Robust Semantic Parsing with Adversarial Learning for Domain Generalization - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Robust Semantic Parsing with Adversarial Learning for Domain Generalization

Résumé

This paper addresses the issue of generalization for Semantic Parsing in an adversarial framework. Building models that are more robust to inter-document variability is crucial for the integration of Semantic Parsing technologies in real applications. The underlying question throughout this study is whether adversarial learning can be used to train models on a higher level of abstraction in order to increase their robustness to lexical and stylistic variations. We propose to perform Semantic Parsing with a domain classification adversarial task without explicit knowledge of the domain. The strategy is first evaluated on a French corpus of encyclopedic documents, annotated with FrameNet, in an information retrieval perspective, then on PropBank Semantic Role Labeling task on the CoNLL-2005 benchmark. We show that adversarial learning increases all models generalization capabilities both on in and out-of-domain data.
Fichier principal
Vignette du fichier
naaclhlt2019.pdf (285.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02298402 , version 1 (27-09-2019)

Identifiants

Citer

Gabriel Marzinotto, Geraldine Damnati, Frédéric Béchet, Benoit Favre. Robust Semantic Parsing with Adversarial Learning for Domain Generalization. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, Jun 2019, Minneapolis - Minnesota, France. pp.166-173, ⟨10.18653/v1/N19-2021⟩. ⟨hal-02298402⟩
76 Consultations
79 Téléchargements

Altmetric

Partager

More