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Existence and uniqueness theorem
for a 3-dimensional polytope in R3
with prescribed directions and
perimeters of the facets

Yves Martinez-Maure
yves.martinez-maure@imj-prg.fr

Abstract

We give a set of conditions that is necessary and suffi cient for
the existence and uniqueness up to translations of a 3-dimensional
polytope P in R3 having N facets with given unit outward normal
vectors n1, . . . , nN and corresponding facet perimeters L1, . . . , LN .

In 1897, Hermann Minkowski studied the problem of prescribing the
areas and outer unit normals of the facets of a 3-dimensional polytope.
The existence and uniqueness theorem that he obtained is one the most
fundamental results in the theory of polytopes. This paper is devoted
to the analogous problem of prescribing the perimeters and outer unit
normals of the facets of a 3-dimensional polytope. Our main result
(Theorem 5) gives a necessary and suffi cient condition for the existence
and uniqueness up to a translation of a 3-dimensional polytope P in
R3 having N facets with given unit outward normals n1, . . . , nN and
corresponding facet perimeters L1, . . . , LN .

Introduction to the problem

In this paper, a polytope of R3 is the convex hull of finitely many
points in R3. The classical Minkowski problem for polytopes in R3 con-
cerns the following question:

Given a collection n1, . . . , nN of N pairwise distinct unit vectors in
R3 and F1, . . . , FN a collection of N positive real numbers, is there a
polytope P in R3 having the ni as its facet unit outward normals and the
Fi as the corresponding facet areas (1 ≤ i ≤ N), and, if so, is P unique
up to translations?

02010 MSC: 52B10; 52A25
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H. Minkowski proved the following uniqueness theorem (see [1, The-
orem 9, p. 107]):

Theorem 1 (H. Minkowski, 1897: [4] and [5, pp. 103-121])
A polytope in R3 is uniquely determined, up to translations, by the di-
rections and the areas of its facets.

A well-known necessary condition for the existence of a polytope
having facet unit outward normals n1, . . . , nN and corresponding facet
areas F1, . . . , FN is that:

N∑
i=1

Fini = 0.

An existence theorem of H. Minkowski ensures that this condition is
both necessary and suffi cient:

Theorem 2 (H. Minkowski, 1897: [4] and [5, pp. 103-121])
Let n1, . . . , nN ∈ R3 be N pairwise distinct unit vectors linearly span-
ning R3 and let F1, . . . , FN be N positive real numbers. There exists a
polytope P in R3 having N facets with unit outward normals n1, . . . , nN
and corresponding facet areas F1, . . . , FN if, and only if, we have

N∑
i=1

Fini = 0.

Here, we have to mention that Theorem 2 is only the 3-dimensional
version of the classical Minkowski existence and uniqueness theorem [6,
p. 455], which is valid in Rd for all d ≥ 2. The proof of our main result
(Theorem 5) will make use of the 2-dimensional version, which is almost
trivial:

The Minkowski theorem for convex polygons in R2.
Let n1, . . . , nN ∈ R2 be N pairwise distinct unit vectors linearly span-

ning R2 and let l1, . . . , lN be N positive real numbers. There exists
a convex polygon P in R2 having N edges with unit outward normals
n1, . . . , nN and corresponding edge lengths l1, . . . , lN if, and only if,

N∑
i=1

lini = 0.

This paper is devoted to the analogue of the classical Minkowski
problem obtained by replacing areas by perimeters. For this analogue,
the following uniqueness result is known (see [1, p. 108]):
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Theorem 3 A polytope in R3 is uniquely determined, up to translations,
by the directions and the perimeters of its facets.

Theorems 1 and 3 are similar uniqueness theorems which are both
corollaries of a same general result by A.D. Alexandrov (see [1, Theorem
8, p. 107]). Thus, we are led to the natural question of the existence of
an analogue to Theorem 2 for the existence of a polytope with prescribed
directions and perimeters of the facets.
For convenience, we will restrict ourselves to 3-dimensional polytopes

in R3. Recall that the dimension of a convex body in Rd is simply the
dimension of its affi ne hull. Recall also that a facet of a 3-dimensional
polytope P is a (convex) polygonal face of P , and that its perimeter is
defined to be the sum of the lengths of all its sides (edges).

Diffi culty of the problem

The above problem of prescribing the perimeters and outer unit nor-
mals of the facets of a 3-dimensional polytope has attracted the atten-
tion of geometers. Recently, a paper by V. Alexandrov highlighted its
diffi culty in explaining why a simple equation involving the prescribed
perimeters cannot suffi ce to establish an analogue to Theorem 2 [2].
The main result of that paper reads as follows:

Theorem 4 (V. Alexandrov, 2018: [2])
Let n1, . . . , n5 in R3 be defined by the formulas

n1 := (0, 0, 1) , n2 :=

(
1√
2
, 0,

1√
2

)
, n3 :=

(
− 1√

2
, 0,

1√
2

)
,

n4 :=

(
0,
1√
2
,
1√
2

)
, n5 :=

(
0,− 1√

2
,
1√
2

)
.

Let L (n1, . . . , n5) ⊂ R5 be the set of all points (L1, . . . , L5) ∈ R5 with the
following property: there exists a polytope P ⊂ R3 such that n1, . . . , n5
(and no other vector) are the unit outward normals to the facets of P ,
and Lk is the perimeter of the face with the outward normal nk for every
k ∈ {1, . . . , 5}. Then the set L (n1, . . . , n5) ⊂ R5 is not locally-analytic.

This result is of course interpreted by V. Alexandrov as an obstacle
for finding an existence theorem for a polytope with prescribed directions
and perimeters of the facets. This was the major source of inspiration
for the work presented in this paper.

Necessary conditions for the existence of a solution

Let n1, . . . , nN be a collection of N pairwise distinct unit vectors
linearly spanning R3 and let L1, . . . , LN be a collection of N positive
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real numbers. The following set {(i) , (ii) , (iii) , (iv) , (v)} of conditions
is necessary for the existence of a 3-dimensional polytope P in R3 having
the ni as its facet outward unit normals and the Li as the corresponding
facet perimeters.

(i) For each i ∈ {1, . . . , N}, there exists a decomposition of Li into
a sum of N non-negative real numbers,

Li =

N∑
j=1

lij,

in such a way that:

(ii) for all (i, j) ∈ ({1, . . . , N})2, lij = 0 if ni and nj are collinear;
(iii) for all (i, j) ∈ ({1, . . . , N})2, lji = lij.

In other words, conditions (i) through (iii) require the existence of a
symmetric matrix with nonnegative entries (lij)1≤i,j≤N , such that row i
sums to Li, (1 ≤ i ≤ N), and lij = 0 for collinear ni, nj, (1 ≤ i, j ≤ N).

Indeed, if such a polytope P exists, then denoting by f1, . . . , fN the
N facets with respective unit outward normals n1, . . . , nN , the required
relationships hold if we put:

lij :=

{
0 if i = j or if fi and fj have no common edge

the length of the common edge otherwise.

Our condition (iv) is a consequence of the fact that the edge vectors
of a facet (which are perpendicular to the unit normals of both incident
facets), oriented in positive direction with respect to the unit normal of
the facet, concatenate into a (simple) closed circuit:

(iv) For every i ∈ {1, . . . , N} ,
∑

j∈{k|lik 6=0}

lij

[
ni × nj
sin (ni, nj)

]
= 0,

where × denotes the cross product (here, we of course assume that R3
is oriented by its canonical basis), and (ni, nj) denotes the length of
the shortest arc of great circle joining ni to nj on the unit sphere S2
of R3 (recall that ni and nj are non collinear by condition (ii) since
lij 6= 0). Indeed, each facet fi of P is a convex polygon the boundary
of which is a closed polygonal line. Here, it is worth noting that, for all
j ∈ {k |lik 6= 0},

−→ui,j = (ni × nj) / sin (ni, nj)
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is a unit vector that is such that the vector −→vi,j := lij
−→ui,j is of the form−−−→

MM ′, where M and M ′ are two consecutive vertices of the oriented
boundary of the face fi (see the figure 1 where v1, . . . ,vm are the succes-
sive −→vi,j := lij

−→ui,j, with j ∈ {k |lik 6= 0}).

Figure 1. Illustration of the fact that∑
j∈{k|lik 6=0}

lij
−→uij =

∑m
l=1vl = 0

Our last necessary condition (v) will follow from Steinitz’s theorem
(e.g. see [7, Chapter 4, p. 103]), which characterizes in purely graph-
theoretic terms those graphs that can be represented as the 1-skeleton
of some 3-dimensional polytope:

Theorem (Steinitz’s theorem). A graph can be represented as the
1-skeleton of some 3-dimensional polytope if, and only if, it is simple,
planar, and 3-connected.

For the convenience of the reader, we shall summarize some basic
definitions and facts on graphs and 1-skeletons just before the proof of
Theorem 5. From Steinitz’s theorem, the following last condition is also
necessary in our case:

(v) The datum of the matrix (lij)1≤i,j≤N determines as follows a
simple 3-connected planar graph G drawn on the unit sphere S2 (so that
no two of the edges intersect at a point other than a vertex): the vertices
ofG are the unit vectors n1, . . . , nN , and any pair of non-collinear vertices
{ni, nj} of G is connected by an edge that is given by the shortest arc
of great circle joining the two vertices on S2 if, and only if, lij 6= 0.
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Note that the datum of G, drawn on S2, simply corresponds to that
of the so-called slope diagram representation of the desired polytope P ,
say SDR (P ), in which facets, edges and vertices of P are represented
by points, spherical arcs and convex spherical polygons on S2. More
precisely, in SDR (P ), each facet is represented by the end point of its
outward unit normal vector, each edge is represented by the shortest
arc of great circle joining the two points corresponding to the adjacent
facets of the edge, and each vertex is represented by the convex spherical
polygon bounded by the arcs corresponding to the edges of P meeting
at the vertex. In this paper, we will also call SDR (P ) the spherical
representation of P .

Our main result

Theorem 5 Let n1, . . . , nN ∈ R3 be N distinct unit vectors linearly
spanning R3 and let L1, . . . , LN be N positive real numbers. There exists
a 3-dimensional polytope P in R3 having facet unit outward normals
n1, . . . , nN and corresponding facet perimeters L1, . . . , LN if, and only
if, the set of conditions {(i) , (ii) , (iii) , (iv) , (v)} holds.

Important remark. The set of conditions {(i) , (ii) , (iii) , (iv)} is far
from being suffi cient to ensure that there exists a 3-dimensional poly-
tope in R3 having facet unit outward normals n1, . . . , nN and corre-
sponding facet perimeters L1, . . . , LN . Indeed, many problems can arise
if we drop condition (v) from Theorem 5. If we retain only the first
four conditions the data could correspond to a union of several poly-
topes. It is also possible for the data to be consistent with conditions
(i) − (iv) while corresponding to non-convex polytopes, including such
with non-convex facets, if one considers expanding the notion of unit
outward normal. Of course, in our context, a reconstruction attempt
as a convex polytope will then lead to problems. For instance, if we
consider the unit vectors n1, . . . , n7 ∈ R3 defined by n1 := (0, 0,−1),
n2 :=

(
cos 2π

5
, sin 2π

5
, 0
)
, n3 :=

(
cos 6π

5
, sin 6π

5
, 0
)
, n4 := (1, 0, 0) , n5 :=(

cos 4π
5
, sin 4π

5
, 0
)
, n6 :=

(
cos 8π

5
, sin 8π

5
, 0
)
, n7 := (0, 0, 1), and the datum

of the matrix

(lij)1≤i,j≤7:=



0 1 1 1 1 1 0
1 0 1 0 0 1 1
1 1 0 1 0 0 1
1 0 1 0 1 0 1
1 0 0 1 0 1 1
1 1 0 0 1 0 1
0 1 1 1 1 1 0


,
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for which the set of conditions {(i) , (ii) , (iii) , (iv)} holds with L1 =
L7 = 5 and L2 = L3 = L4 = L5 = L6 = 4, we obtain a combinatorial
prism. As per the given unit outward normals, the prism has parallel
top and bottom pentagon facets, and five side facets with dihedral angle
π/5 between adjacent sides. Connecting the side facets necessarily leads
to self-intersections, thus there is no 3-dimensional polytope P in R3
corresponding to these data. There is, however, a non-convex right prism
with regular pentagram base (like the one shown in Figure 2) which
corresponds to these data with suitable adaptation of the notion of unit
outward normal.

Figure 2. A pentagram

In other words, givenN distinct unit vectors n1, . . . , nN ∈ R3 linearly
spanning R3 and N positive real numbers L1, . . . , LN such that the set of
conditions {(i) , (ii) , (iii) , (iv)} holds, we can of course associate a graph
to the matrix (lij)1≤i,j≤N but to be sure that this graph does correspond
to the 1-skeleton of some 3-dimensional polytope, it is necessary and
suffi cient to assume that it satisfies the conditions of Steinitz’s theorem.
This is essentially what condition (v) requires.

Basic definitions and facts on graphs and 1-skeletons
For the convenience of the reader, we summarize some basic defini-

tions and facts on graphs and 1-skeletons:

◦ The 1-skeleton of a polytope P is the graph whose vertices and edges
are just the vertices and edges of P with the same incidence relation.
◦A graph is said to be polyhedral if it can be represented as the 1-skeleton
of some 3-dimensional polytope.
◦ A graph is said to be simple if it contains neither multiple edges nor
loops.
◦ A graph is said to be planar if it can be drawn in the plane so that no
two of the edges intersect at a point other than a vertex.
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◦ A graph is called 3-connected if it is connected, has at least 4 vertices,
and remains connected whenever fewer than 3 vertices are removed.
◦ The dual of a polyhedral graph is also a polyhedral graph. More
precisely, every polyhedral graph G has a well-defined dual graph G∗

(independent of the plane embedding), corresponding to the 1-skeleton
of the dual polytope.

Proof of Theorem 5. We have already seen that this set of conditions
{(i), (ii), (iii), (iv), (v)} is necessary for such a polytope P to exist in R3.
Conversely assume that the set of conditions {(i) , (ii) , (iii) , (iv) , (v)}

holds. Recall that two polytopes P and P ′ are said to be combinatorially
equivalent if there is a bijection between their faces that preserves the
inclusion relation. It is well-known that the combinatorial structure of
a 3-dimensional polytope P is completely determined by its 1-skeleton
[7, p. 105].

(a) There exists a 3-dimensional polytope with the given combinatorial
structure

By Steinitz’s theorem, the simple 3-connected planar graph G that
is constructed on the sphere S2 in accordance with condition (v) and its
geometric dual graph G∗ (which is also simple, planar, and 3-connected)
are polyhedral: they can be represented in R3 as the 1-skeletons of two
dual 3-dimensional polytopes, say Q and Q∗, respectively.

(b) The shape of one facet (resp. of one vertex-figure) can be chosen

Moreover, by the following refinement by Barnette and Grünbaum,
we can preassign the shape of a face of one of these two polytopes [3]:

Theorem (Barnette and Grünbaum). If one face of a 3-dimensional
polytope Q is an n-gon, then there exists a polytope Q′ combinatorially
equivalent to Q, of which the corresponding face is any prescribed convex
n-gon.

Moreover, as noticed by Barnette and Grünbaum [3, p. 305]: "By
an obvious application of duality, it follows from the theorem that the
shape of one vertex-figure may be prescribed". In the part (f) of the
proof, we will make use of this dual form of the theorem to start our
construction. Our desired polytope P will be combinatorially equivalent
to Q∗.

(c) Vocabulary convention

In the remainder of the proof, the assembly of all the facets of a given
3-dimensional polytope that share a same vertex will be called a corner
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of the polytope. The spherical representation of such a corner, or of a
3-dimensional polytope, is defined as follows:
- A facet f corresponding to a unit normal n is represented on S2 by n;
- An edge is represented on S2 by the shortest arc of great circle joining
the two points corresponding to the two adjacent facets of the edge;
- A vertex is represented on S2 by the convex spherical polygon that
is bounded by the spherical arcs corresponding to the edges that are
adjacent at the vertex.

(d) The polygons making up the desired facets are uniquely determined
up to translations in space
Our aim is to prove the existence of a 3-dimensional polytope P that

satisfies the set of conditions {(i) , (ii) , (iii) , (iv) , (v)}, and thus, the
spherical representation of which is given by G.

Since condition (iv) is satisfied, the Minkowski existence and unique-
ness theorem for convex polygons ensures that, for any i ∈ {1, . . . , N},
there exists in n⊥i (the linear plane with unit normal ni, endowed with
the induced orientation) a positively oriented convex polygon fi whose
edges eij are directed by the unit vectors

−→ui,j = (ni × nj) / sin (ni, nj) , (j ∈ {k |lik 6= 0}) ,

and have corresponding lengths lij; and moreover, that this polygon fi,
of which the perimeter is Li by condition (i), is unique up to translations
in n⊥i . Note that in the above expression of

−→ui,j, the vectors ni and nj
are non-collinear by condition (ii) since lij 6= 0.
Thus, for any i ∈ {1, . . . , N}, the desired oriented convex polygon fi,

with unit normal ni, is well-defined and unique up to translations in R3.
(e) All the corners of the desired polytope are well-defined and unique up
to translations in space

Now, let Pn be any positively oriented n-gon on S2 that is the oriented
boundary of the closure of a connected component of the complementary
of the graphG, which is drawn on S2 according to condition (v), (n ≥ 3).
Girard’s theorem relates spherical angle excess and area of the spherical
n-gon, which allows us to deduce that

n∑
k=1

αk = (n− 2) π + Area (Pn) ,

where α1, . . . , αn denote the interior angles of Pn. Because of condition
(iv), Pn has no reflex angle so that:

n∑
k=1

βk = 2π − Area (Pn) < 2π,
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where β1, . . . , βn denote the exterior angles of Pn, (that is, βk := π− αk
for all k ∈ {1, . . . , n}). Now, for every for all k ∈ {1, . . . , n}, the exterior
angle βk at a vertex (say, uk) of Pn can also be regarded as the interior
angle of a convex polygon fk (which is the facet with unit outward
normal uk of the desired polytope P ) at the vertex of fk (say, sn) that
corresponds to Pn. [This can be seen as follows. The two oriented sides
of Pn that are adjacent at uk are part of two oriented great circles of S2,
which are the oriented unit circles of two oriented linear planes of R3.
For each of these two planes, consider the linear line that is orthogonal
to the plane, and then the intersection point of this line with S2 that is
on the same side of the plane as Pn. By doing this, we obtain the end
points of two unit vectors that are directing the two sides of fk adjacent
at sn and that are pointing outward from these sides at sn. Finally, we
note that the geometric angle between these two unit vectors is nothing
but the exterior angle βk.].

The above inequality, which says that the sum
∑n

k=1βk of the exterior
angles of Pn, is less than 2π can be regarded as a nonnegative curvature
condition that is satisfied from our conditions. Therefore, taking into
account condition (iii), the convex polygons fk that correspond to the
unit vectors uk of which the end points are the vertices of Pn can be
assembled (by gluing together their sides that correspond to a same
edge of Pn) to form a corner (of a 3-dimensional polytope), the spherical
representation of which corresponds to Pn in S2. Here, the "convexity"
at the corner is of course due to the nonnegative curvature condition.
Thus all the corners of the desired polytope P are well-defined and

unique up to translations in R3.

(f) They can be put together without contradiction

Starting from any of these corners, we can construct by induction
the desired polytope P , which is combinatorially equivalent to Q∗ and
satisfies the set of conditions {(i) , (ii) , (iii) , (iv) , (v)}, by assembling at
each step, an adjacent corner to the part of P , say Part (P ), that has
already been constructed. Here, by "an adjacent corner" to Part (P ) we
mean "a corner of P that is not included in Part (P ) but that shares
two facets with Part (P )". At each step, the spherical representation of
the part of P that is constructed is controlled by condition (v), and the
construction can continue until completion since we made sure that all
the pieces had the required shape and dimensions.
It is worth noting that, as soon as the position of the first corner is

fixed (with, for example, its vertex placed at the origin O), the position
of any other vertex S of P is deduced from that of O by a succession
of translations from a vertex of P to another: consider any succession
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of adjacent regions of S2\G from that corresponding to O to that cor-
responding to S (two regions of S2\G are said to be adjacent if their
boundaries share an edge of G) and note that each crossing on S2 from
one region Ri of S2\G to an adjacent one Rj corresponds on P to the
translation from a vertex to another by a translation by a vector −→vij
whose direction is determined by the arc of great circle γij separating
the two regions on S2 (−→vij is orthogonal to it and oriented in the sense
of the crossing) and whose norm ‖−→vij‖ is the length lij corresponding to
γij. Of course, thanks to condition (iv), the final position of the vertex
(i.e. that of S) does not depend on the succession of adjacent regions
that has been considered.

Remark. In higher dimensions, the problem should, of course, be much
more diffi cult since there is no known analogue of Steinitz’s theorem.
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