ralyté, and C. Rolland, “An Assembly Process Model for Method
Engineering”. In: Proceedings of CAISE 2001, LNCS 2068, Springer,
Berlin, 2001, pp. 267-283.

[11] R. Deneckere, “Approche d'extension de méthodes fondée sur
l'utilisation de composants génériques”. PhD thesis. University of
Paris 1 Panthéon-Sorbonne, 2001

[12] F. Karlsson, P. J. Ågerfalk, “Method Configuration: The eXtreme
Programming Case”, in XP 2008, Limerick, Ireland, pp 32-41, 2008.

[13] M. Rossi, B. Ramesh, K. Lyytinen, and J.-P. Tolvanen, “Managing
evolutionary method engineering by method rationale”. Journal of the
AIS, vol. 5(9), 2004, pp. 356-391.

[14] M. Cervera, M. Albert , V. Torres , and V. Pelechano, “A Model-
Driven Approach for the Design and Implementation of Software
Development Methods”. International Journal of Information System
Modeling and Design (IJISMD), vol. 3(4), 2012, pp. 86-103.

[15] G. Guzélian, and C. Cauvet, “SO2M: Towards a Service-Oriented
Approach for Method Engineering”. In: Proceedings of IKE'07, Las
Vegas, Nevada, USA 2007.

[16] A. Iacovelli. Approche orientée service pour la configuration de
méthodes outillées. PhD thesis. University Paris 1 Panthéon-Sorbonne,
2012.

[17] J. Shore, “The art of agile development”, O'Reilly Media Editors,
2007.

[18] M. Cohn, “Agile estimating and planning”, Prentice Hall editors,
2005.

[19] B. Meyer, “Agile!: The Good, the Hype and the Ugly”, Springer
Publishing, 2014.

[20] A. Qumer, B. Henderson-Sellers, “Construction of an Agile Software
Product-Enhancement Process by Using an Agile Software Solution
Framework (ASSF) and Situational Method Engineering”, In
COMPSAC 2007, Beijing, China, 2007, pp 539-542

[21] F. Karlsson, and P.J. Ågerfalk , “Method Configuration: Adapting to
Situational Characteristics While Creating Reusable Assets”. Inf. and
Soft. Technology, vol. 46(9), 2004, pp. 619–633.

[22] Z. Abad, M. Sadi, and R. Ramsin, “Towards tool support for
situational engineering of agile methodologies” In APSEC 2010, Asia
Pacific, 2010.

[23] Z. Abad, A. Alipour, R. Ramsin, “Enhancing Tool Support for
Situational Engineering of Agile Methodologies in Eclipse”, Studies
in Computational Intelligence, Vol 430, pp 141-152, 2012.

[24] K. Beck, Extreme programming explained: Embrace change. Addison-
Wesley, UK, 1999.

[25] R. Deneckere, E. Kornyshova, J. Ralyté. Famille de méthodes: la
flexibilité au coeur du processus de construction de méthodes. ISI
Journal, 19(1): 67-95, 2014.

