
HAL Id: hal-02297860
https://hal.science/hal-02297860v1

Submitted on 26 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Illicium A modular transpilation toolchain from Pharo
to C

Pierre Misse-Chanabier, Vincent Aranega, Guillermo Polito, Stéphane Ducasse

To cite this version:
Pierre Misse-Chanabier, Vincent Aranega, Guillermo Polito, Stéphane Ducasse. Illicium A modular
transpilation toolchain from Pharo to C. IWST19 - International Workshop on Smalltalk Technologies,
Aug 2019, Köln, Germany. �hal-02297860�

https://hal.science/hal-02297860v1
https://hal.archives-ouvertes.fr

Illicium
A modular transpilation toolchain from Pharo to C

Pierre Misse-Chanabier
Inria, Univ. Lille, CNRS, Centrale Lille, UMR 9189 -

CRIStAL, France
pierre.misse-chanabier@inria.fr

Vincent Aranega
Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 -

CRIStAL, France
vincent.aranega@inria.fr

Guillermo Polito
CNRS - UMR 9189 - CRIStAL, Univ. Lille, Centrale Lille,

Inria, France
guillermo.polito@inria.fr

Stéphane Ducasse
Inria, Univ. Lille, CNRS, Centrale Lille, UMR 9189 -

CRIStAL, France
stephane.ducasse@inria.fr

Abstract
The Pharo programming language runs on the OpenSmalltalk-
VM. This Virtual Machine (VM) is mainly written in Slang,
a subset of the Smalltalk language dedicated to VM develop-
ment. Slang is transpiled to C using the Slang-to-C transpiler.
The generated C is then compiled to produce the VM exe-
cutable binary code.

Slang is a powerful dialect for generating C because it
benefits from the tools of the Smalltalk environment, includ-
ing a simulator that runs and debugs the VM. However, the
Slang-to-C transpiler is often too permissive. For example,
the Slang-to-C transpiler generates invalid C code from some
Smalltalk concepts it does not support. This makes the Slang
code hard to debug as the errors are caught very late during
the development process, which is worsen by the loss of the
mapping between the generated C code and Slang. The Slang-
to-C transpiler is also hard to extend or adapt to modify part
of the translation process.

In this paper we present Illicium, a new modular transpila-
tion toolchain based on a subset of Pharo targeting C through
AST transformations. This toolchain translates the Pharo AST
into a C AST to generate C code. Using ASTs as source and
target artifacts enables analysis, modification and validation
at different levels during the translation process. The main
translator is split into smaller and replaceable translators to
increase modularity. Illicium also allows the possibility to
introduce new translators and to chain them together, increas-
ing reusability. To evaluate our approach, we show with a use
case how to extend the transpilation process with a translation
that requires changes not considered in the original C AST.

Keywords Transpilation, Pharo, C language, Tools

1 Introduction
Smalltalk code is traditionally compiled to bytecode, which
is interpreted by a virtual machine (VM) [2, 6]. The OpenS-
malltalkVM is the current virtual machine used by many

IWST’19, July, 2019, Cologne, Germany
2019.

Smalltalk dialects, such as Squeak, Pharo and Newspeak. The
OpenSmalltalkVM is mostly developed in Slang. Only plat-
form dependant code is directly developed in C. Slang is
described as a subset of Smalltalk that is trans-compiled (or
transpiled) to C [7]. Developing in Slang enables developer
to use Smalltalk live programming features and simulation of
the VM [1, 8, 10]

Slang. The Slang-to-C transpiler uses the Smalltalk abstract
syntax tree (AST), transforms it, and writes the corresponding
C code in a file. We observe several problems.

• Slang does not have the same semantics as Smalltalk.
However, since Slang is described as a subset of Smalltalk,
and developed in a Smalltalk environment, it is mis-
leading for newcomers to Smalltalk VM development.

• The Slang-to-C transpiler accepts erroneous Slang codes
as input, and translates them into invalid C code without
throwing errors. Errors are caught during the compi-
lation of the generated C code making them hard to
debug.

• The Slang-to-C transpiler is tightly coupled to the Smalltalk
AST to produce code, making it difficult to extend.

While Slang has been successfully applied for twenty years
to produce Pharo and Squeak Virtual Machines [8, 10], the
work presented in this article is a reflection on how to provide
a basis for a modular architecture for a transpiler, improv-
ing reusability. To experiment with this idea, we designed,
Illicium, a new toolchain transpiling Pharo to C.

Illicium. We created a new transpilation toolchain from Pharo
to C that we named Illicium. We use a metamodel approach
to describe a subset of the C AST and generate corresponding
code. We also use the metamodel to generate some tooling
for the C AST, in the form of diverse visitors such as walker
and structural analysis visitors. This approach allows us to
create tooling around the C AST that is independent of the
transpilation process.

Illicium’s translator is split in several modular and replace-
able components. A main translator dispatches the translation
to smaller, specialized translators, each taking care of one of

1

IWST’19, July, 2019, Cologne, Germany Pierre Misse-Chanabier, Vincent Aranega, Guillermo Polito, and Stéphane Ducasse

the Pharo AST node types. Each of these specialized transla-
tors are responsible to accept or reject their input, to allow for
early error detection. Moreover, it uses a mechanism to treat
messages depending on their receiver’s types, rather than only
on their selectors.

The paper is structured as follow: We first give an overview
of how the Slang-to-C transpiler works, and focus on prob-
lems we want to solve in Section 2. We then introduce our
solution in the form of the Illicium compilation toolchain
in Section 3 and how it solves the problems we outlined in
Section 2. To support our claim, we show how to extend our
tool in Section 4. Next, we explain some of the semantic gaps
between Pharo and C that have to be kept in mind when ex-
tending Illicium in Section 5. Section 6 compares our solution
with other approaches. Finally Section 7 describes several
possible future work before concluding in Section 8.

2 Slang
To respect a long tradition of writing everything in Smalltalk,
the Pharo Virtual Machine is developed in Smalltalk itself.
Yet, it was decided to translate it to C to produce a reliable
and efficient VM [8]. To allow the VM developer to express C
code in Smalltalk, Slang, a subset of the Smalltalk language is
used [7]. Slang code is translated to C code during a process
called source to source compilation, or transpilation. The
generated C code is then compiled.

Using Slang in a Smalltalk environment allows for a quicker
VM development through live programming and simulation
[8, 10]. Slang is actively used for the OpenSmalltalk VM
development and more specifically for the development of the
operating system independent part of the virtual machine as
well as plugins. Two different kinds of plugins are developed:
internal and external. Internal plugins are compiled with the
VM sources, whereas external plugins are compiled on their
own, and dynamically linked to a running VM.

Slang has been used for decades and offers a powerful
language to express C concepts. However, Slang induces a
huge learning curve and the Slang-to-C transpiler tends to
make the generated C code hard to debug, especially for
newcomers. We identified three main problems that are error
prone for VM plugins developers:

P1 Slang does not have the same semantics as Smalltalk.
P2 The Slang-to-C transpiler does not check for semantic

violations.
P3 The Slang-to-C transpiler is hard to extend.

In the following sections, we show how these points are
source of mistakes and introduce bugs that should be caught
earlier in the development process.

2.1 Semantic mismatch
New Slang users usually come from Smalltalk to understand
the underlying system or add a custom plugin for the VM

they’re using. They often have a Smalltalk background and
mindset, rather than a C one.

Slang allows the developer to use the Smalltalk syntax, and
most of its concepts,

Slang allows the developer to use almost all Smalltalk syn-
tax and concepts, but it has its own semantics and only a
subset is translated (e.g., dynamic arrays are not supported).
Therefore, Slang is a subset of Smalltalk from a syntactic
point of view, but a different language. The Slang-to-C tran-
spiler does not prevent the use of all unsupported Smalltalk
features. These unsupported Smalltalk concepts are translated
in erroneous C code, that the C compiler rejects at compilation
time. As the Slang-to-C transpiler does not keep the mapping
between the Slang code and the generated C code, debugging
this kind of errors is often complicated. The Slang-to-C tran-
spiler also inlines significant amount of code, which worsen
this problem. Let’s do a first plugin in Slang to illustrate one
of the issue of the current transpilation.

A first plugin as illustrative example. To create a new plugin,
we start by subclassing InterpreterPlugin, which gives us access
to plugins properties such as the stack manipulation. We add
to this class a class variable (Listing 1), as it is common to do
in Smalltalk.

1 InterpreterPlugin subclass: #MyFirstPlugin
2 instanceVariableNames: ''
3 classVariableNames: 'AClassVariable'
4 category:''

Listing 1. A first plugin.

In Smalltalk semantics, class variables values are assigned
in any method in the class, or through accessors. In this exam-
ple, the class variable is set to 5 in aPluginMethod, a instance
side method (Listing 2).

1 MyFirstPlugin >> aPluginMethod
2 AClassVariable := 5

Listing 2. An instance side method assigning a value to a
class variable.

As shown in Listing 3, when translated to C, the class
variable is transformed in a #define macro. The value of this
macro is the class variable value obtained during the tran-
spilation phase. The assignment is translated simply as a C
assignment and stays equivalent to the Slang code.

1 #define AClassVariable null
2

3 static sqInt APluginMethod(void){
4 AClassVariable = 5;
5 return 0;
6 }

Listing 3. Generated C code for aPluginMethod.
2

Illicium: A modular transpilation toolchain from Pharo to C IWST’19, July, 2019, Cologne, Germany

This results in the following compilation error from the C
compiler:

error : lvalue required as le f t operand of assiдnment

This happens because during the C pre-processing phase
macros are replaced with their values. This means that after
this phase, AClassVariable = 5; is replaced by null = 5;1, which
is an attempt to assign a value to a value and isn’t tolerated by
the C compiler. This particular error can be hard to understand
when the developer is unaware of the way the Slang-to-C
transpiler translates class variables.

This example illustrates a difference between Slang’s se-
mantic and Smalltalk’s (P1), and that the semantic violation
is not caught by the transpiler (P2).

2.2 Slang’s development process
Slang’s development process requires more steps than Smalltalk’s
as shown in Figure 1. In a Smalltalk development process, the
written Smalltalk code is directly compiled into executable
bytecode (i.e., a Compiled Method) and interpreted by the VM.
When developing in Slang, the written code goes through
three stages, with different sets of constraints and enforce-
ments.

Figure 1. Code compilation process. Slang code is first parsed
in a Smalltalk AST, before being compiled as a Smalltalk
method. The Slang-to-C transpiler then uses the Smalltalk
AST to generate C code. Finally, the C code is compiled.

As Slang is developed in a Smalltalk environment and is
a subset of Smalltalk, it first goes through the same steps
as regular Smalltalk code and is therefore also compiled to

1null is also a macro defined in the plugin file produced by Slang as 0, this
assignment is therefore actually 0=5 after the pre-processing phase

executable bytecode. During this first stage, the Smalltalk
compiler first parses the code and creates the method’s AST.
This compilation process then detects some errors and mis-
takes such as syntactic errors or undeclared variables.

Next, The Slang-to-C transpiler computes a set of classes
to be translated and processes them in the second stage of the
transpilation. During the transpilation process, the transpiler
handles the AST of input classes and methods, prepares them
to be translated and emits the corresponding C code. The
Slang-to-C transpiler checks for some unsupported features
usage such as the usage of static arrays, and interrupts the
translation process with an error if it encounters any of them.
It then flushes the emitted C code into a file. Finally, the
generated C code is compiled using a traditional C compiler.
During this last stage of translation, translation errors, i.e.,
invalid C code, are caught by the C compiler.

2.3 Surprising translations
In Smalltalk, all interactions between entities, besides as-
signments, are done via message sending. Therefore, their
translations are an important part of the process and they re-
quire a special care. Slang introduces a distinction between
message sends: it considers special message sends and normal
message sends. This distinction is made during the transpi-
lation process and induces a difference in the message send
translations.

Special messages. Let us suppose a user overloads the #=
binary method for a plugin’s class. When sending this newly
defined message to self, the overload is ignored, and is trans-
lated as the C == operator systematically without warning or
error from the transpiler. Special messages are messages that
denote a special symbol or a specific function in Slang. To
each of these messages an ad-hoc translation is applied, re-
gardless of their usage. There are 125 special messages. These
messages and their associated translations are statically pre-
defined in the CCodeGenerator » initializeCTranslationDictionary
method.

Normal messages. Normal message sends are translated as
simple function calls. Messages are translated without veri-
fication that the corresponding function will be defined. For
example, if a developer sends the #sqrt message to a Boolean
instance, it is translated as a function call sqrt(. . .) even if this
message is not understood by Booleans. This shows that a
function call is generated from a message send even if the
function is not compatible with the receiver’s type. This trans-
lation generates invalid C code. This error is caught during
the generated C code compilation.

Method generation. A plugin must inherit directly or indi-
rectly from the InterpreterPlugin class. The transpiler generates
code for methods contained in the plugin class and every one
of its superclasses until the InterpreterPlugin class, which is ex-
cluded. As a consequence, the #class method is not inherited

3

IWST’19, July, 2019, Cologne, Germany Pierre Misse-Chanabier, Vincent Aranega, Guillermo Polito, and Stéphane Ducasse

from Object. Class side methods are therefore not usable from
Slang code and only instance sides methods are translated.
The Slang-to-C transpiler translates unary and keywords meth-
ods as function definitions, and inlines binary messages rather
than generating their methods. Methods corresponding to a
message send to the super pseudo variable are inlined, leav-
ing no traces of inheritance in the generated code. Method
redefining a special messages are ignored.

In this part, we saw that inheritance in Slang has a different
meaning than the one in Smalltalk (P1). We also saw that
the Slang-to-C transpiler allows for invalid function calls
(P2). Finally we explained Slang special messages are stored
in a table, making it hard to derive a dedicated translation
regarding the context of the message send, limiting extensions
(P3).

All those reasons make starting to code in Slang a chal-
lenge. Since errors are often caught very late in the generation
process (i.e., during C code compilation), as the transpiler
does not keep the mapping between the C and Slang codes
and it heavily uses method inlining, it is very complex to infer
from which parts of the code the errors come from. Moreover,
the semantic mismatch also makes it hard to reason about the
written code, and forces the developer to code in a Smalltalk
like language while thinking about the results she wants in C.

3 Illicium: a modular toolchain
To solve the limitations of Slang and the Slang-to-C transpiler,
we created a new compilation toolchain from a Limited Pharo
to C as a reflection on how to improve the transpilation pro-
cess with a modular design. The toolchain must implement
the three following requirements:

R1 The generated C code must be semantically close from
what has been expressed in Smalltalk.

R2 If features are not supported by the toolchain, the error
must be caught as soon as possible.

R3 The whole toolchain must be modular to support easy
modifications and extensions.

3.1 Structure Overview
An overview of our transpiler is illustrated in Figure 2.

Illicium relies on AST transformations. Using ASTs as
source and target artifacts of the translation increases the anal-
ysis, validation and transformation potential of the toolchain
(R2 and R3). Limited Pharo is used as toolchain input. Limited
Pharo defines a subset of Smalltalk that will be translated
while trying to keep an equivalent semantic (R1). Not all con-
cepts of Pharo are translated, but as the toolchain is designed
to be modular, it can be easily extended to add or replace fea-
ture support. Once the Limited Pharo code is compiled by the
standard Pharo compiler, several analyses are run on the pro-
duced AST. These analyses check for unsupported features or
modify the AST. Although most analyses and modifications
are optional, Illicium requires of the the Pharo AST to be

Figure 2. Illicium structure. Limited Pharo code is parsed
in an AST. A type inferencer annotates Pharo nodes with
concrete types. T he typed AST is then translated in the C
AST. Finally, the C AST is pretty-printed.

typed. We currently use the Phineas type inferencer [12] to
annotate the AST with concrete Pharo types. Such type in-
formation enables us to translate messages depending on the
type of the receiver, as well as detect messages misuse early
in the transpilation process. After the preliminary passes, the
modified and annotated Pharo AST is translated into a C AST
using a dedicated translator. Exactly as for the Pharo AST,
analysis and modification phases are run in the produced C
AST if needed. Finally, the C AST is generated by pretty-
printing it in files. The generated C code is then compiled to
produce a binary that can be used as a plugin for the VM.

3.2 Generative approach to AST creation
To provide a modular generation toolchain, we decide to
heavily rely on AST transformations either to change the
AST structure or to pass from an AST to another. In the case
of Illicium, the translation is performed between the Pharo
AST and the C AST. The Pharo AST is part of the Pharo
system and can be directly used as such. To produce the C
AST, we used a metamodel approach. We manually created
a C AST metamodel using FAMIX [4], and we used code
generation to automatically derive validation visitors and a
simplified C AST in Pharo. This approach allows us to reuse
and easily extend the C AST through the metamodel and to
automatically generate common artifacts.

An excerpt of the C AST metamodel is depicted in Figure 3.
We see 4 main concepts from the C AST: Statement, Expres-
sion, Block and ExpressionStatement. The metamodel states
that a Statement is either a Block or an ExpressionStatement.
The Block is composed of zero or many other Statements such
as Blocks or ExpressionStatements. An ExpressionStatement
represents the top node of an Expression.

AST Code generation. From this metamodel, we generate a
simplified code for the AST, free from FAMIX dependencies.
The class hierarchy generated from the metamodel presented
in Figure 3 is shown in Figure 4. The generator generates the
necessary accessors for each relationship in each correspond-
ing class. For each container relationship that can contain

4

Illicium: A modular transpilation toolchain from Pharo to C IWST’19, July, 2019, Cologne, Germany

Figure 3. C AST metamodel excerpt. A Block is a Statement
containing of a variable number of Statements. An Expression-
Statement is a kind of Statement containing an Expression.

many instances of other classes in the metamodel, it generates
an initialize method that creates default, empty, ready to use
collections. On top of these basic accessors and initializers,
the generator generates class testers (e.g., #isBlock) and a basic
visitor mechanism.

Figure 4. Simplified generated code’s model for the C AST.
Accessors methods are generated, as well as class tester meth-
ods. A default initialize method is generated to initialize an
instance variable that contain zero or many entities with a
default collection.

Visitors. The generator also generates visitors that are applied
to the C AST if required. Figure 5 shows the generated visitor
hierarchy from the C AST metamodel. Abstract and Walker
are used as base classes and Walker gives an automatic way
of navigating through the AST. Printer gives a first display of
the AST. StructureValidator and StructuralErrorCount provide a
structural validation of the AST code. Their generation relies

on the type of each properties in the metamodel. For each
property of a class, a special assert is generated in the code
of the visitor ensuring that a C AST is structurally correct.
StructuralErrorCount uses the StructureValidator, but does not
stop on each false assertion and counts the errors instead.

Figure 5. Visitors generated from the metamodel. Abstract
and Walker are used as base classes. Printer gives a first display
of the AST. StructureValidator and StructuralErrorCount provide
a structural validation of the AST code.

The C AST code and tools generated from the metamodel
are purely standalone and are independent from the translator
and FAMIX. We can therefore develop tools dedicated to
the C AST, and reuse them in various contexts where the C
AST must be handled. This metamodel approach improves
the modularity of the transpilation process and facilitates its
extension (R3).

3.3 Modular translation
Supporting a modular translation goes with the idea of dis-
tributing as much as possible the translation efforts into small
interchangeable translation units. In Illicium, we created trans-
lation units for the dedicated translation of each Pharo AST
node type. These units are responsible for producing from a
Pharo AST node the equivalent C AST fragment. They also
detect some AST input patterns and adapt their translation,
raising errors if required. In this section, we briefly present
how the translator is built, show how translation units are writ-
ten and report errors before focusing on message translation.

3.3.1 Translation structure
The current Illicium translator is built upon a visitor of the
Pharo AST. This main translator is composed of smaller trans-
lators, specialized to translate only one type of AST node. For
each node the main translator visits, it invokes the correspond-
ing translator unit for that kind of node. Each node translator
translates the node it gets, and asks the main translator to
translate the sub-AST of this node.

An example of the translation process is pictured in Fig-
ure 6 for a simple message send in a method. The main transla-
tor is visiting a message send #ifTrue: and dispatches this node

5

IWST’19, July, 2019, Cologne, Germany Pierre Misse-Chanabier, Vincent Aranega, Guillermo Polito, and Stéphane Ducasse

to the MessageNodeTranslator. The MessageNodeTranslator
takes care of the current selector and asks the main translator
to dispatch the receiver and the arguments onto the correct
specialized translators. Consequently, the true literal is sent to
the LiteralValueNodeTranslator while the empty array is sent to
the LiteralArrayNodeTranslator. The process repeats until every
node in the method’s AST is visited.

Figure 6. Translation process. The Main Translator dis-
patches the MessageNode containing the selector #ifTrue: to
the MessageNodeTranslator. The MessageNodeTranslator then
asks the Main translator to take care of the receiver and the ar-
gument of the message, which the Main Translator dispatches
onto specialized visitor.

3.3.2 Node translator
Each of these specialized translation units is independent and
replaceable. They only need to provide the method: #trans-
lateNode:withMainTranslator:. This method must return a frag-
ment of a C AST.

For example, a simplified version of this method for the
AssignmentNodeTranslator is shown in the Listing 4. This as-
signment translator creates a new AST node corresponding to
a C AssignmentOperator, and initialize its operands with the
AST fragments that are returned by the dedicated translation
unit for these nodes.

1 AssignmentNodeTranslator >> translateNode:
anAssignmentNode withMainTranslator: aTranslator

2 ↑AssignmentOperator new
3 leftSideOperand:
4 (anAssignmentNode variable acceptVisitor: aTranslator)
5 rightSideOperand:
6 (anAssignmentNode value acceptVisitor: aTranslator)

Listing 4. Simplified translation of an AssignmentNode

3.3.3 Transpilation errors
Each unit translator is responsible for accepting or rejecting
the AST node it receives as input. In the example described in
Section 2.1, we saw that the Slang-to-C transpiler translates

class variable as C macro definition, therefore it does not sup-
port class variable assignment. However, the transpiler does
not enforce the read only property implied by this translation
choice. The assignment AClassVariable := 5. from the code
should throw an error to forbid the user to use this unsup-
ported feature. This expression’s AST is shown in Figure 7.

Figure 7. Pharo AST for the expression: AClassVariable :=
5. It is represented by an AssignmentNode assigning to the
variable AClassVariable the literal value 5.

For the translation of such an AST fragment, three transla-
tion units are used: a ClassVariableTranslator, an AssignmentN-
odeTranslator and a LiteralValueNodeTranslator. The ClassVari-
ableNodeTranslator receives as input the ClassVariableNode
representing the class variable AClassVarNode and performs
the read-only check from it (Listing 5).

The translator checks if its parent node is an AssignmentN-
ode and if it is, if the variable of the assignment is the node
the translator is currently treating. (lines 2-4). The translator
throws an error if it identifies that the ClassVariableNode is
accessed in write, otherwise, it translates it as an Identifier
node instance from the C AST (lines 5-6).

Each node translator is responsible for its own transpilation
errors, the semantic enforcement is dedicated to each kind of
node (R2). Moreover, this approach by small translation units
introduces a high modularity as they can be easily modified
or replaced (R3).

1 ClassVariableNodeTranslator >> translateNode:
aClassVarNode withMainTranslator: aTranslator

2 (aClassVarNode parent isAssignment
3 and: [aClassVarNode parent variable = aClassVarNode])
4 ifTrue: [self error: ' ClassVariables are read only in Limited

Pharo.'].
5 ↑ Identifier new
6 id: aClassVarNode name

Listing 5. Class Variables Translation process

3.3.4 A focus on message translation
As we mentioned in Section 2.3, messages are the basis of
interactions between objects. We saw that Slang makes the
distinction between special message sends and normal mes-
sage sends. More specifically, the translation architecture
behind special messages makes it hard to extend. Moreover,
the translation as function calls or inlines for normal messages
is ad-hoc and cannot be changed depending on the type of the

6

Illicium: A modular transpilation toolchain from Pharo to C IWST’19, July, 2019, Cologne, Germany

receiver. In that regard, we focused on providing a unified and
modular approach for message sends translations depending
on the receiver’s type.

Translation principle. In Illicium, the Pharo AST is required
to be annotated with type information. This type information
is used by the translator to conduct the code generation. It
also allows us to detect invalid message uses during the tran-
spilation process. When the MessageNodeTranslator is called
with an input node, it looks for the type of the receiver. De-
pending on the type of the receiver, it redirects the translation
to a special class, a translation class, that represents the cor-
responding type in the target language. The methods of the
translation classes define how each message will be translated.
We created translation classes for primitive types. This transla-
tion class is instantiated with the receiver’s AST as value. The
message is dynamically sent to this newly created instance of
the translation class using the #perform:withArguments: mes-
sage. Finally, the translation classes method returns the C
AST fragment corresponding to this message send. The #per-
form:withArguments: message is overridden for those transla-
tion classes to have control over the translation and to prevent
messages from Object to be inadvertently accepted by the tran-
spiler. Those translation classes implement the methods that
are authorized for the translation and return C AST fragments.
A message not understood by a translation class is considered
invalid, and throws a compilation error.

Taking the same input as the previous example (Figure 6),
the #ifTrue: selector is performed on an instance of ILBoolean
type which is the translation class for the Boolean type. IL-
Boolean understands the #ifTrue: selector and knows how to
produce the corresponding C AST fragment. This method
asks the Main Translator to translate the LiteralNode contain-
ing the true literal, and the LiteralArrayNode that contains the
empty static array. Finally, the #ifTrue: method returns an If
node from the C AST to the main translator.

Advantages. Having translation classes present several ad-
vantages:

• Methods and translation type for Smalltalk classes that
are available for translation are browsable, modifiable,
and extendable. This feature also improves the modu-
larity of the translator (R3). As a consequence, several
messages with the same selector have different transla-
tions depending on the receiver’s type.

• Translation classes being used only for the translation
process, they also offer a dedicated documentation.
This enables transpilation developers to explain the
semantic chosen for each types and methods, as well
as exposing their limitations (R2).

• Statically detectable invalid message errors come up
during the translation process rather than in the C com-
pilation process (R2).

Users are able to browse and tweak the translation, replace
part of the translation process without affecting the target
language and create new analyses on the target code using
generated visitor base classes. This infrastructure improves
the area of the translations and provides a solution to three
requirements exposed in Section 2.

4 Extending Illicium: an illustration
To illustrate the modularity and extensibility of Illicium (R3),
we describe the process of adding a translation for the #to:do:
message on SmallInteger.

Analysis. The #to:do: method is a for loop. It is defined on
SmallInteger and takes two arguments: the upper bound of the
loop and a block representing the sequence of instructions
that is executed by each iteration. Each SmallInteger value
between the two bounds is passed as argument to the block.

1 (2 + 3) to: 10 do: [:i | "do a computation with i"]

Listing 6. #to:do: call in a smalltalk method

There are three ways of translating this message send in C: a
for loop, a while loop or a call to a recursive function. In this
example, we decided to implement it as a while loop where
the loop variable has the same name as the block’s parameter.

The following C fragment (Listing 7) shows the C code we
aim to generate. Note that the variable i does not exist outside
of the Pharo BlockClosure. We therefore enclose it in another
C Block.

1 {
2 int i = (2 + 3);
3 while(i <= 10){
4 /* generated code for aBlock */;
5 ++i;
6 }
7 }

Listing 7. C code corresponding to #to:do:

Extending the Metamodel. The current C AST does not have
a While loop concept, we therefore need to add it. A C While
is a Statement containing an Expression which is the condition
and a Statement which is its body. This is represented in the
metamodel in Figure 8.

After this addition to the metamodel, the metamodel code
for the new C AST node and the new version of the visitors
are generated.

Extending the Translator. #to:do: is a message and is there-
fore translated by the MessageNodeTranslator. As we described
in the Section 3.3.4, the MessageNodeTranslator send a dy-
namically created message to an instance of a translation
class. Here, as we want to support this message for Small-
Integer, we implement the method #to:do: on its translation

7

IWST’19, July, 2019, Cologne, Germany Pierre Misse-Chanabier, Vincent Aranega, Guillermo Polito, and Stéphane Ducasse

Figure 8. Addition of the While concept to the C AST meta-
model. A C while is a Statement, that contains an Expression,
the condition, and a Statement representing its body.

class: ILSmallInteger. This method returns the C AST fragment
corresponding to the message send.

1 ILSmallInteger >> to: stop do: aBlock
2 |iterName|
3 aBlock argument size ~=1
4 ifTrue: [self error: 'Wrong number of arguments.']
5 ifFalse: [iterName := (aBlock argument at: 1) accept: visitor].
6 ↑Block new
7 add:
8 (VariableDeclaration new
9 type: self class asCType;

10 id: (Identifier new id: iterName);
11 init: (self value accept: visitor));
12 add:
13 (While new
14 condition:
15 (LesserEqualOperator new
16 left: (Identifier new id: iterName);
17 right: (stop accept:visitor));
18 body:
19 (Block new
20 addAllStatements:(aBlock accept: visitor);
21 add:
22 (PreIncrementOperator new
23 operand: (Identifier new id: iterName));
24 yourself));
25 yourself.

Listing 8. A simplified implementation of the #to:do: for
ILSmallInteger.

We see in the Listing 8 a simplified version of the C AST
to return. In the first place, we ensure that aBlock takes ex-
actly one argument (line 3-4). We then retrieve the name of
this argument to use it as the loop variable name (line 5).
The methods finally builds the AST fragment and returns it
(lines 6-25). In this Block there is the declarations of a vari-
able initialized with the AST fragment corresponding to the
receiver’s translation (lines 8-11) and a While statement (line

13-24). This While contains an Expression which is a condition
(line 14-17) and a body which is a Block (line 18-23). The
body of the While loop contains the AST fragment of aBlock’s
translation (line 20) and the loop variable incrementation (line
22-23).

Pretty-printing. Finally the last part of the process is the
production of the C code pretty-printed from the C AST. The
PrettyPrinterVisitor therefore has to implement the #visitWhile:
method.

1 PrettyPrinterVisitor >> visitWhile: aWhile
2 stream << 'while('.
3 aWhile condition acceptVisitor: self.
4 stream << ')'.
5 aWhile body acceptVisitor: self.

Listing 9. Pretty-printing method for the C While concept.

Listing 9 shows how the method is implemented. We ob-
serve that only little code is related to the While concept and
that the code generation is quickly distributed to the condition
and body of the While statement.

5 The challenges of defining a Limited Pharo
C and Smalltalk have different designs, and a different level of
abstraction. Mapping the features offered by each language is
a difficult task. While defining the supported input, a number
of semantic gaps appear. The transpiler developer should be
aware of such gaps to provide correct translations or warn the
user if they are not supported.

We showed in the Use Case Section (Section 4) an example
of how Illicium is extended to enable transpiler developers to
add new translations, modify existing ones or remove them.
It is the responsibility of the transpiler developer to choose
the semantic she gives to a feature in the limited language.
Therefore she can decide to overlook a problem, if it does not
happen in the context she manipulates. For example, Slang
ignores the integer overflow problem and therefore does not
pay the run-time cost of checking overflows after operations
on integers.

Regardless of the translation decisions, those problems ex-
ist, and have to be dealt with when designing a limited version
of Pharo to be translated to C. We outline in this section the
challenges a transpiler developer faces when translating Pharo
code to C code. Both languages offering numerous features,
we are focusing on features we think are the most important.

5.1 Primitive data-types
The C language provides four primitive data-types: integer,
float, character and boolean. C provides a handful of built-
in operators for each of them based on hardware available
operators. On the other hand, equivalent to those primitives
types are Objects in Pharo and they come with rich libraries
allowing their uses and manipulations. It means that although

8

Illicium: A modular transpilation toolchain from Pharo to C IWST’19, July, 2019, Cologne, Germany

a few messages have a direct mapping to their C operators
counter parts, most of them have to be translated by hand to
be available.

Floats and booleans types have a similar semantic on both
sides, but integers and characters are problematic.

Integers. In Pharo, Integers are considered infinite because
they return a different representations of an Integer when it
is needed, in a transparent way for the user. In C, however,
the developer has the responsibility to choose the size of the
integer to be big enough for its purpose.

When computing an arithmetic operation, if the result is
too big for the representation the developer chose, the opera-
tion causes an overflow. In Pharo, the SmallInteger’s method
detects the overflow, and returns a LargeInteger instead. But
in C, the result is just different. If the developer does not
expect the overflow, the resulting program has an undefined
behavior.

Characters. The character type in C is just a byte and does
not involve encoding. Character’s encoding in C is interpreted
as ASCII by many libraries. In Pharo characters are repre-
sented by unicode points. The first 128 Unicode code points
are the ASCII characters and are encoded on seven bits. Those
characters are therefore not a problem. Any Unicode code
point’s interpretation, when the code point is superior to 128,
depends on the library used and will be problematic if they
are encoded on more than a byte.

Strings. Although Strings support is not available as a prim-
itive data-type in C, they are as useful as they are used. In
C, as an approximation, the convention is to terminate an
array of characters by a null character (\0) which is added
automatically in the case of a string literal by the compiler.

Pharo represents them using a Pharo Array of Characters.
Pharo String’s representation is chosen transparently for de-
velopers by the system, depending on their content. They are
an instance of ByteString if every character it contains is en-
codable on a byte, or an instance WideString otherwise. They
inherit the encoding problems from Characters.

Symbols. Symbols are interned Strings i.e.,Strings that are only
created once and shared across the program2 to minimize
memory footprint for example3. Symbols are a kind of literal
in Pharo but they do not have a C native equivalent, although
libraries implementing them exist. Similarly to Strings, Pharo
supports ByteSymbols and WideSymbols transparently for the
user and also inherit the encoding problems from Characters.

5.2 Object Oriented Programming
C does not support Object-Oriented Programming (OOP)
features whereas Pharo is basing everything on them. This
discrepancy is the most obvious one to notice and is dealt

2In the Smalltalk context, shared across the image
3See the Flyweight design pattern

with in a several different ways ranging from ignoring OOP
completely, to create a support for OOP features.

For example Slang uses OOP as an organization system
on the Smalltalk side and removes any trace OOP features in
the generated code. SPiCE[16] on the other hand recreates
an equivalent of the Smalltalk environment, and implements
OOP features such as dynamic message passing.

This issue is well documented in the literature and is be-
yond the scope of this paper. Still, Slang offers an interesting
static limited inheritance model[10].

Slang’s inheritance. In this model, plugin classes actually
inherit other plugins instances side methods. Every method
that is not redefined, is translated as one of the current plugin.
The usage of the super pseudo variable is supported as well
and the method call using super as receiver is inlined. This
mechanism allows to reuse Slang code, while having no trace
of inheritance in the generated code.

5.3 Arrays and collections
An Array is a chunk of contiguous memory of a specified size
in C. It can be accessed using the square bracket operator. C
requires for all elements to have the same type.

Pharo provides a rich collection library, of which Array
is the closest counter part. Pharo’s Array is a collection of a
fixed size that contain elements of any types as well as the
knowledge of its own size. Pharo’s collections also provides
developers with a wide range of methods allowing to iterate
over them without having to know how they are represented
whereas user have to describe how to iterate over a C array.

5.4 Block Closures
BlockClosure is an important feature that has several properties
in Pharo:

• lexical closure
• deferred execution
• non local returns

A block closure also accepts arguments, as well as defining
new temporary variables. It is heavily used, most notably used
for iteration and control flow It is syntactically represented
by square brackets.

However in C, a block is a simple statement that contains
statements surrounded by curly braces and they only support
the creation of temporary variables.

5.5 Additional problematic Pharo features
Typing. Although not as visible as the previous features, dy-
namic typing is an important feature in Pharo.

Message passing is the mechanism allowing all interactions
between entities in Smalltalk. It is therefore primordial. The
principle of message passing is to send a message to an entity,
without caring for its type. All that is required from this
receiving entity, is that it understands that message. This
method corresponding to the message is looked up in the

9

IWST’19, July, 2019, Cologne, Germany Pierre Misse-Chanabier, Vincent Aranega, Guillermo Polito, and Stéphane Ducasse

class of the receiver and through the inheritance hierarchy
if the it does not know it directly. An error mechanism is
triggered if the method is nowhere to be found.

C takes another approach: static typing. The compiler en-
force statically, that all functions used, are known, and that
types used to call them are correct. C static typing allows the
compiler to resolve bindings between a function calls and a
function definitions at compile time. It also makes type veri-
fication possible during the compilation process, to prevent
run-time type errors in the resulting program.

Memory management. In Pharo, memory management is
taken care of by the VM, relieving the developer of that
responsibility. In Pharo, developers only have to ask for a
resource. This resource is handled by a Garbage Collector.
When the Garbage Collector notices that the resource is not
used anymore, it gives it back to the system.

C on the other hand, only manipulates memory, both static
and dynamic. When manipulating dynamic memory in C,
developers have to ask the underlying system to allocate a
chunk of memory of a specific size. The developers are re-
sponsible for its manipulation, and to tell the system when
they do not need that chunk of memory anymore, so the sys-
tem can allocate it to another process. Developers are also
able to unsafely access memory directly, which often results
in crashes of programs. This access is not restrained and is a
common errors when programming in C.

6 Related Work
Slang is a subset of Smalltalk that has been used successfully
for two decades to develop the OpenSmalltalkVM [8, 10]
(Section 2). The languages delimitation is hard to grasp, re-
sulting in a huge learning curve for newcomers. The Slang-
to-C transpiler is too permissive, and accepts in the input
code Smalltalk features it does not support. We improve its
design with a modular approach, where error management is
distributed on small, specialized translations units.

Several other projects successfully translated Smalltalk to
C. Among them, Orchard [11] and later SPiCE [16] aim at
translating general purpose Smalltalk. They provide a run-
time system replacement for the Smalltalk VM as well as
replacement classes which implements similar methods as the
ones available in the Smalltalk standard class library directly
in C. They are called using dynamic look up, to preserve
Smalltalk’s messaging semantics. We use translation classes
at compilation time to guide transpilation in a static manner as
well as enabling early errors throw rather than implementing
a substitute.

RPython4 is a toolchain that provides a Restricted Python
to C transpiler as well as a support framework to implement
dynamic languages. Unlike Slang, RPython offers more fea-
tures and feels more like writing Python than C [10]. The cost

4https://rpython.readthedocs.io/en/latest/#

for this abstraction is a less direct mapping to C. This requires
long analyses to transform, which results in long compilation
times [13] and the generated code is quite unreadable making
it difficult to debug.

Using successive ASTs transformations to pass from a for-
malism to another is equivalent to Model Driven Engineering
(MDE) transformation chains [3]. For example, Rodrigues et
al., present a MDE approach to generate OpenCL code from
UML [15]. This kind of approaches rely on model transforma-
tions and models that conforms to metamodel. Our approach
could have followed the same principle by directly handling
C models that conform to the C AST FAMIX metamodel we
built and use model transformation languages. Instead we
decided to produce a simpler C AST version to cut FAMIX
dependency, and to use Pharo reflexive capabilities as model
transformations languages replacement.

Rivera et al., worked upon the ability to chain model trans-
formations [14]. They proposed a modeling language to ex-
press how one can link model transformation one to the other.
Their system relies on an execution engine that interprets
input models describing the transformations chain. Currently,
Illicium does not provide an abstraction to express the ASTs
transformations chaining, but we consider the production of
a Domain Specific Language (DSL) dedicated to this task as
future work.

7 Future work
Better way to write AST. As we saw in Section 4, writing an
AST by hand is a tedious task. We would like to improve the
way we write AST fragments to be able to ease the extension
of the current translation classes.

Inlining. Generally speaking, inlining is the process to re-
place a function call by its code which prevents to pay for
a function call at the cost of code size. Slang’s Inlining im-
proved the VM performances significantly when it was first
introduced [8]. An advantage of transpiling over compiling,
is that we rely on the target language’s compiler. C compilers
have been the subject of research and optimizations and have
evolved tremendously. After twenty years, does it still make
sense to inline at the transpilation level, rather than allowing
the C compilers to take care of it?

Experimenting with the translation. Illicium currently trans-
lates classes following a semantic similar to Slang’s. We aim
at enabling the user to choose how to translate their classes,
for example to translate instance variables in a structure rather
than as global variables. Illicium can and should also be ex-
tended to support higher level concepts with careful attention
to the costs they induce. This will enable us to benchmark
features, and measure the impact of using one translation
rather than another.

Ease plugin testing. Plugins are currently compiled outside
of the Pharo environment by a C compiler and their interfaces

10

Illicium: A modular transpilation toolchain from Pharo to C IWST’19, July, 2019, Cologne, Germany

have to be created by hand. We would like to have a com-
pilation pipeline that transpiles the plugin, compiles it, and
plugs it in the current VM to be tested. A default interface to
interact with the plugin could be generated as well.

Composing transformations for an adaptive toolchain. Il-
licium is designed around ASTs transformations. Transfor-
mations introduce validation, refactoring, going from one
abstraction level to another. . . Expressing their composition
is currently hardcoded in the system. We will propose a DSL
dedicated to the expression of transformations compositions.
This language will also allow the toolchain designer to ex-
press tasks that could be executed in parallel, increasing the
transpilation speed. Such a language invites developers to
code smaller composable transformations units that focus on
specific independent tasks, increasing reusability, modular-
ity and testing. It will be also interesting to explore how all
these small transformations can be enabled or disabled at
run time thus producing an adaptive toolchain. For example,
the toolchain could adapt its optimisation or validation level
regarding patterns identified in the user code.

Multi-level debugging. We showed that the toolchain we de-
signed reduces potential surprises and errors thanks to small
transformations units. However, trusting the toolchain does
not imply that the user code does not contain bugs. Some
bugs can be observed and caught at Smalltalk level, but others
are only observed at run time. As future direction, Illicium
will maintain a link between the Smalltalk code and the C
code to allow the toolchain to report errors into the Smalltalk
code (e.g., C syntactical errors). Moreover, conjointly used
with C debug format information as DWARF [5], this map-
ping would allow Illicium to propose a step by step run time
debugging directly from Smalltalk.

8 Conclusion
In this paper we present Illicium, a new transpilation toolchain
from Pharo to C that is extensible and allows early valida-
tions in the transpilation chain instead of waiting until the
C compiler fails. This is possible because Illicium uses a C
AST model that can be validated and transformed before the
C compilation. For this, we use a metamodel approach that
describes a subset of the C language and generates the corre-
sponding AST. This metamodel approach also allows us to
automatically generate tooling such as structural checkers.

Illicium’s translator is split in several replaceable compo-
nents. A main translator dispatches the translation to smaller,
specialized translators, that take care of each of the Pharo
AST node types. Each of these specialized translators are
responsible to accept or reject their input, to allow for early
error detection. Moreover, it uses a mechanism to treat mes-
sages depending on their reveiver’s types, rather than only on
their selectors.

We show how Illicium can be easily extended to be able to
transpile new features. Finally, we describe the semantic gaps
between Pharo and C that a transpiler developer should keep
in mind when extending the Illicium transpilation chain.

Acknowledgments
This work was supported by Ministry of Higher Education
and Research, Nord-Pas-de-Calais Regional Council, CPER
Nord-Pas-de-Calais/FEDER DATA Advanced data science
and technologies 2015-2020. The work is supported by I-Site
ERC-Generator Multi project 2018-2022. We gratefully ac-
knowledge the financial support of the Métropole Europénne
de Lille.

References
[1] Clément Bera. 2017. Sista: a Metacircular Architecture for Runtime

Optimisation Persistence. Ph.D. Dissertation. Université de Lille. http:
//rmod.inria.fr/archives/phd/PhD-2017-Bera.pdf

[2] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet,
Damien Cassou, and Marcus Denker. 2009. Pharo by Example. Square
Bracket Associates, Kehrsatz, Switzerland. 333 pages. http://rmod.
inria.fr/archives/books/Blac09a-PBE1-2013-07-29.pdf

[3] Jesús Sánchez Cuadrado and Jesús García Molina. 2008. Approaches
for Model Transformation Reuse: Factorization and Composition. In
Proceedings of the 1st International Conference on Theory and Practice
of Model Transformations (ICMT ’08). Springer-Verlag, Berlin, Heidel-
berg, 168–182. https://doi.org/10.1007/978-3-540-69927-9_12

[4] Serge Demeyer, Sander Tichelaar, and Stéphane Ducasse. 2001. FAMIX
2.1 — The FAMOOS Information Exchange Model. Technical Report.
University of Bern.

[5] Michael Eager. 2007. Introduction to the DWARF debugging format.
Technical Report. Eager Consulting. http://www.dwarfstd.org/doc/
Debugging%20using%20DWARF.pdf

[6] Adele Goldberg and David Robson. 1983. Smalltalk 80: the Language
and its Implementation. Addison Wesley, Reading, Mass. http://
stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf

[7] Mark Guzdial and Kim Rose. 2001. Squeak — Open Personal Comput-
ing and Multimedia. Prentice-Hall.

[8] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
1997. Back to the Future: The Story of Squeak, a Practical Smalltalk
Written in Itself. In Proceedings of the 12th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applications
(OOPSLA’97). ACM Press, 318–326. https://doi.org/10.1145/263700.
263754

[9] Eliot Miranda, Clément Béra, Elisa Gonzalez Boix, and Dan Ingalls.
2018. Two decades of smalltalk VM development: live VM devel-
opment through simulation tools. In Proceedings of the 10th ACM
SIGPLAN International Workshop on Virtual Machines and Intermedi-
ate Languages, VMIL@SPLASH 2018, Boston, MA, USA, November 4,
2018. 57–66. https://doi.org/10.1145/3281287.3281295

[10] Eliot Miranda, Clément Béra, Elisa Gonzalez Boix, and Dan Ingalls.
2018. Two decades of smalltalk VM development: live VM devel-
opment through simulation tools. In Proceedings of the 10th ACM
SIGPLAN International Workshop on Virtual Machines and Intermedi-
ate Languages. ACM, 57–66.

[11] C. Nash and William Haebich. 1991. An accidental translator from
Smalltalk to ANSI C. OOPS Messenger 2, 3 (1991), 12–23. https:
//doi.org/10.1145/122242.122244

[12] Nicolás Passerini, Pablo Tesone, and Stéphane Ducasse. 2014. An
extensible constraint-based type inference algorithm for object-oriented

11

http://rmod.inria.fr/archives/phd/PhD-2017-Bera.pdf
http://rmod.inria.fr/archives/phd/PhD-2017-Bera.pdf
http://rmod.inria.fr/archives/books/Blac09a-PBE1-2013-07-29.pdf
http://rmod.inria.fr/archives/books/Blac09a-PBE1-2013-07-29.pdf
https://doi.org/10.1007/978-3-540-69927-9_12
http://www.dwarfstd.org/doc/Debugging%20using%20DWARF.pdf
http://www.dwarfstd.org/doc/Debugging%20using%20DWARF.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
https://doi.org/10.1145/263700.263754
https://doi.org/10.1145/263700.263754
https://doi.org/10.1145/3281287.3281295
https://doi.org/10.1145/122242.122244
https://doi.org/10.1145/122242.122244

IWST’19, July, 2019, Cologne, Germany Pierre Misse-Chanabier, Vincent Aranega, Guillermo Polito, and Stéphane Ducasse

dynamic languages supporting blocks and generic types. In Interna-
tional Workshop on Smalltalk Technologies (IWST 14).

[13] Armin Rigo and Samuele Pedroni. 2006. PyPy’s approach to virtual
machine construction. In Proceedings of the 2006 conference on Dy-
namic languages symposium. ACM, New York, NY, USA, 944–953.
https://doi.org/10.1145/1176617.1176753

[14] José E Rivera, Daniel Ruiz-Gonzalez, Fernando Lopez-Romero, José
Bautista, and Antonio Vallecillo. 2009. Orchestrating ATL model
transformations. Proceedings of MtATL 9 (2009), 34–46.

[15] Antonio Wendell De Oliveira Rodrigues, Frédéric Guyomarc’h, and
Jean-Luc Dekeyser. 2013. An MDE Approach for Automatic Code
Generation from UML/MARTE to OpenCL. Computing in Science
and Engineering 15, 1 (2013), 46–55. https://doi.org/10.1109/MCSE.
2012.35

[16] Kazuki Yasumatsu and Norihisa Doi. 1995. SPiCE: A System for
Translating Smalltalk Programs Into a C Environment. IEEE Trans.
Software Eng. 21, 11 (1995), 902–912. https://doi.org/10.1109/32.
473219

12

https://doi.org/10.1145/1176617.1176753
https://doi.org/10.1109/MCSE.2012.35
https://doi.org/10.1109/MCSE.2012.35
https://doi.org/10.1109/32.473219
https://doi.org/10.1109/32.473219

	Abstract
	1 Introduction
	2 Slang
	2.1 Semantic mismatch
	2.2 Slang's development process
	2.3 Surprising translations

	3 Illicium: a modular toolchain
	3.1 Structure Overview
	3.2 Generative approach to AST creation
	3.3 Modular translation

	4 Extending Illicium: an illustration
	5 The challenges of defining a Limited Pharo
	5.1 Primitive data-types
	5.2 Object Oriented Programming
	5.3 Arrays and collections
	5.4 Block Closures
	5.5 Additional problematic Pharo features

	6 Related Work
	7 Future work
	8 Conclusion
	Acknowledgments
	References

