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The geotechnical characterization and classification of rock masses is critical in mining engineering in order to assess the nature and geological structure of the subsoil, to quantify the stability of slopes in open pit mining or the fortification of galleries in underground mining, and to ensure the security of the infrastructures and the personnel working in the mine. Similar issues are met in civil, petroleum and geothermal engineering, groundwater resources management and underground nuclear wastes disposal, to design underground works. Rock masses exhibit spatial heterogeneities with transitions from zones with higher resistance and rigidity to others with lower resistance and rigidity, sometimes at short distances, making the mechanical behavior of the rock mass difficult to predict.

Two main avenues have been explored for such a characterization and classification. The first one focuses on the modeling of the geological discontinuities viewed as objects distributed in space, such as faults, fractures, veins or joints, which often control the rock mass properties. In such a case, the parameters of interest are the number, position, orientation, spacing, shape, dimension, aperture and thickness of the discontinuities within the study area. The main challenges are the inference without bias of the distributions of these parameters using different data sources, such as borehole, scanline or window surveys or remote sensing information, and the simulation of discontinuity networks [START_REF] Chilès | Stochastic modeling of natural fractured media: a review[END_REF][START_REF] Dowd | A comparison of methods for the stochastic simulation of rock fractures[END_REF][START_REF] Xu | A new computer code for discrete fracture network modelling[END_REF][START_REF] Lato | Rock bench: establishing common repository and standards for assessing rockmass characteristics using LiDAR and photogrammetry[END_REF][START_REF] Hyman | DFNWORKS: A discrete fracture network framework for modeling subsurface flow and transport[END_REF].

The second avenue does not focus on the discontinuity network as a set of objects in space, but on numerical properties measured on continuous or discrete quantitative scales, for instance the rock quality designation (RQD), the uniaxial compressive strength (UCS), the rock mass rating (RMR), the geological strength index (GSI), the rock tunneling index (Q) or the discontinuity intensity (Pxy, where x is the dimension being measured and y is the dimension of the measurement). Being regionalized, these properties can be modeled and interpolated in space on the basis of sampling information. A common practice is to define "geotechnical domains" and to assign an average value to each domain, which provides a rather rough characterization. To get a more detailed spatial modeling, geostatistical tools and methods can be used. In the past two decades, kriging and conditional simulation have been applied to the prediction of RQD [START_REF] Ozturk | Geostatistical assessment of rock zones for tunneling[END_REF][START_REF] Madani | Fault detection in 3D by sequential Gaussian simulation of Rock Quality Designation (RQD)[END_REF][START_REF] Ozturk | Geostatistical investigation of geotechnical and constructional properties in Kadikoy-Kartal subway, Turkey[END_REF][START_REF] Séguret | Geostatistical evaluation of rock quality designation & its link with linear fracture[END_REF], UCS [START_REF] Abdideh | Geostatistical analysis of the uniaxial compressive strength (UCS) of reservoir rock by petrophysical information[END_REF][START_REF] Doostmohammadi | Geostatistical modeling of uniaxial compressive strength along the axis of the Behesht-Abad tunnel in Central Iran[END_REF], RMR [START_REF] Choi | Comparison among different criteria of RMR and Q-system for rock mass classification for tunnelling in Korea[END_REF][START_REF] Oh | Geostatistical integration of MT and boreholes data for RMR evaluation[END_REF][START_REF] Stavropoulou | A combined three-dimensional geological-geostatistical numerical model of underground excavations in rock[END_REF][START_REF] Choi | Tunneling Analyst: a 3D GIS extension for rock mass classification and fault zone analysis in tunneling[END_REF][START_REF] Jeon | Design of tunnel supporting system using geostatistical methods[END_REF][START_REF] Egaña | Assessment of RMR and its uncertainty by using geostatistical simulation in a mining project[END_REF][START_REF] Ferrari | Rock Mass Rating spatial estimation by geostatistical analysis[END_REF]Pinheiro et al., 2016a[START_REF] Pinheiro | Geostatistical simulation to map the spatial heterogeneity of geomechanical parameters: A case study with rock mass rating[END_REF][START_REF] Santos | Estimating RMR values for underground excavations in a rock mass[END_REF], GSI [START_REF] Deisman | Using geological strength index (GSI) to model uncertainty in rock mass properties of coal for CBM/ECBM reservoir geomechanics[END_REF][START_REF] Ozturk | Geostatistical investigation of geotechnical and constructional properties in Kadikoy-Kartal subway, Turkey[END_REF], Q [START_REF] Exadaktylos | A specific upscaling theory of rock mass parameters exhibiting spatial variability: Analytical relations and computational scheme[END_REF], P10 [START_REF] Ellefmo | Local and spatial joint frequency uncertainty and its application to rock mass characterisation[END_REF][START_REF] Séguret | Geostatistical evaluation of fracture frequency and crushing[END_REF] and P32 [START_REF] Hekmatnejad | Spatial modeling of discontinuity intensity from borehole observations at El Teniente mine[END_REF].

The geostatistical modeling of geotechnical variables faces specific difficulties that require attention. In particular, many variables are directional, i.e., their values depend not only on the in-situ position of the measurement, but also on its in-situ direction [START_REF] Séguret | Géostatistique de Gisements de Cuivre Chiliens -35 Années de Recherche Appliquée[END_REF]. The definition of these variables is especially meaningful when the volumetric support of the measurement is a cylinder, e.g., a borehole core sample. Since the cylinder diameter is usually small in comparison with its length, the measurement can be approximated by a line segment and identified not only by the in-situ geographic coordinates (easting, northing, elevation) of its center of gravity, but also by its orientation (azimuth and dip in geological coordinates, or colatitude and longitude in spherical coordinates). Examples of directional variables include RQD, UCS, RMR, Q and P10, the latter variable representing the number of discontinuities per meter and being also known as the linear discontinuity frequency or linear fracture frequency (FF). In most cases, directionality stems from the fact that discontinuities perpendicular to the direction of the measurement are more prone to be observed than discontinuities in other directions [START_REF] Terzaghi | Sources of error in joint surveys[END_REF], which implies that the (geo)statistical properties of the variables are direction-dependent. This feature makes difficult a change of support or upscaling when the shape of the target support is not a line segment. It is also likely to affect the manner in which geotechnical variables are interpolated for any support, even a point-support, as will be demonstrated in this work. However, these aspects have not been addressed in most of the previously cited publications, with the notable exception of [START_REF] Séguret | Geostatistical evaluation of fracture frequency and crushing[END_REF] and [START_REF] Séguret | Geostatistical evaluation of rock quality designation & its link with linear fracture[END_REF].

In this context, the goal of this work is to present a geostatistical methodology to model directional geotechnical variables together with an application to the simulation of the linear discontinuity frequency in a Chilean copper deposit. The background and technical details of the proposed methodology are explained in Section 2 and the case study is presented in Section 3. Conclusions follow in Section 4.

Methodology

Representation of directional variables in a five-dimensional space

Consider a directional geotechnical variable z distributed in a region of the 3D Euclidean space and measured by borehole sampling. The values of this variable vary with the geographic coordinate of the measurement (center of gravity of the borehole core sample) and with its direction, that is:

z = {z(x,u): x ∈ R 3 and u ∈ S 2 }, ( 1 
)
where x is a vector indicating the in-situ position in the geographic space (R 3 ), while u is a vector on the unit 2-sphere (S 2 ) representing the in-situ direction of the sample. In a geostatistical context, the regionalized variable z is viewed as a realization of a random field Z:

Z = {Z(x,u): x ∈ R 3 and u ∈ S 2 }. ( 2 
)
The basis of the model, therefore, is to define that the regionalized variable and the parent random field in a five-dimensional space (R 3 × S 2 ). The use of the product of a Euclidean space with a sphere is not new, as there is a growing interest, especially in remote sensing, climatology and atmospheric sciences, in modeling variables distributed over the planet Earth and evolving through time. Here, the 1D time axis is replaced with the 3D geographic space, a generalization that seems to be novel.

Spatial correlation modeling

In practice, some simplifying assumptions are necessary to infer and model the spatial correlation of regionalized data. In the case of data in the Euclidean space R 3 , most often the random field is assumed to be second-order stationary, i.e., its first-and second-order moments exist and are invariant through translation [START_REF] Matheron | The Theory of Regionalized Variables and its Applications[END_REF]. Under such an assumption, the mean value of the random field is constant and the covariance between two random variables located at x and x′ depends only on the separation vector h = x′-x. A widespread approach to model the covariance function of a second-order stationary random field is the linear model of regionalization [START_REF] Wackernagel | Multivariate Geostatistics -An Introduction with Applications[END_REF], based on a positive linear combination of basic nested correlation functions:

∑ = ρ = max 1 ) ( ) ( S s s s b C h h , (3) 
where, for s = 1,… Smax, bs ≥ 0 and ρs is a correlation function (positive semi-definite function taking the value 1 at h = 0).

In the case of data on the unit sphere S 2 , the simplest assumption is that of isotropy, i.e., the first-and second-order moments exist and are invariant under a rotation. In such a case, the mean value of the random field is constant and the covariance between two random variables located at u and u′ depends only on the angular separation (geodesic distance) δ(u,u′) = arccos(<u,u′>), where < , > denotes the inner product. [START_REF] Schoenberg | Positive definite functions on spheres[END_REF] proved that the covariance function of an isotropic random field on S 2 can be expanded into a positive linear combination of the following form:

∑ +∞ = δ = δ 0 ) (cos ) ( n n n P b C , ( 4 
)
where Pn is the Legendre polynomial of degree n, bn ≥ 0 and

+∞ < ∑ +∞ =0 n n b
.

A restriction on the isotropic models is needed in geotechnical applications, insofar as the borehole core sample taken along a direction u is the same as the one taken along the opposite direction -u. Changing u into -u amounts to changing δ(u,u′) into π-δ(u,u′), and

Pn(cos δ) into Pn(-cos δ). To be invariant, the covariance model in Eq. ( 4) must therefore only consider the Legendre polynomials of even degrees, which are even functions, and discard the Legendre polynomials of odd degrees that are odd functions, i.e.:

∑ +∞ = δ = δ 0 2 2 ) (cos ) ( n n n P b C , (5) 
where b2n ≥ 0 and

+∞ < ∑ +∞ =0 2 n n b .
The previous hypotheses can be combined for a random field defined in R 3 × S 2 , by considering second-order stationarity in the geographic space and isotropy on the sphere.

Accordingly, the covariance function between two random variables located at (x,u) and

(x′,u′) only depends on the separation vector h = x′-x and on the angular separation δ(u,u′)

= arccos(<u,u′>). The linear model of regionalization can be extended in the following form:

∑ = δ = δ max 1 ) , ( ) , ( S s s s C b C h h , (6) 
where, for s = 1,… Smax, bs ≥ 0 and Cs is a correlation (positive semi-definite) function

defined in R 3 × [0,π].
A simple family of such correlation functions are separable models of the form

) ( ) ( ) , ( δ ρ′ ρ = δ s s s C h h , (7) 
with ρs a second-order stationary correlation function in R 3 and ρs′ an isotropic correlation function on S 2 obtained by combining Legendre polynomials of even degrees. This model can be rewritten in terms of the variogram:

∑ = δ γ = δ γ max 1 ) , ( ) , ( S s s s b h h , (8) 
with γs = 1 -ρs. Given an experimental covariance or variogram, the fitting of a linear regionalization model can be done by choosing a suitable set of separable basic structures {Cs: s = 1… Smax} and nonnegative coefficients {bs: s = 1… Smax}. Automatic algorithms can be used to determine the model parameters that minimize the deviations between experimental and modeled covariances or variograms as is done in standard 3D geostatistics.

Models of the form (6) with separable basic covariances (Eq. 7) constitute a restricted -yet flexible -class of covariance models on R 3 × S 2 . More general models, not limited to sums of separable covariances, can be designed by extending to 5D the models presented by [START_REF] Porcu | Spatio-temporal covariance and crosscovariance functions of the great circle distance on a sphere[END_REF] in the case of sphere-time processes.

Conditional simulation

We now deal with the problem of simulating a random field with zero mean and covariance represented by a linear model of regionalization (Eqs. 6-7) and with multivariate normal finite-dimensional distributions (Gaussian random field model). The covariance matrix decomposition and the sequential algorithms can be used to this end, but these algorithms are not applicable, or become approximate, when the number of locations targeted for simulation is large [START_REF] Chilès | Geostatistics: Modeling Spatial Uncertainty[END_REF]. Hereafter, we propose an algorithm that does not suffer from this limitation.

Without loss of generality, the model in Eqs. ( 6) and ( 7) can be rewritten as

∑ = δ ρ = δ max 1 ) ( 2 ) (cos ) ( ) , ( S s s n s s P b C h h , (9) 
with Smax ∈ N ∪ {+∞}, n(s) ∈ N, bs ≥ 0 and

+∞ < = ∑ = max 0 S s s b b .
A random field with zero mean and such a covariance function can be simulated as follows

(Appendix A):
1) Simulate a nonnegative integer S such that Prob{S = s} = bs/b.

2) Simulate a second-order stationary random field TS in R 3 with zero mean and correlation function ρS(h).

3) Simulate an isotropic random field WS on S 2 with zero mean and correlation function P2n(S)(cos δ), such that, conditional to S = s, Ws and Ts are independent.

4) Generate the simulated random field as

) ( ) ( ) , ( , , 2 3 u x u x u x S S W T b Z = ∈ ∀ ∈ ∀ S R . ( 10 
)
To obtain a random field whose finite-dimensional distributions are approximately Gaussian, it suffices to add and rescale a large number of independent copies of (10):

∑ = = ∈ ∀ ∈ ∀ K k k k S k k S W T K b Z 1 ), ( ), ( 2 3 ) ( ) ( ) , ( , , u x u x u x S R , ( 11 
)
where K is a large integer and {(S(k), TS(k),k, WS(k),k): k = 1,… K} are independent copies of (S, TS, WS). Many algorithms are available to simulate the random fields needed at steps 2)

and 3), such as turning bands, discrete or continuous spectral algorithms [START_REF] Emery | TBSIM: A computer program for conditional simulation of three-dimensional Gaussian random fields via the turning bands method[END_REF][START_REF] Chilès | Geostatistics: Modeling Spatial Uncertainty[END_REF] for TS, and algorithms based on expansions into spherical harmonics [START_REF] Lang | Isotropic Gaussian random fields on the sphere: regularity, fast simulation and stochastic partial differential equations[END_REF][START_REF] Le Gia | Isotropic sparse regularization for spherical harmonic representations of random fields on the sphere[END_REF][START_REF] Lantuéjoul | Spectral simulation of isotropic Gaussian random fields on a sphere[END_REF]Emery and Porcu, 2019) or cosine waves (Emery et al., 2019) for WS.

Under the multivariate Gaussian assumption, conditioning the simulation to a set of sampling data can be achieved classically by means of kriging [START_REF] Chilès | Geostatistics: Modeling Spatial Uncertainty[END_REF].

Case study

Data presentation

The previous concepts are now applied to the modeling of the discontinuity frequency (P10) in the El Teniente porphyry copper deposit, located in the Chilean central Andes, approximately 70 km southeast to Santiago. The rock mass comprises several rock types, in particular a poorly mineralized breccia diatreme lying at the center of the deposit (Braden pipe), anhydrite breccias, felsic intrusive rocks (dioritic to tonalitic dacites and porphyries)

and mafic intrusive rocks (gabbros, diabases and a mafic complex referred to as CMET, acronym for "Complejo Máfico El Teniente") [START_REF] Skewes | The giant El Teniente breccia deposit: hypogene copper distribution and emplacement[END_REF][START_REF] Skewes | The El Teniente megabreccia deposit, the world's largest deposit[END_REF].

Two types of discontinuities are observed in the mined primary ore: a system of widespaced faults [START_REF] Skewes | The El Teniente megabreccia deposit, the world's largest deposit[END_REF] and a stockwork of closely-spaced veins cemented with quartz, sulfides and anhydrite [START_REF] Cannell | Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu-Mo deposit[END_REF] (Figure 1). El Teniente geologists and geotechnicians have observed that the latter, particularly the "weak veins" corresponding to veins and veinlets filled with a weak mineral assemblage (hardness less than 3 in the Mohs scale) and with a thickness greater than 1 mm, are the most important factors in explaining rock fragmentation, rock bursts and geomechanical instabilities in the mine [START_REF] Brzovic | Rock mass characterization and assessment of blockforming geological discontinuities during caving of primary copper ore at the El Teniente mine, Chile[END_REF][START_REF] Brzovic | Rock mass strength and seismicity during caving propagation at the El Teniente Mine, Chile[END_REF].

Geotechnical borehole data collected in the CMET rock between 2010 and 2016 are available for this study. The boreholes were drilled from the surface or from underground galleries and, for each of them, several intervals (with a length generally comprised between 20 and 30 m) were logged. The logging information consists of a record of the positions of the weak veins intersecting the borehole and the angles between their poles and the borehole axis. Based on this information, the linear frequency of weak veins P10 was calculated for 10-meter long composites along the boreholes, yielding a set of more than 3500 data within in a volume of 1800 × 2100 × 950 m 3 (Figure 2). For confidentiality reasons, the values were modified by a multiplicative factor and rounded to one decimal place, therefore they do not represent the true values used for geotechnical modeling in El Teniente deposit. The purpose of this case study is to illustrate the methodology proposed in Section 2 on modeling and simulating geotechnical variables by accounting for their directionality.

Data modeling

The P10 composite data are declustered with the cell method [START_REF] Journel | Non-parametric estimation of spatial distributions[END_REF] and then normal-score transformed. The mapping that back-transforms the normal scores into original P10 values (anamorphosis) is modeled by a piecewise linear function within the data range and an exponential function beyond the extremal experimental values (Figure 3) [START_REF] Emery | TBSIM: A computer program for conditional simulation of three-dimensional Gaussian random fields via the turning bands method[END_REF].

The sample variogram of the normal scores data is calculated in the horizontal and vertical directions, which are the directions with the highest and lowest variability, respectively, for different separation angles (δ) between paired data (Table 1). Each data pair is weighted by the geometric mean of the declustering weights assigned to both data.

The behavior of the experimental variogram depends on the angular separation (δ) between the paired data used for variogram calculation. In particular, for geographic separation distances less than 100 m, the variogram increases with the distance if the paired data have an angular separation of 30° or less (Figure 4a,b), but decreases if the angular separation is greater than 60° (Figure 4c,d). This behavior at short distances is deemed representative, as the calculations involve a large number of data pairs (up to several hundreds).

A linear model of regionalization (Eq. 9) consisting of Smax = 4 nested structures is fitted to the experimental variogram. The first structure is defined by the product of a short-range (40 m in the horizontal plane and 60 m in the vertical direction) spherical covariance and a Legendre polynomial of degree 2. The latter switches from positive to negative values when the angular separation increases, which allows modeling the change in the behavior (from increasing to decreasing) of the variogram at short distances. The second nested structure is also defined by the product of a spherical covariance, this time with a range of 500 m, and a Legendre polynomial of degree 2. The last two structures consider the product of large-range spherical models with a Legendre polynomial of degree 0, which equals 1 irrespective of the angular separation, so that these two structures depend only on the geographic separation. The variogram model is superimposed on the experimental variogram in Figure 4 and its parameters are given in Table 2.

The negative values taken by the first two nested structures when the angular separation is large suggest that the weak vein stockwork is locally anisotropic, with (part of) the veins having approximately the same orientation, which may explain a negative correlation between measurements taken at the same geographic location along perpendicular directions (Appendix B). This behavior is not incompatible with a global isotropy assumption, insofar as the local orientation of the veins can vary in the geographic space so as to be, all in all, uniformly distributed on the unit sphere.

Conditional simulation

The weak vein frequency is simulated with the algorithm presented in Section 2.3, with K = 10,000 basic random fields as defined in Eq. ( 10), at the nodes of a regular grid covering part of the sampled region for three target directions: north, east and vertical. For k = 1,…, 10,000, the geographic component TS(k) is simulated by using a piecewise linear function [START_REF] Emery | TBSIM: A computer program for conditional simulation of three-dimensional Gaussian random fields via the turning bands method[END_REF], whereas the directional component WS(k) is simulated by using a spherical harmonic (Appendix C). The computational complexity of this algorithm (number of required floating point operations) is directly proportional to the number of target grid nodes, which makes it extremely fast. Conditioning is done by using the dual form of kriging, allowing a unique neighborhood implementation. Maps of the first realization and of the average of one hundred realizations are depicted in Figure 5.

The average of the realizations is smoother in the southern sector of the grid, where the conditioning data are absent. Conversely, the northern part exhibits clear contrasts in the realization average, depending not only on the geographic position, but also on the direction in which the weak vein frequency is simulated. These contrasts are explained by the presence of nearby conditioning data.

Regionalized azimuthal projections

The proposed approach allows for interesting representations of geotechnical variables.

Instead of mapping the geographic variations of the weak vein frequency for a few target directions, such as in Figure 5, one can map the directional variations for a few locations in the geographic space, e.g., via azimuthal projections in which the upper hemisphere of S 2 is represented on a disc, the parallels appearing as concentric circles and the meridians as line segments radiating from the center. These projections are helpful for the structural geologist or the geotechnician to assess both the geographic and directional regionalization of the weak vein frequency.

As an illustration, Figure 6 shows orthographic azimuthal projections at six regularlyspaced locations in the area under study. They suggest that the vein stockwork is locally anisotropic, with an orientation changing in the geographic space. Specifically, veins oriented in a vertical north-south plane are abundant near the locations with coordinates 

3.5.Checking the model hypotheses

The assumption that the random field associated with the weak vein frequency is secondorder stationary in the geographic space is corroborated by the fact that the experimental variogram of the normal scores data (Figure 4) reaches the expected unit sill.

The assumption of isotropy on the sphere is consistent with that of El Teniente geologists, who are not aware of any preferential direction of the vein stockwork, and with the illustration in Figure 1, which shows veins and veinlets distributed in various directions. It is possible to go further by using the original borehole logging information: for each observed vein, the angle α between the borehole axis and the pole of the vein has been recorded. Should the vein stockwork be isotropic, the pole of each vein would be uniformly distributed on the upper hemisphere of S 2 , so that its scalar product with the unit vector oriented upward along a borehole would be uniform between 0 and 1, i.e., the cosine of the recorded angle α should be uniform in [0,1]. Because the records of α are semi-quantitative (most often, a multiple of 10°), the distribution of cos(α) is calculated for five discrete classes (0 to 0.2, 0.2 to 0.4, until 0.8 to 1) and declustering weights are used to account for the irregular sampling design. The resulting histogram shows a reasonable agreement with a uniform distribution (Figure 7a).

Finally, the assumption of multivariate Gaussian distributions can be assessed by comparing the variogram γ(h,δ) and the variograms of order 1 and 0.5 (γ1(h,δ) and γ1/2(h,δ), respectively) of the normal scores data. For ω > 0, the following relation should hold [START_REF] Emery | Variograms of order ω: a tool to validate a bivariate distribution model[END_REF]:

2 / 1 )] , ( [ 2 1 2 ) , ( ω - ω ω δ γ       + ω Γ π = δ γ h h . (12) 
This relation, linear in a log-log scale, is reasonably verified by the experimental variograms (Figure 7b).

Validation of the results

The quality of the realizations is assessed by leave-one-out cross-validation, consisting of simulating 500 times the weak vein frequency at each data location by using only the data situated at a distance of at least 20 m from the target location. The weak vein frequency at any data location is predicted by averaging the 500 realizations. The predictor so obtained is conditionally unbiased, and therefore also globally unbiased, as the regression of the scatter diagram between the predicted and true vein frequencies coincides with the 45° line (Figure 8a). On the other hand, for p ∈ [0,1], a p-probability interval bounded by the 1-p/2 and 1+p/2 quantiles of the 500 simulated values is constructed at each data location. It would be expected that a proportion p of the sampling data should belong to such an interval [START_REF] Deutsch | Direct assessment of local accuracy and precision[END_REF], which is the case here, regardless the value of p between 0 and 1 (Figure 8b). This indicates that the fluctuations across the realizations correctly quantify the uncertainty attached to the true weak vein frequency.

Importance of a spatial correlation model that accounts for directionality

The impact of the directionality of P10 is assessed by mapping the simulated values that are obtained by using the "traditional" approach, in which the weak vein frequency is regionalized only in the three-dimensional geographic space, but not on the sphere (Figure 9a). In such a case, the results no longer depend on the target direction for measuring P10.

Furthermore, the average of 100 realizations (Figure 9b) is close to the map displayed in Figure 5d and is sensibly different from the values mapped in Figures 5b and5f. This coincidence is an artefact, insofar as most of the boreholes in the area under study are close to horizontal and oriented in the east-west direction, as indicated by the positions of the composited data superimposed on the maps. The map in Figure 9b is therefore conditioned to the weak vein frequency observed in this particular borehole direction, but is likely to be globally or conditionally biased for the vein frequency in another direction.

Even if the vein stockwork is isotropic, taking into account the directionality of the vein frequency has a strong impact on the simulation results because the correlations between measurements depend on their directions. In particular, a measurement is highly informative of the values at surrounding locations in the same or quasi-parallel directions, as indicated by the low variogram values at short separation distances and small separation angles (Figure 4a,b), but brings much less information on the vein frequency in a perpendicular direction (Figure 4d).

Conclusions

The values of geotechnical variables such as RQD, UCS, RMR, Q and P10 measured on a borehole core sample depend not only on the in-situ geographic position of the sample, but also on its in-situ direction. Regionalizing such geotechnical variables in a 5D space (R 3 × S 2 ) accounts for directionality. Under an assumption of stationarity in R 3 and isotropy on S 2 , their spatial correlation structure depends only on the geographic separation vector h and on the angular separation δ between measurements, which facilitates the calculation of experimental covariances or variograms, the fitting of a model by means of separable nested structures, as stated in Eq. ( 9), as well as the simulation by means of products of basic random fields defined in R 3 and S 2 , as stated in Eq. ( 11). The applicability of the tools and algorithms has been demonstrated with a case study on the modeling of the discontinuity frequency in El Teniente deposit, Chile, where attention has been paid to the checking of the model assumptions and to the cross-validation of the simulation results.

As a complement to the standard tools used for the three-dimensional representation of regionalized variables, the proposed methodology provides new visualization tools for structural geologists and geotechnicians, such as regionalized azimuthal projections to map the directional variations of rock mass properties at given locations in the geographic space.

Future work includes the generalization of the proposed methodology to multivariate models aimed at jointly simulating cross-correlated geotechnical variables such as RQD, UCS and P10. Also, the design of models and simulation algorithms using non-separable covariances in R 3 × S 2 or anisotropic covariances in S 2 , together with exploratory tools to identify preferred directions of anisotropy on the sphere on the basis of sampling information, is of utmost interest to broaden the scope of application of the presented proposal. 
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Appendix A

Consider the random field Z defined in Eq. ( 10). Conditional to S = s, Z is the product of two zero-mean independent random fields (Ts and Ws) and a positive scalar coefficient (b 1/2 ). Accordingly, its mean value is zero and its covariance function is b times the product of the covariances of Ts and Ws, i.e., b ρs(h) P2n(s)(cos δ). The prior mean and covariance function are obtained by randomizing s: 

Appendix B

In the two-dimensional plane, consider a network of parallel discontinuities (Figure 10). Denote by Z(x,u) and Z(x,u′) the discontinuity frequencies for two composite samples taken at the same geographic position x along two perpendicular directions u and u′. One has [START_REF] Terzaghi | Sources of error in joint surveys[END_REF]:

where u0 is a unit vector in the direction of the discontinuity poles and α is the angle between u and u0.

In this case, the covariance between Z(x,u) and Z(x,u′) when u is uniformly distributed on the unit circle (α uniformly distributed between 0 and π/2) is found to be negative:

A high value for one of the measurements occurs when this measurement is taken along a direction close to u0, implying a low value for the measurement taken along the perpendicular direction.

Appendix C

For u ∈ S 2 , let θ(u) ∈ [0,π] be its colatitude and ϕ(u) ∈ [0,2π[ its longitude. For n ∈ N, define the random field Wn as

where L is an integer uniformly distributed in [-n,n], U is an independent random variable with zero mean and unit variance (e.g., Gaussian), and Yn,l is the real (tesseral) spherical harmonic of degree n and order l, which can be expressed as a function of an associated Legendre polynomial and sine or cosine functions [START_REF] Arfken | Mathematical Methods for Physicists[END_REF].

Because U has a zero mean and is independent of L, the expected value of Wn(u) is zero.

For u and u′ on S 2 , the covariance between Wn(u) and Wn(u′

The addition theorem [START_REF] Arfken | Mathematical Methods for Physicists[END_REF]